(3.236.231.61) 您好!臺灣時間:2021/05/11 22:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴均衡
研究生(外文):Jyun-Heng, Lai
論文名稱:抗心律不整用藥 Amiodarone 與降血糖用藥 Sulfonylureas 的藥物交互作用與嚴重低血糖事件之風險評估
論文名稱(外文):Evaluation of Risk of Severe Hypoglycemic Events from Drug Interactions between Amiodarone and Sulfonylureas
指導教授:王孟廷
指導教授(外文):Meng-Ting, Wang
口試委員:胡德民張立乾
口試委員(外文):Teh-Min, HuLi-Chien, Chang
口試日期:2017-05-17
學位類別:碩士
校院名稱:國防醫學院
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:217
中文關鍵詞:藥物交互作用降血糖用藥抗心律不整用藥低血糖
外文關鍵詞:drug interactionssulfonylureasamiodaronehypoglycemia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:310
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景:Sulfonylureas 為目前臨床上重要的二線糖尿病治療用藥,至今在美國與台灣還是被廣泛地使用。有鑑於大部分常用的 sulfonylureas 主要經由cytochrome P450 2C9 (CYP2C9) 代謝,過去觀察型研究已經指出,sulfonylureas 同時併用其他 CYP2C9 抑制劑,可能增加嚴重低血糖發生的風險。經由文獻回顧,抗心律不整用藥 amiodarone 為證據強的 CYP450 抑制劑,其中對CYP2C9 有中等強度之抑制作用,然而,截至目前為止還未有任何人體相關研究探討 amiodarone 與 sulfonylureas 的藥物交互作用在臨床上是否可能提高嚴重低血糖事件發生的風險。
研究目的:本研究旨在評估國內使用降血糖用藥 sulfonylureas 的糖尿病病患,當於研究追蹤期間內併用任何抗心律不整用藥 amiodarone 時,是否會提高發生嚴重低血糖事件風險之安全性議題,並接續分析此風險是否會隨 amiodarone 之使用時程不同而有所差異,並且再針對發生嚴重低血糖事件前30天內有併用 amiodarone 之目前使用者 (current user),進一步評估在amiodarone 不同連續使用長短、平均日劑量、累積日劑量以及給藥途徑情況下,是否嚴重低血糖事件的風險會有所改變。
研究方法:本研究主要利用我國全民健保研究資料庫,擷取2008年1月1日至2013年12月31之資料,以嵌入型案例對照研究 (nested case-control study) 方式進行分析,於研究期間內納入年滿20歲 (含) 以上符合糖尿病診斷定義的病患,並且同時有使用降血糖用藥 sulfonylureas 者作為研究世代,接續從首次開立 sulfonylureas 處方之研究世代納入日開始追蹤觀察。之後,將研究追蹤期間內首次出現急診與住院之嚴重低血糖事件者作為案例組,再以incidence density sampling 方式,依照案例組的年齡 (± 5歲)、性別及研究世代納入日 (±180天) 等配對條件,由相同追蹤期間下且還未發生結果變項之病患中,隨機選取至多10名病患作為對照組。接續測量病患於標誌日期前之研究追蹤期間內,併用抗心律不整用藥 amiodarone 之情形,並以 conditional multiple logistic regression 之統計方法評估 sulfonylureas 病患併用amiodarone 與嚴重低血糖事件風險之相關性。
研究結果:本研究共納入47,969名使用 sulfonylureas 的糖尿病病患研究世代,當中包括 3,072 位案例組與 26,887 位對照組。於研究結果指出,病患在研究追蹤期間內併用任何 amiodarone 藥物者,其發生嚴重低血糖事件之風險相較於未併用者並無統計上顯著差異 (Adjusted OR=1.27, 95% CI, 0.99-1.62),但是,於時程分析中發現,amiodarone 之目前使用者會顯著增加1.48倍 (Adjusted OR=1.48, 95% CI, 1.06-2.06) 嚴重低血糖事件的風險,其中,曾經使用 amiodarone 者有相對較高1.59倍 (Adjusted OR=1.59, 95% CI, 1.07-2.37) 增加嚴重低血糖事件之風險;進一步針對 amiodarone 目前使用者之各項次分析顯示,長期使用者 (連續使用>180天) 與高累積日劑量使用者 (>180 cDDD) 分別會增加1.95倍 (95% CI, 1.17-3.24) 及 2.02倍 (95% CI, 1.21-3.38) 嚴重低血糖事件的風險。
結論:本研究發現於使用 sulfonylureas 的糖尿病病患中,如果同時有併用任何 amiodarone 者,相較於未併用者,並不會增加嚴重低血糖事件的風險,然而,在時程分析中,amiodarone 之目前使用者與未併用者相比,則會顯著提高嚴重低血糖事件發生的風險,並且在曾經有使用 amiodarone 的病患風險相對更高,此外,於 amiodarone 目前使用者的各項分析顯示,長期連續使用超過半年以上,或者累積使用已達180個每日定義劑量以上的病患,會有顯著更高嚴重低血糖事件發生的風險。

Background: Sulfonylureas, a class of the second line antidiabetic agents, have been widely prescribed in US and Taiwan. Since most sulfonylureas are metabolized through liver cytochrome P450 2C9 (CYP2C9) enzyme, concomitant use of CYP2C9 inhibitors with sulfonylureas has been concerned about an increased risk of severe hypoglycemia. Evidence has shown that amiodarone, an important antiarrhythmic agent for controlling sinus rhythm, is a moderate inhibitor of CYP2C9. However, no studies to date have examined the risk of severe hypoglycemic events from the amiodarone-sulfonylureas interactions in present clinical settings.

