跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/16 20:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李桓誠
研究生(外文):Huan-Cheng Lee
論文名稱:A.Theoretical investigation of C(3P) + SiH4 reaction B.Formation of amide polymers via carbonyl-amino group linkages in energetically processed ices of astrophysical relevance
論文名稱(外文):A.Theoretical investigation of C(3P) + SiH4 reaction B.Formation of amide polymers via carbonyl-amino group linkages in energetically processed ices of astrophysical relevance
指導教授:張秀華張秀華引用關係
指導教授(外文):H. H. Chang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:81
中文關鍵詞:C(3P) + SiH4carbonylamino groupamide polymersastrophysical relevanceSiH4 reaction
外文關鍵詞:C(3P) + SiH4carbonylamino groupamide polymersastrophysical relevanceSiH4 reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
In the dissertation, the reaction of C(3p) + SiH4 is investigated by combining electronic structure and statistical calculations. The reaction was found to from an initial a van der Waals complex in the entrance channel, intersystem crossing (ISC) from the triplet to the singlet potential surface. The study provides insight on the molecular level and shed light on the non-adiabatic reaction dynamics of silicon, which is distinct from isovalent carbon systems. On both triplet and singlet surface, we use CCSD/cc-pVTZ to optimize complexes, intermediates, transition states and products. Energies are further calculated by CCSD/CBS with CCSD/cc-pVTZ zero-point energy correction. The statistical RRKM theory is employed in calculating rate constant and evolution of concentration with time. The major product at triplet pathways is predicted to be Si-CH3 and at singlet pathways, HSi-CH2.
The formation of organic amide polymers via carbonyl–amino group linkages in carbon monoxide and ammonia bearing energetically processed ices of astrophysical relevance is investigated with one carboxyl group and an increasing number of amine moieties starting with formamide (45 u), urea (60 u), and hydrazine carboxamide (75 u). The second group consists of species with two carboxyl (58 u) and up to three amine groups (73 u, 88 u, and 103 u). The formation and polymerization of these linkages from simple inorganic molecules via formamide und urea toward amide polymers is discussed in an astrophysical and astrobiological context. Our results show that long chain molecules, which are closely related to polypeptides, easily form by energetically processing simple, inorganic ices at very low temperatures and can be released into the gas phase by sublimation of the ices in star-forming regions. Our experimental results were obtained by employing reflectron time-of-flight mass spectroscopy, coupled with soft, single photon vacuum ultraviolet photoionization; they are complemented by theoretical calculations. We use b3lyp/cc-pVTZ to optimize neutral and ionic 2-oxo-2-triazylacetaldehyde and N-formylhydrazinecarboxamide. Energies are calculated by CCSD/CBS with b3lyp/cc-pVTZ zero-point energy correction. The ionization energies are obtained by taking the energy difference between corresponding neutral and ionic species. The result is compared with experiments.
Table of content
ABSTRACT……………………………………………………………………………………………………………………………ⅰ
TABLE OF CONTENTS……………………………………………………………………………………………………ⅱ

Chapter 1. Pathways of dehydrogenation reaction of C(3P) + SiH4 collision
1. Introduction…………………………………………………………………………………………………1
2. Theoretical methods………………………………………………………………………………2
2.1 RRKM(Rice-Ramsperger-Kassel-Marcus theory)………………3
2.2 Complete basis set(CBS) ………………………………………………………………3
2.3 Concentration evaluation and branching ratio…………4
2.4 CPMCSCF……………………………………………………………………………………………………………4
3. Results and discussion………………………………………………………………………5
3.1 Reaction paths on triplet potential surface……………5
3.1.1 Reaction paths………………………………………………………………………………5
3.1.2 products………………………………………………………………………………………………8
H atom dissociation products………………………………………………8
H2-elimination products……………………………………………………………8
3.1.3 Evolution of concentrations with time…………………8
0 kJ/mol collision energy………………………………………………………9
13 kJ/mol collision energy…………………………………………………10
31 kJ/mol collision energy…………………………………………………11
3.2 Reaction paths on singlet potential surface…………12
3.2.1 Reaction paths……………………………………………………………………………12
3.2.2 Products……………………………………………………………………………………………14
H atom dissociation products……………………………………………15
H2-elimination products ………………………………………………………15
3.2.3 Evolution of concentrations with time………………15
