( 您好!臺灣時間:2021/05/13 16:33
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):LIN, CHIA-YANG
論文名稱(外文):Synthesis of selective HDAC inhibitors as a potential therapy for Alzheimer's disease
指導教授(外文):HU, MING-KUAN
口試委員(外文):Liou, Jing-PingLiao, Yung-Feng
外文關鍵詞:selective HDAC inhibitorsAlzheimer's disease
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
阿茲海默症 (Alzheimer’s disease, AD)是一種漸進性的神經退化疾病,失智症患者多數起因於此疾病。其病理特徵是腦部出現老年斑塊 (senile plaques)及神經細胞內的神經纖維糾結 (neurofibrillary tangles)。老年斑塊由β類澱粉胜肽 (β-amyloid, Aβ)堆積而成,而神經纖維糾結則是由過度磷酸化的tau蛋白 (phosphorylated-tau, p-tau)聚集纏繞而產生。依類澱粉蛋白假說,神經受損是由於Aβ的毒性造成,至於p-tau則是使微管失去構型,進而影響細胞內的運輸、訊息傳導及養分運輸而造成神經細胞死亡。
目前藥物開發以治療目標分為兩大類,第一類是以Aβ減少作為治療策略,如β分泌酶抑制劑、γ分泌酶抑制劑、Aβ單株抗體等。第二類則以減少不正常tau蛋白作為發展方向,如微管穩定劑、熱休克蛋白90抑制劑、組蛋白去乙醯酶 (histone deacetylases, HDACs)抑制劑等。此實驗係以7-氮雜吲哚 (7-azaindole)作為表面辨識區,合成一系列選擇性的HDAC抑制劑,並更換連接部位來探討結構與活性關係。

Alzheimer’s disease (AD) is a progressive neurodegenerative disease. It is the majority among dementia patients. The classical pathological hallmarks of AD are senile plaques and neurofibrillary tangles, which are located in the brain and neuronal cells. According to β-amyloid hypothesis, the toxic Aβ oligomers alter neuronal function and induce neuronal cells inflammation. Ultimately, the neuronal homeostasis is broken down and leads to clinical symptoms such as cognitive dysfunction and memory loss. Hyperphosphorylated taus tend to aggregate into neurofibrillary tangle and destabilize microtubules that are at the root of the tau pathology.
The development for the treatment of AD can be divided into two categories based on its pathological progression. One is aim to reduce Aβ quantity, such as β-secretase inhibitors, γ-secretase inhibitors, anti-Aβ monoclonal antibodies. The other is focusing on tau pathology, like heat shock protein 90 inhibitors, microtubules stabilizers, histone deacetylase 6 (HDAC 6) inhibitors. In this study, a series of new HDAC inhibitors were designed and synthesized by choosing 7-azaindole as the cap structure of the recognition space. Through screening on HDACs inhibition assay kit, the compound POBen is the most potent in the HDAC6 inhibition test among the tested compounds, while the compound MOBen is the weakest but most selective one. The results suggested that the skeleton of the linker portion can be optimized in further experiments to provide more potential candidates.