Objectives: This study aimed to assess whether there was an increased risk of severe hypoglycemic episodes from amiodarone added to sulfonylureas in diabetic patients, and to further evaluate whether the risk varied by recency, duration, daily dose, cumulative does, and route of administration.

Methods: This was a large population-based nested case-control study by analyzing the Taiwan Longitudinal Health Insurance Database from 01/01/2008 to 12/31/2013. Diabetic patients who were aged 20 years or more and receiving sulfonylureas were eligible to be the study cohort, in which the date of the first prescription of sulfonylureas was defined as cohort entry date. During the follow-up period, cases were patients with any inpatient or emergency room (ER) diagnosis of severe hypoglycemic events, and using the incidence density sampling approach, each case was matched up to 10 randomly-selected controls by age, sex and cohort entry date. Conditional logistic regressions were employed to evaluate the risk of severe hypoglycemic events with co-prescription of sulfonylureas and amiodarone at different usages.

Results: The study cohort consisted of 47,969 diabetic patients receving sulfonylureas, among which 3,072 cases were identified and matched to select 26,887 controls. Any use of amiodarone was not associated with increasing risk of severe hypoglycemic events (adjusted odds ratio [OR]=1.27, 95% CI, 0.99-1.62); however, an increased risk of severe hypoglycemic events was found with current amiodarone use among diabetic patients receiving sulfonylureas (adjusted OR = 1.48, 95% CI 1.06-2.06), with a relatively greater risk among current prevalent users (adjusted OR = 1.59, 95% CI 1.07-2.37). Additionally, a 1.95-fold (95% CI 1.17-3.24) and 2.02-fold (95% CI 1.21-3.38) increased risk were observed when the current amiodarone users underwent a therapy longer than 180 days and at a cumulative dose greater than 180 cumulative defined daily dose (cDDD), respectively.

Conclusions: This is the first large observational study to find current use of amiodarone, especially prevalent users of amiodarone, is associated with an increased risk of severe hypoglycemic events in diabetic patients receiving sulfonylureas. The increased risk was more significant among current amiodarone users who had used amiodarone longer than 180 days or a cumulative dose greater than 180 cDDD.

第一章 緒言 1
第一節、 研究緣起 1
第二節、 研究目的 6
第三節、 研究問題 7
第四節、 研究假說 10
第二章 文獻回顧 12
第一節、 糖尿病藥物治療概述 12
第二節、 SULFONYLUREAS經由CYP450代謝與藥物運輸機制之概述 14
第三節、 SULFONYLUREAS藥物交互作用相關觀察型研究 18
第四節、 糖尿病與心律不整的關聯性 20
第五節、 心律不整藥物治療概述與AMIODARONE扮演的角色 22
第六節、 AMIODARONE抑制CYP450代謝與藥物運輸機制之概述 24
第七節、 AMIODARONE藥物交互作用相關觀察型研究 26
第八節、 嚴重低血糖事件之臨床重要性概述 28
第九節、 結論 30
第三章 材料與方法 32
第一節、 資料來源 32
第二節、 資料除錯 33
第三節、 研究設計 36
第四節、 鑑別研究世代 38
第五節、 案例組與對照組之定義與選取 43
第六節、 AMIODARONE使用之測量與操作型定義 45
第七節、 干擾因子之測量及操作型定義 49
第八節、 統計分析方法 70
第九節、 樣本數估算 72
第十節、 次族群分析 74
第十一節、 靈敏度試驗 76
第十二節、 專一性試驗 (SPECIFICITY) 78
第十三節、 人體試驗計畫審查 80
第四章 結果 81
第一節、 研究世代選取 81
第二節、 各研究變項於案例組與對照組間之分佈情形 88
第三節、 研究追蹤期間內併用任何AMIODARONE與發生嚴重低血糖事件之風險評估 106
第四節、 併用不同使用時程之AMIODARONE與發生嚴重低血糖事件之風險評估 108
第五節、 目前使用者AMIODARONE之連續使用長短與發生嚴重低血糖事件之風險評估 112
第六節、 目前使用者AMIODARONE之平均日劑量與發生嚴重低血糖事件之風險評估 114
第七節、 目前使用者AMIODARONE之累積日劑量與發生嚴重低血糖事件之風險評估 116
第八節、 目前使用者AMIODARONE之不同給藥途徑與發生嚴重低血糖事件之風險評估 118
第九節、 次族群分析結果 120
第十節、 靈敏度試驗結果 126
第十一節、 專一性試驗結果 141
第五章 討論 144
第一節、 研究結果之探討 144
第二節、 研究之優點與限制 162
第六章 結論 168
第一節、 研究結論 168
第二節、 建議 169
第三節、 總結 170
參考文獻 208


1.Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215-22.