0 kJ/mol collision energy……………………………………………………16
13 kJ/mol collision energy…………………………………………………17
31 kJ/mol collision energy…………………………………………………18
3.3 Compare…………………………………………………………………………………………………………19
3.3.1 Compare with intermediate 1i2 and 3i2………………19
3.3.2 Compare with different collision energy…………20
Triplet potential surface……………………………………………………20
Singlet potential surface……………………………………………………20
3.3.3 Compare with experiment……………………………………………………21
3.3.4 Compare with Si+SiH4……………………………………………………………21
3.3.5 Compare with C2H4……………………………………………………………………22
4. Conclusion……………………………………………………………………………………………………22
Table 1……………………………………………………………………………………………………………………………24
Table 2……………………………………………………………………………………………………………………………27
Table 3……………………………………………………………………………………………………………………………28
Table 4……………………………………………………………………………………………………………………………29
Table 5……………………………………………………………………………………………………………………………29
Table 6……………………………………………………………………………………………………………………………29
Figure 1…………………………………………………………………………………………………………………………30
Figure 2…………………………………………………………………………………………………………………………31
Figure 3…………………………………………………………………………………………………………………………32
Figure 4…………………………………………………………………………………………………………………………33
Figure 5…………………………………………………………………………………………………………………………34
Figure 6…………………………………………………………………………………………………………………………36
Figure 7…………………………………………………………………………………………………………………………38
Figure 8…………………………………………………………………………………………………………………………43
Figure 9…………………………………………………………………………………………………………………………44
Figure 10a……………………………………………………………………………………………………………………45
Figure 10b……………………………………………………………………………………………………………………46
Figure 10c……………………………………………………………………………………………………………………47
Figure 11a……………………………………………………………………………………………………………………48
Figure 11b……………………………………………………………………………………………………………………49
Figure 11c……………………………………………………………………………………………………………………50
Figure 12………………………………………………………………………………………………………………………51
Table S1…………………………………………………………………………………………………………………………60
Table S2…………………………………………………………………………………………………………………………61
Table S3…………………………………………………………………………………………………………………………61
Table S4…………………………………………………………………………………………………………………………62
Table S5…………………………………………………………………………………………………………………………62
Figure S1………………………………………………………………………………………………………………………63
REFERENCE………………………………………………………………………………………………………………………64

Chapter 2. Formation of amide polymers via carbonyl-amino group linkages in energetically processed ices of astrophysical relevance
1. Introduction………………………………………………………………………………………………67
2. Theoretical methods……………………………………………………………………………70
2.1 Complete basis set(CBS) ……………………………………………………………………70
3. Results……………………………………………………………………………………………………………70
3.1 N-formylhydrazinecarboxamide…………………………………………………71
3.2 2-oxo-2-triazylacetaldehyde……………………………………………………73
3.3 Compare with experiment………………………………………………………………74
4. Conclusion……………………………………………………………………………………………………75
Figure 1…………………………………………………………………………………………………………………………76
Table 1……………………………………………………………………………………………………………………………77
REFERENCE………………………………………………………………………………………………………………………79
part A
1. Langmuir I (1919) THE ARRANGEMENT OF ELECTRONS IN ATOMS AND MOLECULES. Journal of the American Chemical Society 41(6):868-934.
2. Kenny JP, Allen WD, & Schaefer HF (2003) Complete basis set limit studies of conventional and R12 correlation methods: The silicon dicarbide (SiC2) barrier to linearity. Journal of Chemical Physics 118(16):7353-7365.
3. Fernández I, Duvall M, Schleyer PvR, & Frenking G (2011) Aromaticity in Group 14 Homologues of the Cyclopropenylium Cation. Chemistry-A European Journal 17(7):2215-2224.
4. Thomas PS, Bowling NP, Burrmann NJ, & McMahon RJ (2010) Dialkynyl Carbene Derivatives: Generation and Characterization of Triplet tert-Butylpentadiynylidene (t-Bu− C C− C̈− C C− H) and Dimethylpentadiynylidene (Me− C C− C̈− C C− Me). The Journal of organic chemistry 75(19):6372-6381.
5. Seburg RA, Patterson EV, & McMahon RJ (2009) Structure of Triplet Propynylidene (HCCCH) as Probed by IR, UV/vis, and EPR Spectroscopy of Isotopomers. Journal of the American Chemical Society 131(26):9442-9455.
6. Müller HS & Woon DE (2013) Calculated dipole moments for silicon and phosphorus compounds of astrophysical interest. The Journal of Physical Chemistry A 117(50):13868-13877.
7. Wang Y, Xie Y, Wei P, King RB, Schaefer III HF, Schleyer PvR & Robinson GH (2008) A stable silicon (0) compound with a Si= Si double bond. Science 321(5892):1069-1071.
8. A. H. H. Chang, A. M. Mebel, X.-M. Yang, S. H. Lin, and Y. t. Lee (1998) Ab initio/RRKM approach toward the understanding of ethylene photodissociation. The Journal of Chemical Physics 109, 2748 .