正文目錄 I
表目錄 III
圖目錄 III
附圖目錄 V
Abstract VIII
第一章、 緒論 1
第一節、阿茲海默症 3
壹、阿茲海默症簡介 3
貳、症狀 3
參、阿茲海默症診斷 4
肆、病理 7
伍、類澱粉蛋白假說 (Amyloid hyposis) 9
陸、AD治療與新藥開發方向 14
柒、組蛋白去乙醯酶 (histone deacetylases, HDACs)與AD 20
第二節、研究目的 29
第三節、研究方法 30
壹、美國食品藥物管理局(FDA)核准之HDACs抑制劑35 30
貳、已發表抑制HDAC6 小分子化合物 31
參、化合物構想與設計 33
第二章、材料與方法 35
第一節、儀器與材料 35
壹、實驗儀器 35
貳、試劑、溶劑及原料藥品 37
第二節、合成步驟與結構鑑定 40
第三節、HDACs活性抑制試驗 67
壹、HDACs活性抑制試驗 (pan-HDACs inhibition test) 67
貳、HDA6活性抑制試驗 (HDAC6 selective inhibition test) 69
參、HDA8活性抑制試驗 (HDAC8 selective inhibition test) 70
肆、HDAC2活性抑制試驗 (HDAC2 selective inhibition test) 70
第三章、實驗結果 71
第一節、化學合成結果 71
第二節、HDACs活性抑制 72
壹、HDACs活性抑制試驗 (pan-HDACs inhibition test) 72
貳、HDAC6活性抑制試驗 (HDAC6 selective inhibition test) 73
參、HDAC8活性抑制試驗 (HDAC8 selective inhibition test) 74
肆、HDAC2活性抑制試驗(HDAC2 selective inhibition test) 75
第四章、討論 76
第一節、化學合成 76
壹、N3還原成NH2 76
貳、合成流程選擇 77
參、Hydroxamic acid合成 78
第二節、生化活性 79
壹、化合物選擇性 79
貳、結構與活性關係 (structure activity relationship, SAR) 80
第五章、結論 81
第一節、實驗結果總結 81
第二節、臨床應用 82
第六章、參考文獻 84
附錄 88

1.衛生福利部網站 http://www.mohw.gov.tw/CHT/Ministry/index.aspx
2.Alzheimer’s disease international. World Alzheimer Report 2015.
3.Alzheimer’s association. 2016 Alzheimer’s disease facts and figures. 2016
4.Fisher A., et al. Cholinergic treatments with emphasis on M1 muscarinic
agonists as potential disease modifying agents for Alzheimer’s disease.
Neurotherapeutics 5, 434-442 (2008).
5.Kehoe PG, et al. Angiotensins and Alzheimer's disease: a bench to bedside
overview. Alzheimers Res Ther 1, 3 (2009).
6.Prvulovic D, et al. Ethical considerations of biomarker use in
neurodegenerative diseases--a case study of Alzheimer's disease.
Prog Neurobiol 95, 517-519 (2011).
7.Jiaquan Xu, M.D., et al. Deaths: Final Data for 2013. National Vital
Statistics Reports 64 (2016).
8.Joel C. Watts, et al. β-Amyloid Prions and the Pathobiology of Alzheimer’s
Disease. Cold Spring Harb Perspect, (2017).
9.Alzheimer’s disease unraveling the mystery.
National Institute on Aging National Institutes of Health, (2003).
10.Wang, Chia-Yu, et al. The Comparison between Min-Mental State Examination
(MMSE) and Clinical Dementia Rating (CDR) in Evaluating Patients with
Alzheimer's Disease.
Taiwanese Journal of Psychiatry 17,23-32 (2003).
11.Jonghan Shin, et al Resting-State Glucose Metabolism Level Is Associated
with the Regional Pattern of Amyloid Pathology in Alzheimer’s Disease.
International Journal of Alzheimer’s Disease, (2011).
12.Ann D. Cohen, et al. Early detection of Alzheimer’s disease using PiB and
FDG PET. Neurobiol Dis. 72, 117–122 (2014).
13.D. Strozyk, et al. CSF Aβ 42 levels correlate with amyloid-neuropathology
in a population-based autopsy study. Neurology 60, 652-656 (2003).
14.Niklas Mattsson, et al. Diagnostic accuracy of CSF Ab42 and florbetapir PET
for Alzheimer’s disease. Ann. Clin. Transl. Neurol. 1, 534–543 (2014).
15.Buerger, K., et al. CSF phosphorylated tau protein correlates with
neocortical neurofibrillary pathology in Alzheimer’s disease.
Brain 129, 3035–3041 (2006).