2.Mehdi U, Toto RD. Anemia, diabetes, and chronic kidney disease. Diabetes Care. 2009;32(7):1320-6.
3.Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556-64.
4.Economic costs of diabetes in the U.S. in 2012. Diabetes Care. 2013;36(4):1033-46.
5.World health organization. GLOBAL REPORT ON DIABETES 2016. Available at : http://appswhoint/iris/bitstream/10665/204871/1/9789241565257_engpdf. Accessed June 13 , 2017.
6.Standards of Medical Care in Diabetes-2017: Summary of Revisions. Diabetes Care. 2017;40(Suppl 1):S4-S5.
7.Hampp C, Borders-Hemphill V, Moeny DG, et al. Use of antidiabetic drugs in the U.S., 2003-2012. Diabetes Care. 2014;37(5):1367-74.
8.Ou HT, Chang KC, Liu YM, et al. Recent trends in the use of antidiabetic medications from 2008 to 2013: A nation-wide population-based study from Taiwan. J Diabetes. 2017;9(3):256-66.
9.Chiang CW, Chiu HF, Chen CY, et al. Trends in the use of oral antidiabetic drugs by outpatients in Taiwan: 1997-2003. J Clin Pharm Ther. 2006;31(1):73-82.
10.Schopman JE, Simon AC, Hoefnagel SJ, et al. The incidence of mild and severe hypoglycaemia in patients with type 2 diabetes mellitus treated with sulfonylureas: a systematic review and meta-analysis. Diabetes Metab Res Rev. 2014;30(1):11-22.
11.Mitri J, Hamdy O. Diabetes medications and body weight. Expert Opin Drug Saf. 2009;8(5):573-84.
12.Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103-41.
13.Wang R, Chen K, Wen SY, et al. Pharmacokinetics of glimepiride and cytochrome P450 2C9 genetic polymorphisms. Clin Pharmacol Ther. 2005;78(1):90-2.
14.Park JY, Kim KA, Park PW, et al. Effect of rifampin on the pharmacokinetics and pharmacodynamics of gliclazide. Clin Pharmacol Ther. 2003;74(4):334-40.
15.Niemi M, Backman JT, Neuvonen M, et al. Effects of rifampin on the pharmacokinetics and pharmacodynamics of glyburide and glipizide. Clin Pharmacol Ther. 2001;69(6):400-6.
16.Zharikova OL, Fokina VM, Nanovskaya TN, et al. Identification of the major human hepatic and placental enzymes responsible for the biotransformation of glyburide. Biochem Pharmacol. 2009;78(12):1483-90.
17.Zhou L, Naraharisetti SB, Liu L, et al. Contributions of human cytochrome P450 enzymes to glyburide metabolism. Biopharm Drug Dispos. 2010;31(4):228-42.
18.Lilja JJ, Niemi M, Fredrikson H, et al. Effects of clarithromycin and grapefruit juice on the pharmacokinetics of glibenclamide. Br J Clin Pharmacol. 2007;63(6):732-40.
19.Schelleman H, Bilker WB, Brensinger CM, et al. Anti-infectives and the risk of severe hypoglycemia in users of glipizide or glyburide. Clin Pharmacol Ther. 2010;88(2):214-22.
20.Parekh TM, Raji M, Lin YL, et al. Hypoglycemia after antimicrobial drug prescription for older patients using sulfonylureas. JAMA Intern Med. 2014;174(10):1605-12.