9. Gap-Sue Kim, Thanh Lam Nguyen, Alexander M. Mebel, Sheng H. Lin, and Minh Tho Nguyen. Ab Initio/RRKM study of the Potential Energy Surface of Triplet Ethlene and Product Branching Ratios of the C(3P) + CH4 Reaction. J. Phys. Chem. A 2003, 107, 1788-1796
10. I-Chung Lu, Wei-Kan Chen, Wen-Jian Huang, and Shih-Huang Lee. Dynamics of the reaction C(3P) + SiH4: Experiments and calculations; THE JOURNAL OF CHEMICAL PHYSICS 129, 164304 (2008)
11. (a) A. D. Bechk, J. Chem. Phys. 98, 5648 (1993); (b) 96, 2155 (1992); (c) 97, 9173 (1992); (d) C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37,785 (1988).
12. George D. Purvis, Rodney J. Bartlett, A full coupled‐cluster singles and doubles model - The inclusion of disconnected triples. J. Chem. Phys. 76, 1910 (1982).
13. R.S. Zhu, M.C. Lin *, CH3NO2 decomposition/isomerization mechanism and product branching ratios:An ab initio chemical kinetic study. Chemical Physics Letters 478 (2009) 11–16
14. Tao Yang+, Beni B. Dangi+, Ralf I. Kaiser,* Kang-Heng Chao, Bing-Jian Sun, Agnes H. H. Chang,* Thanh Lam Nguyen, and John F. Stanton*, Gas-Phase Formation of the Disilavinylidene (H2SiSi) Transient

part B
1. Ehrenfreund, P. 1999, Laboratory Astrophysics and Space Research, Vol. 236(Berlin: Springer)
2. Ehrenfreund, P., & Charnley, S. B. 2000, ARA&A, 38, 427
3. Peeters, Z., Botta, O., Charnley, S. B., et al. 2003, ApJL, 593, L129
4. Gottlieb, C., Palmer, P., Rickard, L., & Zuckerman, B. 1973, ApJ, 182, 699
5. Hollis, J. M., Lovas, F. J., Remijan, A. J., et al. 2006, ApJL, 643, L25
6. Halfen, D., Ilyushin, V., & Ziurys, L. 2011, ApJ, 743, 60
7. Adande, G. R., Woolf, N. J., & Ziurys, L. M. 2013, AsBio, 13, 439
8. Jones, B. M., Bennett, C. J., & Kaiser, R. I. 2011, ApJ, 734, 78
9. Förstel, M., Maksyutenko, P., Jones, B. M., et al. 2015a, ChCom, 52, 721
10. Bernstein, M. P., Dworkin, J. P., Sandford, S. A., et al. 2002, Natur, 416, 401
11. Munoz Caro, G. M., Meierhenrich, U. J., Schutte, W. A., et al. 2002, Natur,416, 403
12. Elsila, J. E., Dworkin, J. P., Bernstein, M. P., et al. 2007, ApJ, 660, 911
13. Chen, Y.-J., Nuevo, M., Yih, T.-S., et al. 2008, MNRASy, 384, 605
14. Hudson, R. L., Moore, M. H., Dworkin, J. P., et al. 2008, AsBio, 8, 771
15. Dederichs, B., Saus, A., & Slebertz, H. 1975,
16. Apene, I., & Mikstais, U. 1978, Khim-Farm Zh, 12, 84
17. Kostakis, I. K., Elomri, A., Seguin, E., et al. 2007, Tetrahedron Lett, 48, 6609
18. Costanzo, G., Saladino, R., Crestini, C., et al. 2007, BMC Evol Biol, 7, S1
19. Saladino, R., Crestini, C., Ciciriello, F., et al. 2007, Chemistry & Biodiversity,4, 694
20. Saladino, R., Botta, G., Delfino, M., & Di Mauro, E. 2013, CEJ, 19, 16916
21. Lambert, J.-F. 2008, OLEB, 38, 211
22. Lambert, J.-F., Stievano, L., Lopes, I., et al. 2009, P&SS, 57, 460
23. Goesmann, F., Rosenbauer, H., Bredehöft, J. H., et al. 2015, Sci, 349
24. Kvenvolden, K., Lawless, J., Pering, K., et al. 1970, Natur, 228, 928
25. Cronin, J., & Chang, S. 1993, Organic Matter in Meteorites: Molecular and Isotopic Analyses of the Murchison Meteorite, Vol. 416 (Netherlands: Springer)
26. Glavin, D. P., Dworkin, J. P., Aubray, A., et al. 2006, M&PS, 41, 889
27. Robert, F., & Epstein, S. 1982, GeCoA, 46, 81
28. Yang, J., & Epstein, S. 1983, GeCoA, 47, 2199
29. Alexander, C. O. D., Russell, S., Arden, J., et al. 1998, M&PS, 33, 603
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top