16.Hampel, H., et al. Measurement of phosphorylated tau epitopes in the
differential diagnosis of Alzheimer disease: a comparative cerebrospinal
fluid study. Arch. Gen. Psychiatry 61, 95–102 (2004).
17.Blom, E. S., et al. Rapid progression from mild cognitive impairment to
Alzheimer’s disease in subjects with elevated levels of tau in
cerebrospinal fluid and the APOE ε4/ε4 genotype.
Dement. Geriatr. Cogn. Disord. 27, 458–464 (2009).
18.Dennis J Selkoe, et al. The amyloid hypothesis of Alzheimer’s disease at 25
years. EMBO Molecular Medicine 8, 595-608 (2016).
19.Colin L. Masters, et al. Alzheimer’s disease. Nature reviews 1, 1-18,
20.Kurt R. Brunden, et al. Advances in tau-focused drug discovery for
Alzheimer’s disease and related tauopathies.
Nature reviews 8, 783-793, (2009).
21.Ralph Scanchez Plaques and tangles in the Alzheimer’s brain-which one is
most to blame for Alzheimer’s disease? The Alzheimer’s solution. (2008).
22.Ilaria Canobbio, et al. Role of amyloid peptides in vascular dysfunction
and platelet dysregulation in Alzheimer’s disease.
Frontiers in cellular neuroscience 9, 1-15 (2015).
23.Henry W. Querfurth, et al. Alzheimer’s Disease.
The New England Journal of Medicine, 329-344 (2010).
24.Zhang B, et al. Microtubule-binding drugs offset tau sequestration by
stabilizing microtubules and reversing fast axonal transport deficits in a
tauopathy model. Proc. Natl. Acad. Sci. USA 102, 227–231 (2005).
25.Zdenek Berger, et al. Rapamycin alleviates toxicity of different aggregate-
prone proteins. Human Molecular Genetics 15, 433-442 (2006).
26.Chad A. Dickey, et al. The high-affinity HSP90-CHIP complex recognizes and
selectively degrades phosphorylated tau client proteins.
The Journal of Clinical Investigation 117, 648-658 (2007).
27.Katrina J. Falkenberg, et al. Histone deacetylases and their inhibitors in
cancer, neurological diseases and immune disorders.
Nature reviews , 1-19 (2014).
28.Aleksey G. Kazantsev, et al. Therapeutic application of histone deacetylase
inhibitors for central nervous system disorders.
Nature reviews 7, 854-868 (2008).
29.Mario Dicato, et al. Histone deacetylase 6 in health and disease.
Epigenomics 7, 103-118 (2015).
30.Claudia Simões-Pires, et al. HDAC6 as a target for neurodegenerative
diseases: what makes it different from the other HDACs?
Molecular Neurodegeneration 8, 1-16 (2013).
31.Govindarajan N, et al. Reducing HDAC6 ameliorates cognitive deficits in a
mouse model for Alzheimer’s disease.
EMBO Molecular Medicine 5, 52-63 (2013).
32.Huiping Ding, et al. Histone deacetylase 6 interacts with the microtubule-
associated protein tau. Journal of Neurochemistry 106, 2119-2130 (2008).
33.Heesun Choi, et al. Increased acetylation of Peroxiredoxin1 by HDAC6
inhibition leads to recovery of Aβ - induced impaired axonal transport.
Molecular Neurodegeneration (2017).
34.Casey Cook, et al. Loss of HDAC6, a novel CHIP substrate, alleviates
abnormal tau accumulation.
Human Molecular Genetics 21, 2936–2945 (2012).
35.Casey Cook, et al. Acetylation of the KXGS motifs in tau is a critical
determinant in modulation of tau aggregation and clearance.
Human Molecular Genetics 23, 104-116 (2014).
36.Clemens Zwergel, et al. Histone Deacetylase Inhibitors: Updated Studies in
Various Epigenetic-Related Diseases.