21.U.S. Food and Drug Administration. Drug Development and Drug Interactions: Table of Substrates, Inhibitors and Inducers. Available at : https://wwwfdagov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm093664htm. Accessed on June 13,2017.
22.Indiana University SCHOOL OF MEDICINE Department of Medicine Clinical Pharmacology Flockhart Table P450 Drug Interaction Table. Available at : http://medicineiupuiedu/clinpharm/ddis/main-table/. Accessed June 13 , 2017.
23.McDonald MG, Au NT, Wittkowsky AK, et al. Warfarin-amiodarone drug-drug interactions: determination of [I](u)/K(I,u) for amiodarone and its plasma metabolites. Clin Pharmacol Ther. 2012;91(4):709-17.
24.Nolan PE, Jr., Marcus FI, Hoyer GL, et al. Pharmacokinetic interaction between intravenous phenytoin and amiodarone in healthy volunteers. Clin Pharmacol Ther. 1989;46(1):43-50.
25.Van Booven D, Marsh S, McLeod H, et al. Cytochrome P450 2C9-CYP2C9. Pharmacogenet Genomics. 2010;20(4):277-81.
26.Truven Health Analytics Micromedex Solution Drug Interaction Results. Available at : http://wwwmicromedexsolutionscom/micromedex2/librarian/PFDefaultActionId/evidencexpertShowDrugInteractionsResults. Accessed June 13 , 2017.
27.Nichols GA, Reinier K, Chugh SS. Independent contribution of diabetes to increased prevalence and incidence of atrial fibrillation. Diabetes Care. 2009;32(10):1851-6.
28.Schoen T, Pradhan AD, Albert CM, et al. Type 2 diabetes mellitus and risk of incident atrial fibrillation in women. J Am Coll Cardiol. 2012;60(15):1421-8.
29.Erickson JR, Pereira L, Wang L, et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature. 2013;502(7471):372-6.
30.Lim YP, Lin CL, Lin YN, et al. Antiarrhythmic agents and the risk of malignant neoplasm of liver and intrahepatic bile ducts. PLoS One. 2015;10(1):e0116960.
31.Qin D, Leef G, Alam MB, et al. Comparative effectiveness of antiarrhythmic drugs for rhythm control of atrial fibrillation. J Cardiol. 2016;67(5):471-6.
32.Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893-962.
33.Ashcroft FM. Mechanisms of the glycaemic effects of sulfonylureas. Horm Metab Res. 1996;28(9):456-63.
34.Zoungas S, Patel A, Chalmers J, et al. Severe hypoglycemia and risks of vascular events and death. N Engl J Med. 2010;363(15):1410-8.
35.Lagi A, Cencetti S, Lagi F. Incidence of hypoglycaemia associated with transient loss of consciousness. A retrospective cohort study. Int J Clin Pract. 2014;68(8):1029-33.
36.Johnston SS, Conner C, Aagren M, et al. Association between hypoglycaemic events and fall-related fractures in Medicare-covered patients with type 2 diabetes. Diabetes Obes Metab. 2012;14(7):634-43.
37.Romley JA, Gong C, Jena AB, et al. Association between use of warfarin with common sulfonylureas and serious hypoglycemic events: retrospective cohort analysis. BMJ. 2015;351:h6223.
38.Phung OJ, Scholle JM, Talwar M, et al. Effect of noninsulin antidiabetic drugs added to metformin therapy on glycemic control, weight gain, and hypoglycemia in type 2 diabetes. JAMA. 2010;303(14):1410-8.
39.Bodmer M, Meier C, Krahenbuhl S, et al. Metformin, sulfonylureas, or other antidiabetes drugs and the risk of lactic acidosis or hypoglycemia: a nested case-control analysis. Diabetes Care. 2008;31(11):2086-91.
40.Niemi M, Cascorbi I, Timm R, et al. Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin Pharmacol Ther. 2002;72(3):326-32.
41.Suzuki K, Yanagawa T, Shibasaki T, et al. Effect of CYP2C9 genetic polymorphisms on the efficacy and pharmacokinetics of glimepiride in subjects with type 2 diabetes. Diabetes Res Clin Pract. 2006;72(2):148-54.
42.University of Washington School of Pharmacy Drug Interaction Database Program. Available at : https://wwwdruginteractioninfoorg/. Accessed on June 13,2017.
43.Kidd RS, Straughn AB, Meyer MC, et al. Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 allele. Pharmacogenetics. 1999;9(1):71-80.
44.Satoh H, Yamashita F, Tsujimoto M, et al. Citrus juices inhibit the function of human organic anion-transporting polypeptide OATP-B. Drug Metab Dispos. 2005;33(4):518-23.
