跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 15:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江維翔
研究生(外文):Wei-Hsiang Chiang
論文名稱:低照度染料敏化太陽能電池 特性之研究
論文名稱(外文):Properties of DSSCs at Very Low Intensity Condition
指導教授:白益豪黃得瑞黃得瑞引用關係
指導教授(外文):Yi-Hao PaiDer-Ray Haung
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:105
中文關鍵詞:染料敏化太陽能電池非常低的強度條件光伏太陽能電池太陽輻射
外文關鍵詞:Photovoltaicsolar modulesun radiationDssc
相關次數:
  • 被引用被引用:0
  • 點閱點閱:432
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的是在非常低的強度條件(VLIC)調查染料敏化太陽能電池(DSSC)的光學和電學性質。為了測試的DSSC的溫度和濕度試驗後的效果,被選定為混合二氧化鈦,使DSSC樣品一些不同的染料N719和Z907。在我們的實驗中,樣品的溫度和濕度試驗使用魏斯SB22 / 160進行測試。溫度和濕度的試驗條件設定RH.The DSSC樣品的電性能通過使用一個IV曲線測得50℃/ 75%RH,65℃/ 85%RH,70℃/ 75%RH和85℃/ 85%儀表。光輻射條件被設定在非常低強度條件(VLIC:60瓦/平方米),這是用於在低光強度輻射應用定義。從具有和不具有溫度和濕度試驗DSSC(N719色素)的我們的測試JV曲線,所述的Voc,Jsc為FF和前DSSC樣品的效率的溫度和濕度試驗是0.779V,15(毫安/厘米2),64%和6.4 %分別與開路電壓,Jsc為FF和DSSC樣品的效率被降解到0.779V,9.56(毫安/厘米2),70%和4.58%分別後20小時溫度和濕度測試。還從DSSC(Z907染料)的使用和不使用的溫度和濕度試驗合營曲線,所述的Voc,Jsc為FF和前DSSC樣品的效率的溫度和濕度試驗是0.628V,12.15(毫安/厘米2),67%和5.14 %分別與開路電壓,Jsc為FF和DSSC樣品的效率被降解到0.655V,6.06(毫安/厘米2),67%和2.67%分別15小時後的溫度和濕度測試。在一般情況下,DSSC染料樣品的光學和電學性質後的溫度和濕度試驗100小時明顯降解。(DSSC)是一種具有高的潛在應用與一個低成本的太陽能電池。本研利用照光老化試驗與恆溫恆濕試驗來探討DSSC光學和電學性質,使用兩種不同的染料為N719和Z907製作為DSSC樣品,染料樣品的吸收光譜使用UV / VIS吸收光譜儀進行量測,DSSC樣品透過電化學分析儀量測樣品電性。照光老化試驗分別為每20小時將樣品取出,並量測電性量測與染料的吸收光譜量測作為一個循環。電性量測採用的是一般太陽能電池量測標準測試條件,條件為Air mass 1.5 (AM 1.5) Global spectrum,1000 W/m-2,25℃。量測結果顯示照光老化20小時後,N719 樣品效率明顯下降,而N719樣品在照光老化達80小時後其轉換效率下降幅度達21%;Z907樣品在照光老化40小時後效率為最大值,照光老化到達80小時後Z907樣品轉換效率下降幅度達13%,兩者結果顯示Z907相較於N719在嚴苛的環境之下耐久度較高。
The purpose of this study is to investigate the optical and electrical properties of dye sensitized solar cell (DSSC) at very low intensity condition (VLIC). In order to test the effect of the DSSC after temperature and humidity test, some different dyes N719 and Z907 were selected for mixing TiO2 to make DSSC samples. In our experiment, the temperature and humidity test of sample was tested by using Weiss SB22/160. The testing conditions of temperature and humidity were set 50℃/75%RH, 65℃/85%RH, 70℃/75%RH and 85℃/85%RH.The electrical properties of DSSC samples were measured by using an I-V curve meter. The light radiation condition was set at the very low intensity condition (VLIC: 60 W/m2), which is defined for applications in low light intensity radiation. From our testing J-V curves of DSSC (N719 dye) with and without temperature and humidity test, the Voc, Jsc, FF and efficiency of DSSC sample before temperature and humidity test are 0.779V, 15(mA/cm2), 64% and 6.4% respectively, and the Voc, Jsc, FF and efficiency of DSSC sample are degraded to 0.779V, 9.56(mA/cm2), 70% and 4.58% respectively after 20 hour temperature and humidity test. Also from the J-V curves of DSSC (Z907 dye) with and without temperature and humidity test, the Voc, Jsc, FF and efficiency of DSSC sample before temperature and humidity test are 0.628V, 12.15(mA/cm2), 67% and 5.14% respectively, and the Voc, Jsc, FF and efficiency of DSSC sample are degraded to 0.655V, 6.06(mA/cm2), 67% and 2.67% respectively after 15 hours temperature and humidity test. In general, the optical and electrical properties of DSSC dye samples are degraded obviously after temperature and humidity test for 100 hours.