Journal of Clinical Epigenetics 2, 1-15 (2016).
37.Hsueh-Yun Lee, et al. Azaindolylsulfonamides, with a more selective
inhibitory effect on histone deacetylase 6 activity, exhibit antitumor
activity in colorectal cancer HCT116 cells.
Journal of Medicinal Chemistry 57, 4009-4022 (2014).
38.Jochems, J. et al. Antidepressant‑like properties of novel HDAC6 Selective
inhibitors with improved brain bioavailability.
Neuropsychopharmacology 39, 389–400 (2013).
39.Vishwakarma, S. et al. Tubastatin, a selective histone deacetylase 6
inhibitor shows anti‑inflammatory and anti‑rheumatic effects.
International Immunopharmacology 16, 72–78 (2013).
40.Lee, J. H., et al. Development of a histone deacetylase 6 inhibitor and its
biological effects. Proc. Natl Acad. Sci. USA 110, 15704–15709 (2013).
41.Yu, C. W., Chang, et al. Quinazolin‑4‑one derivatives as selective histone
deacetylase‑6 inhibitors for the treatment of Alzheimer’s disease.
Journal of Medicinal Chemistry 56, 6775–6791 (2013).
42.Kannaboina, et al. Direct C-2 arylation of 7-azaindole: chemoselective
access to multiarylated derivatives. Organic letter 15, 5718 – 5721 (2013).
43.Zhongxing Zhang, et al. An Effective Procedure for the Acylation of
Azaindoles at C-3. Journal of Organic Chemistry 67, 6226 – 6227 (2002).
44.José Wanderlan Pontes Espíndola, et al. Synthesis and structure-activity
relationship of a new study series antiparasitic thiosemicarbazones
inhibiting Trypanosoma cruzi cruain.
European Journal of Medicinal Chemistry 101, 818-835 (2015).
45.M. Ross. Johnson, et al. Sodium borohydride reduction of conjugated
aldehydes and ketones.
Journal of Organic Chemistry 35, 1041–1045 (1970).
46.Motokazu Uemura, et al. (η-Arene)-tricarbonylchromium Complexes in Organic
Synthesis: Stereoselective Carbon-Carbon Bond Formation via (η-Arene)-
tricarbonylchromium Carbocations. Synthesis, 386-388 (1986).
47.Scott Ian L, et al. US patent No. 2010093865 A1, (2010).
48.Karl Richard Gibson, et al. Patent No. WO2010032200 A1, (2010).
49.Lili Hu, et al. Patent No. WO2015158653 A1, (2015).
50.Bertrand L. Chenard, et al. Patent No. WO2016023832 A1, (2016).
51.Kareem, Huda S., et al. Correlation of antioxidant activities with
theoretical studies for new hydrazone compounds bearing a 3,4,5-trimethoxy
benzyl moiety. European Journal of Medicinal Chemistry 103, 497 – 505
52.Wei-Ping Deng, et al. Syntheses of β,β-Difluorotryptamines.
Journal of Organic Chemistry 68, 2798 – 2802 (2003).
53.Leo Widler, et al. 7-Alkyl- and 7-Cycloalkyl-5-aryl-pyrrolo[2,3-
d]pyrimidines—potent inhibitors of the tyrosine kinase c-Src.
Bioorganic & Medicinal Chemistry Letters 11, 849–852 (2001).
54.Dr. Duncan E. Scott, et al. Small-Molecule Inhibitors That Target Protein–
Protein Interactions in the RAD51 Family of Recombinases.
ChemMedChem 10, 296 – 303 (2015).
55.Dennis Wegener, et al. A fluorogenic histone deacetylase assay well Suited
for high-throughput activity screening. Chemistry & Biology 10, 61–68
56.Ambikanandan Misra, et al. Drug delivery to the central nervous system: a
review. J. Pharm. Pharmaceut. Sci. 6, 252-273 (2003).

第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