45.Varma MV, Scialis RJ, Lin J, et al. Mechanism-based pharmacokinetic modeling to evaluate transporter-enzyme interplay in drug interactions and pharmacogenetics of glyburide. AAPS J. 2014;16(4):736-48.
46.Tornio A, Niemi M, Neuvonen PJ, et al. Drug interactions with oral antidiabetic agents: pharmacokinetic mechanisms and clinical implications. Trends Pharmacol Sci. 2012;33(6):312-22.
47.Juurlink DN, Mamdani M, Kopp A, et al. Drug-drug interactions among elderly patients hospitalized for drug toxicity. JAMA. 2003;289(13):1652-8.
48.Schelleman H, Han X, Brensinger CM, et al. Pharmacoepidemiologic and in vitro evaluation of potential drug-drug interactions of sulfonylureas with fibrates and statins. Br J Clin Pharmacol. 2014;78(3):639-48.
49.Tan A, Holmes HM, Kuo YF, et al. Coadministration of co-trimoxazole with sulfonylureas: hypoglycemia events and pattern of use. J Gerontol A Biol Sci Med Sci. 2015;70(2):247-54.
50.Leonard CE, Bilker WB, Brensinger CM, et al. Severe hypoglycemia in users of sulfonylurea antidiabetic agents and antihyperlipidemics. Clin Pharmacol Ther. 2016;99(5):538-47.
51.Huxley RR, Filion KB, Konety S, et al. Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am J Cardiol. 2011;108(1):56-62.
52.Ullal AJ, Than CT, Fan J, et al. Amiodarone and risk of death in contemporary patients with atrial fibrillation: findings from the retrospective evaluation and assessment of therapies in AF study. Am Heart J. 2015;170(5):1033-41.e1.
53.January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014;130(23):2071-104.
54.Heimark LD, Wienkers L, Kunze K, et al. The mechanism of the interaction between amiodarone and warfarin in humans. Clin Pharmacol Ther. 1992;51(4):398-407.
55.Almog S, Shafran N, Halkin H, et al. Mechanism of warfarin potentiation by amiodarone: dose--and concentration--dependent inhibition of warfarin elimination. Eur J Clin Pharmacol. 1985;28(3):257-61.
56.Nolan PE, Jr., Erstad BL, Hoyer GL, et al. Steady-state interaction between amiodarone and phenytoin in normal subjects. Am J Cardiol. 1990;65(18):1252-7.
57.Wessler JD, Grip LT, Mendell J, et al. The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol. 2013;61(25):2495-502.
58.Mendell J, Zahir H, Matsushima N, et al. Drug-drug interaction studies of cardiovascular drugs involving P-glycoprotein, an efflux transporter, on the pharmacokinetics of edoxaban, an oral factor Xa inhibitor. Am J Cardiovasc Drugs. 2013;13(5):331-42.
59.Seki S, Kobayashi M, Itagaki S, et al. Contribution of organic anion transporting polypeptide OATP2B1 to amiodarone accumulation in lung epithelial cells. Biochim Biophys Acta. 2009;1788(5):911-7.
60.Cheung B, Lam FM, Kumana CR. Insidiously evolving, occult drug interaction involving warfarin and amiodarone. BMJ. 1996;312(7023):107-8.
61.O'Reilly RA, Trager WF, Rettie AE, et al. Interaction of amiodarone with racemic warfarin and its separated enantiomorphs in humans. Clin Pharmacol Ther. 1987;42(3):290-4.
62.Sanoski CA, Bauman JL. Clinical observations with the amiodarone/warfarin interaction: dosing relationships with long-term therapy. Chest. 2002;121(1):19-23.
63.Zhang K, Young C, Berger J. Administrative claims analysis of the relationship between warfarin use and risk of hemorrhage including drug-drug and drug-disease interactions. J Manag Care Pharm. 2006;12(8):640-8.
64.Lu Y, Won KA, Nelson BJ, et al. Characteristics of the amiodarone-warfarin interaction during long-term follow-up. Am J Health Syst Pharm. 2008;65(10):947-52.
65.Lam J, Gomes T, Juurlink DN, et al. Hospitalization for hemorrhage among warfarin recipients prescribed amiodarone. Am J Cardiol. 2013;112(3):420-3.
66.Edwin SB, Jennings DL, Kalus JS. An evaluation of the early pharmacodynamic response after simultaneous initiation of warfarin and amiodarone. J Clin Pharmacol. 2010;50(6):693-8.