致謝 I
摘要 III
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 能源現況及太陽能電池 1
1.2研究動機與目的 2
第二章 基礎原理 5
2.1太陽光譜 5
2.2太陽能電池量測條件 6
2.3太陽能電池運作基本原理 8
2.4太陽能電池種類 10
2.5染料敏化太陽能電池發展 11
2.6 染料敏化太陽能電池基本原理 13
2.6.1染料敏化太陽能電池的主要組成 13
2.6.2染敏太陽能電池的化學反應 14
2.6.3奈米顆粒二氧化鈦薄膜(Nanoporous TiO2 thin film) 15
2.6.4染料敏化劑(Sensitized Dye) 17
2.6.5電解質 20
2.7加速壽命試驗概述 21
2.7.1浴缸曲線 22
第三章 實驗儀器與實驗方法 23
3.1 實驗儀器 23
手持式日照計 28
手持式照度計 28
3.2 實驗方法 29
3.2.1 照光加速老化試驗實驗流程及實驗方法 29
3.2.2 恆溫恆濕實驗流程及實驗方法 32
3.2.3 DSSC在弱光源下試驗實驗流程及實驗方法 35
低照度光源的分析 38
第四章 結果與討論 45
4.1 UV/VIS對兩種不同染料的分析 45
4.3 照光加速老化試驗分析 47
4.3.1 染料敏化太陽能電池電性分析 47
4.3.2 染料吸收光譜分析 51
4.3.3 染料敏化太陽能電池外部量子效率量測分析 53
4.3.4 綜合分析 55
4.4 恆溫恆濕加速老化試驗分析 56
4.4.1 條件溫度50℃濕度70% 56
4.3.3 條件溫度75℃濕度75% 60
4.4.2 條件溫度85℃濕度85% 64
4.4.3 恆溫恆濕綜合分析 68
4.4.4 染料敏化太陽能電池壽命分析 69
第五章 結語與未來研究發展 71
參考文獻 73
[1] Lidgate, David. “Green energy?.” Engineering Science & Education Journal 1.5 (1992): 221-227.
[2] Copeland, A. Wallace, Otis D. Black, and A. B. Garrett. “The Photovoltaic Effect.” Chemical Reviews 31.1 (1942): 177-226.
[3] IEC Standards-IEC61215: Crystalline silicon terrestrial photovoltaic (PV) modules–Design qualification and type approval [Online]. Available: http://webstore.iec.ch/preview/info_iec61215%7Bed2.0%7Den_d.pdf
[4] S.O. Kasap, Optoelectronics and photonics: principles and practices, (Prentice Hall: New Jersey,2001), 255-273.
[5] SEMI PV57-1214 – Test Method for Current-Voltage (I-V) Performance Measurement of Organic Photovoltaic (OPV) And Dye-Sensitized Solar Cell (DSSC)
[6] Jack L. Stone, Physics Today, 1993.
