|
1.Shoback, Greenspan's basic & clinical endocrinology. 9th ed. 2011, New York: McGraw-Hill Medical. 2.Kitabchi, A.E., et al., Hyperglycemic crises in adult patients with diabetes. Diabetes Care, 2009. 32(7): p. 1335-43. 3.Stephen MS, J.R., JR KP, RKP, Diabetes. 8 edition ed. 2006, United States: LWW: Textbook of Therapeutics: Drug and Disease Management. 1045. 4.Power, C. and C. Thomas, Changes in BMI, duration of overweight and obesity, and glucose metabolism: 45 years of follow-up of a birth cohort. Diabetes Care, 2011. 34(9): p. 1986-91. 5.Shi, Y. and F.B. Hu, The global implications of diabetes and cancer. Lancet, 2014. 383(9933): p. 1947-8. 6.Kim, J.J., et al., Analysis of compensatory beta-cell response in mice with combined mutations of Insr and Irs2. Am J Physiol Endocrinol Metab, 2007. 292(6): p. E1694-701. 7.Butler, A.E., et al., Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes, 2003. 52(1): p. 102-10. 8.Ferrannini, E., The stunned beta cell: a brief history. Cell Metab, 2010. 11(5): p. 349-52. 9.Gepts, W., Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes, 1965. 14(10): p. 619-33. 10.Butler, A.E., et al., Modestly increased beta cell apoptosis but no increased beta cell replication in recent-onset type 1 diabetic patients who died of diabetic ketoacidosis. Diabetologia, 2007. 50(11): p. 2323-31. 11.Dustin, M.L., Coordination of T cell activation and migration through formation of the immunological synapse. Ann N Y Acad Sci, 2003. 987: p. 51-9. 12.Mosmann, T.R., et al., Differentiation and functions of T cell subsets. Ciba Found Symp, 1997. 204: p. 148-54; discussion 154-8. 13.Saouaf, S.J., et al., Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis. Exp Mol Pathol, 2009. 87(2): p. 99-104. 14.Heath, W.R. and F.R. Carbone, Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat Immunol, 2009. 10(12): p. 1237-44. 15.Lieberman, S.M. and T.P. DiLorenzo, A comprehensive guide to antibody and T-cell responses in type 1 diabetes. Tissue Antigens, 2003. 62(5): p. 359-77. 16.Delovitch, T.L. and B. Singh, The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity, 1997. 7(6): p. 727-38. 17.Inoue, Y., et al., Activating Fc gamma receptors participate in the development of autoimmune diabetes in NOD mice. J Immunol, 2007. 179(2): p. 764-74. 18.Koarada, S., et al., Increased nonobese diabetic Th1:Th2 (IFN-gamma:IL-4) ratio is CD4+ T cell intrinsic and independent of APC genetic background. J Immunol, 2002. 169(11): p. 6580-7. 19.ES, E.L.D., et al., Pharmacokinetic modelling of valproic acid from routine clinical data in Egyptian epileptic patients. Eur J Clin Pharmacol, 2004. 59(11): p. 783-90. 20.Thelen, P., et al., Expressional changes after histone deacetylase inhibition by valproic acid in LNCaP human prostate cancer cells. Int J Oncol, 2004. 24(1): p. 25-31. 21.Lackmann, G.M., Valproic-acid-induced thrombocytopenia and hepatotoxicity: discontinuation of treatment? Pharmacology, 2004. 70(2): p. 57-8. 22.Lv, J., et al., The antiepileptic drug valproic acid restores T cell homeostasis and ameliorates pathogenesis of experimental autoimmune encephalomyelitis. J Biol Chem, 2012. 287(34): p. 28656-65. 23.Mantel, P.Y., et al., Molecular mechanisms underlying FOXP3 induction in human T cells. J Immunol, 2006. 176(6): p. 3593-602. 24.Ngalamika, O., et al., Epigenetics, autoimmunity and hematologic malignancies: a comprehensive review. J Autoimmun, 2012. 39(4): p. 451-65. 25.Wu, S.Y., et al., Valproic acid attenuates acute lung injury induced by ischemia-reperfusion in rats. Anesthesiology, 2015. 122(6): p. 1327-37.
|