67.Hsu PF, Sung SH, Cheng HM, et al. Association of clinical symptomatic hypoglycemia with cardiovascular events and total mortality in type 2 diabetes: a nationwide population-based study. Diabetes Care. 2013;36(4):894-900.
68.Ford W, Self WH, Slovis C, et al. Diabetes in the emergency department and hospital: acute care of diabetes patients. Curr Emerg Hosp Med Rep. 2013;1(1):1-9.
69.全民健康保險研究資料庫:承保抽樣歸人檔. Available at : http://nhirdnhriorgtw/date_cohorthtml. Accessed on June 12, 2017.
70.Chen YJ, Yang CC, Huang LC, et al. Increasing trend in emergency department visits for hypoglycemia from patients with type 2 diabetes mellitus in Taiwan. Prim Care Diabetes. 2015;9(6):490-6.
71.Bohn B, Kerner W, Seufert J, et al. Trend of antihyperglycaemic therapy and glycaemic control in 184,864 adults with type 1 or 2 diabetes between 2002 and 2014: Analysis of real-life data from the DPV registry from Germany and Austria. Diabetes Res Clin Pract. 2016;115:31-8.
72.Lin CC, Lai MS, Syu CY, et al. Accuracy of diabetes diagnosis in health insurance claims data in Taiwan. J Formos Med Assoc. 2005;104(3):157-63.
73.Chang CH, Chang YC, Lin JW, et al. Cardiovascular risk associated with acarbose versus metformin as the first-line treatment in patients with type 2 diabetes: a nationwide cohort study. J Clin Endocrinol Metab. 2015;100(3):1121-9.
74.Shih CJ, Chen HT, Kuo SC, et al. Comparative effectiveness of angiotensin-converting-enzyme inhibitors and angiotensin II receptor blockers in patients with type 2 diabetes and retinopathy. CMAJ. 2016;188(8):E148-57.
75.Hanson JS. Hypoglycemia associated with pancreatic islet cell tumors. Review of the literature and case report of a malignant tumor. Am J Med. 1960;28:468-75.
76.Dutta P, Aggarwal A, Gogate Y, et al. Non-islet cell tumor-induced hypoglycemia: a report of five cases and brief review of the literature. Endocrinol Diabetes Metab Case Rep. 2013;2013:130046.
77.Iglesias P, Diez JJ. Management of endocrine disease: a clinical update on tumor-induced hypoglycemia. Eur J Endocrinol. 2014;170(4):R147-57.
78.Allen LaPointe NM, Dai D, Thomas L, et al. Comparisons of hospitalization rates among younger atrial fibrillation patients receiving different antiarrhythmic drugs. Circ Cardiovasc Qual Outcomes. 2015;8(3):292-300.
79.Bhatia S, Qazi M, Erande A, et al. Racial differences in the prevalence and outcomes of atrial fibrillation in patients hospitalized with heart failure. Am J Cardiol. 2016;117(9):1468-73.
80.Priori SG, Blomstrom-Lundqvist C, Mazzanti A, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36(41):2793-867.
81.Ginde AA, Blanc PG, Lieberman RM, et al. Validation of ICD-9-CM coding algorithm for improved identification of hypoglycemia visits. BMC Endocr Disord. 2008;8:4.
82.Chou HW, Wang JL, Chang CH, et al. Risk of severe dysglycemia among diabetic patients receiving levofloxacin, ciprofloxacin, or moxifloxacin in Taiwan. Clin Infect Dis. 2013;57(7):971-80.
83.Su VY, Hu YW, Chou KT, et al. Amiodarone and the risk of cancer: a nationwide population-based study. Cancer. 2013;119(9):1699-705.
84.Lipska KJ, Warton EM, Huang ES, et al. HbA1c and risk of severe hypoglycemia in type 2 diabetes: the Diabetes and Aging Study. Diabetes Care. 2013;36(11):3535-42.
85.van Staa T, Abenhaim L, Monette J. Rates of hypoglycemia in users of sulfonylureas. J Clin Epidemiol. 1997;50(6):735-41.
86.Hepburn DA, Deary IJ, Frier BM, et al. Symptoms of acute insulin-induced hypoglycemia in humans with and without IDDM. Factor-analysis approach. Diabetes Care. 1991;14(11):949-57.
87.Azoulay L, Filion KB, Platt RW, et al. Association Between Incretin-Based Drugs and the Risk of Acute Pancreatitis. JAMA Intern Med. 2016;176(10):1464-73.
88.Lewis JD, Habel LA, Quesenberry CP, et al. Pioglitazone Use and Risk of Bladder Cancer and Other Common Cancers in Persons With Diabetes. JAMA. 2015;314(3):265-77.