[7] Green, Martin A., et al. “Solar cell efficiency tables (version 39).” Progress in photovoltaics: research and applications 20.1 (2012): 12-20.
[8] Schock, H. W. “Thin film photovoltaics.” Applied surface science 92 (1996): 606-616.
[9] Yamaguchi, Masafumi, Shingo Katsumoto, and Chikara Amano. “A unified model for radiation-resistance of advanced space solar cells.” Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conference on. Vol. 2. IEEE, 1994.
[10] Tsubomura, H., et al. “Dye ensitized zinc oxide: aqueous electrolyte: platinum photocell.” (1976): 402-403.
[11] O’regan, Brian, and Michael Grätzel. “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.” Nature 353.6346 (1991): 737-740.
[12] Grätzel, Michael. “Dye-sensitized solar cells.” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4.2 (2003): 145-153.
[13] Grätzel, Michael. “Solar energy conversion by dye-sensitized photovoltaic cells.” Inorganic chemistry 44.20 (2005): 6841-6851.
[14] Chen, Chia-Yuan, et al. “Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells.” ACS nano 3.10 (2009): 3103-3109.
[15] Yella, Aswani, et al. “Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency.” Science 334.6056 (2011): 629-634.
[16] Kim, Hui-Seon, et al. “High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer.” Nano letters 13.6 (2013): 2412-2417.
[17] Chandiran, Aravind Kumar, et al. “Evaluating the Critical Thickness of TiO2 Layer on Insulating Mesoporous Templates for Efficient Current Collection in Dye‐Sensitized Solar Cells.” Advanced Functional Materials 23.21 (2013): 2775-2781.
[18] O’regan, Brian, and Michael Grätzel. “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.” Nature 353.6346 (1991): 737-740.
[19] A. Giraudeau, F.-R. Fan and A. J. Bard, “Semiconductor Electrodes. 30. Spectral Sensitization of the Semiconductors n-TiO2 and n-WO3 with Metal Phthalocyanines,” J. Am. Chem. Soc., 102, 5137 (1980).
[20] Grätzel, Michael. “Photoelectrochemical cells.” Nature 414.6861 (2001): 338-344.
[21] Giraudeau, Alain, Fu-Ren F. Fan, and Allen J. Bard. “Semiconductor electrodes. 30. Spectral sensitization of the semiconductors titanium oxide (n-TiO2) and tungsten oxide (n-WO3) with metal phthalocyanines.” Journal of the American Chemical Society 102.16 (1980): 5137-5142.
[22] P.D. Cozzoli, R. Comparelli, E. Fanizza, M.L. Curri, A. Agostiano, D. Laub, Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution. Journal of the American Chemical Society 126 (2004) 3868-3879.
[23] Barbe, Christophe J., et al. “Nanocrystalline titanium oxide electrodes for photovoltaic applications.” Journal of the American Ceramic Society 80.12 (1997): 3157-3171.
[24] Grätzel, Michael. “Mesoscopic solar cells for electricity and hydrogen production from sunlight.” Chemistry Letters 34.1 (2005): 8-13.
[25] ISO-105-BO2,“The New Standard in Lightfastness Testing”, Q-Lab. Co., (2008).
[26] ISO/IEC 10995, “Information technology — Digitally recorded media for
information interchange and storage — Test method for the estimation of the archival lifetime of optical media”, (2008).
[27] Skoog, Douglas A., and Donald M. West. Principles of instrumental analysis. Vol. 158. Philadelphia: Saunders College, 1980.
[28] Tsubomura, H., et al. “Dye ensitized zinc oxide: aqueous electrolyte: platinum photocell.” (1976): 402-403.
[29] Aiga, Fumihiko, and Tsukasa Tada. “Molecular and electronic structures of black dye; an efficient sensitizing dye for nanocrystalline TiO2 solar cells.” Journal of molecular structure 658.1 (2003): 25-32.
[30] 吳春桂. “染料敏化太陽能電池.” 興大工程學刊 25.1 (2014): 15-26.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top