89.Tseng YH, Tsan YT, Chan WC, et al. Use of an alpha-Glucosidase Inhibitor and the Risk of Colorectal Cancer in Patients With Diabetes: A Nationwide, Population-Based Cohort Study. Diabetes Care. 2015;38(11):2068-74.
90.Marfella R, Siniscalchi M, Esposito K, et al. Effects of stress hyperglycemia on acute myocardial infarction: role of inflammatory immune process in functional cardiac outcome. Diabetes Care. 2003;26(11):3129-35.
91.Wong AY, Root A, Douglas IJ, et al. Cardiovascular outcomes associated with use of clarithromycin: population based study. BMJ. 2016;352:h6926.
92.Moen MF, Zhan M, Hsu VD, et al. Frequency of hypoglycemia and its significance in chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(6):1121-7.
93.Gandhi S, Fleet JL, Bailey DG, et al. Calcium-channel blocker-clarithromycin drug interactions and acute kidney injury. JAMA. 2013;310(23):2544-53.
94.Tolman KG, Fonseca V, Dalpiaz A, et al. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care. 2007;30(3):734-43.
95.Wang MT, Lo YW, Tsai CL, et al. Statin use and risk of COPD exacerbation requiring hospitalization. Am J Med. 2013;126(7):598-606.e2.
96.Kruyt ND, Biessels GJ, Devries JH, et al. Hyperglycemia in acute ischemic stroke: pathophysiology and clinical management. Nat Rev Neurol. 2010;6(3):145-55.
97.Luitse MJ, Biessels GJ, Rutten GE, et al. Diabetes, hyperglycaemia, and acute ischaemic stroke. Lancet Neurol. 2012;11(3):261-71.
98.Coupland C, Hill T, Morriss R, et al. Antidepressant use and risk of cardiovascular outcomes in people aged 20 to 64: cohort study using primary care database. BMJ. 2016;352:i1350.
99.Miller SI, Wallace RJ, Jr., Musher DM, et al. Hypoglycemia as a manifestation of sepsis. Am J Med. 1980;68(5):649-54.
100.Iwashyna TJ, Odden A, Rohde J, et al. Identifying patients with severe sepsis using administrative claims: patient-level validation of the angus implementation of the international consensus conference definition of severe sepsis. Med Care. 2014;52(6):e39-43.
101.Wang MT, Tsai CL, Lin CW, et al. Association between antipsychotic agents and risk of acute respiratory failure in patients with chronic obstructive pulmonary disease. JAMA Psychiatry. 2017;74(3):252-60.
102.Li DQ, Kim R, McArthur E, et al. Risk of adverse events among older adults following co-prescription of clarithromycin and statins not metabolized by cytochrome P450 3A4. CMAJ. 2015;187(3):174-80.
103.Hage M, Zantout MS, Azar ST. Thyroid disorders and diabetes mellitus. J Thyroid Res. 2011;2011:439463.
104.Tsadok MA, Jackevicius CA, Rahme E, et al. Amiodarone-induced thyroid dysfunction: brand-name versus generic formulations. CMAJ. 2011;183(12):E817-23.
105.Wang C. The Relationship between Type 2 Diabetes Mellitus and Related Thyroid Diseases. J Diabetes Res. 2013;2013:390534.
106.Jackevicius CA, Tom A, Essebag V, et al. Population-level incidence and risk factors for pulmonary toxicity associated with amiodarone. Am J Cardiol. 2011;108(5):705-10.
107.Alonso A, MacLehose RF, Lutsey PL, et al. Association of amiodarone use with acute pancreatitis in patients with atrial fibrillation: a nested case-control study. JAMA Intern Med. 2015;175(3):449-50.
108.Murad MH, Coto-Yglesias F, Wang AT, et al. Clinical review: Drug-induced hypoglycemia: a systematic review. J Clin Endocrinol Metab. 2009;94(3):741-5.
109.Haupt DW, Newcomer JW. Hyperglycemia and antipsychotic medications. J Clin Psychiatry. 2001;62 Suppl 27:15-26; discussion 40-1.
110.Lean ME, Pajonk FG. Patients on atypical antipsychotic drugs: another high-risk group for type 2 diabetes. Diabetes Care. 2003;26(5):1597-605.
111.Zillich AJ, Garg J, Basu S, et al. Thiazide diuretics, potassium, and the development of diabetes: a quantitative review. Hypertension. 2006;48(2):219-24.
112.Helderman JH, Elahi D, Andersen DK, et al. Prevention of the glucose intolerance of thiazide diuretics by maintenance of body potassium. Diabetes. 1983;32(2):106-11.
113.Hwang JL, Weiss RE. Steroid-induced diabetes: a clinical and molecular approach to understanding and treatment. Diabetes Metab Res Rev. 2014;30(2):96-102.
114.Crutchlow MF, Bloom RD. Transplant-associated hyperglycemia: a new look at an old problem. Clin J Am Soc Nephrol. 2007;2(2):343-55.
115.Vora J. Combining incretin-based therapies with insulin: realizing the potential in type 2 diabetes. Diabetes Care. 2013;36 Suppl 2:S226-32.
116.Tews D, Werner U, Eckel J. Enhanced protection against cytokine- and fatty acid-induced apoptosis in pancreatic beta cells by combined treatment with glucagon-like peptide-1 receptor agonists and insulin analogues. Horm Metab Res. 2008;40(3):172-80.
117.Meneilly GS, Ryan EA, Radziuk J, et al. Effect of acarbose on insulin sensitivity in elderly patients with diabetes. Diabetes Care. 2000;23(8):1162-7.
118.Soccio RE, Chen ER, Lazar MA. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 2014;20(4):573-91.
119.Quinn CE, Hamilton PK, Lockhart CJ, et al. Thiazolidinediones: effects on insulin resistance and the cardiovascular system. Br J Pharmacol. 2008;153(4):636-45.
120.Landgraf R. Meglitinide analogues in the treatment of type 2 diabetes mellitus. Drugs Aging. 2000;17(5):411-25.
121.Martino E, Bartalena L, Bogazzi F, et al. The effects of amiodarone on the thyroid. Endocr Rev. 2001;22(2):240-54.
122.Lai SW, Lin CL, Liao KF, et al. Amiodarone use and risk of acute pancreatitis: A population-based case-control study. Heart Rhythm. 2015;12(1):163-6.
123.Solomon SS, Duckworth WC, Jallepalli P, et al. The glucose intolerance of acute pancreatitis: hormonal response to arginine. Diabetes. 1980;29(1):22-6.
124.Lipsitch M, Tchetgen Tchetgen E, Cohen T. Negative controls: a tool for detecting confounding and bias in observational studies. Epidemiology. 2010;21(3):383-8.
125.Wen X, Wang JS, Backman JT, et al. Trimethoprim and sulfamethoxazole are selective inhibitors of CYP2C8 and CYP2C9, respectively. Drug Metab Dispos. 2002;30(6):631-5.
126.Dusman RE, Stanton MS, Miles WM, et al. Clinical features of amiodarone-induced pulmonary toxicity. Circulation. 1990;82(1):51-9.
127.Connolly SJ. Evidence-based analysis of amiodarone efficacy and safety. Circulation. 1999;100(19):2025-34.
128.Vassallo P, Trohman RG. Prescribing amiodarone: an evidence-based review of clinical indications. JAMA. 2007;298(11):1312-22.
129.Zipes DP, Prystowsky EN, Heger JJ. Amiodarone: electrophysiologic actions, pharmacokinetics and clinical effects. J Am Coll Cardiol. 1984;3(4):1059-71.
130.衛生福利部食品藥物管理署 西藥、醫療器材、化粧品許可證查詢 臟得樂注射液 CORDARONE INJECTION. Available at : http://wwwfdagovtw/MLMS/H0001Daspx?Type=Lic&LicId=02014861. Accessed June 3 , 2017.
131.衛生福利部食品藥物管理署 西藥、醫療器材、化粧品許可證查詢 臟得樂錠 CORDARONE TABLETS. Available at : http://wwwfdagovtw/MLMS/H0001Daspx?Type=Lic&LicId=02014822. Accessed June 13 , 2017.
132.Pollak PT, Bouillon T, Shafer SL. Population pharmacokinetics of long-term oral amiodarone therapy. Clin Pharmacol Ther. 2000;67(6):642-52.
133.Ohyama K, Nakajima M, Suzuki M, et al. Inhibitory effects of amiodarone and its N-deethylated metabolite on human cytochrome P450 activities: prediction of in vivo drug interactions. Br J Clin Pharmacol. 2000;49(3):244-53.
134.Amiodarone hydrochloride and Hypoglycemia - from FDA reports. Available at : http://wwwehealthmecom/ds/amiodarone%20hydrochloride/hypoglycemia/. Accessed June 5 , 2017.
135.Nishida A, Takizawa T, Matsumoto A, et al. Inhibition of ATP-sensitive K+ channels and L-type Ca2+ channels by amiodarone elicits contradictory effect on insulin secretion in MIN6 cells. J Pharmacol Sci. 2011;116(1):73-80.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