|
Part 1 1.Van Looveren M, Goossens H, Group AS. 2004. Antimicrobial resistance of Acinetobacter spp. in Europe. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 10:684-704. 2.Visca P, Seifert H, Towner KJ. 2011. Acinetobacter infection--an emerging threat to human health. IUBMB life 63:1048-1054. 3.Nemec A, Krizova L, Maixnerova M, van der Reijden TJ, Deschaght P, Passet V, Vaneechoutte M, Brisse S, Dijkshoorn L. 2011. Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Research in microbiology 162:393-404. 4.Lee YC, Huang YT, Tan CK, Kuo YW, Liao CH, Lee PI, Hsueh PR. 2011. Acinetobacter baumannii and Acinetobacter genospecies 13TU and 3 bacteraemia: comparison of clinical features, prognostic factors and outcomes. The Journal of antimicrobial chemotherapy 66:1839-1846. 5.Karah N, Haldorsen B, Hegstad K, Simonsen GS, Sundsfjord A, Samuelsen O, Norwegian Study Group of A. 2011. Species identification and molecular characterization of Acinetobacter spp. blood culture isolates from Norway. The Journal of antimicrobial chemotherapy 66:738-744. 6.Chuang YC, Sheng WH, Li SY, Lin YC, Wang JT, Chen YC, Chang SC. 2011. Influence of genospecies of Acinetobacter baumannii complex on clinical outcomes of patients with acinetobacter bacteremia. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 52:352-360. 7.Joly-Guillou ML. 2005. Clinical impact and pathogenicity of Acinetobacter. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 11:868-873. 8.McDonald LC, Banerjee SN, Jarvis WR. 1999. Seasonal variation of Acinetobacter infections: 1987-1996. Nosocomial Infections Surveillance System. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 29:1133-1137. 9.McConnell MJ, Actis L, Pachon J. 2013. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS microbiology reviews 37:130-155. 10.Dijkshoorn L, Nemec A, Seifert H. 2007. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nature reviews. Microbiology 5:939-951. 11.Garnacho J, Sole-Violan J, Sa-Borges M, Diaz E, Rello J. 2003. Clinical impact of pneumonia caused by Acinetobacter baumannii in intubated patients: a matched cohort study. Critical care medicine 31:2478-2482. 12.Peleg AY, Seifert H, Paterson DL. 2008. Acinetobacter baumannii: emergence of a successful pathogen. Clinical microbiology reviews 21:538-582. 13.Leung WS, Chu CM, Tsang KY, Lo FH, Lo KF, Ho PL. 2006. Fulminant community-acquired Acinetobacter baumannii pneumonia as a distinct clinical syndrome. Chest 129:102-109. 14.Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. 2004. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 39:309-317. 15.Jung JY, Park MS, Kim SE, Park BH, Son JY, Kim EY, Lim JE, Lee SK, Lee SH, Lee KJ, Kang YA, Kim SK, Chang J, Kim YS. 2010. Risk factors for multi-drug resistant Acinetobacter baumannii bacteremia in patients with colonization in the intensive care unit. BMC infectious diseases 10:228. 16.Keen EF, 3rd, Robinson BJ, Hospenthal DR, Aldous WK, Wolf SE, Chung KK, Murray CK. 2010. Prevalence of multidrug-resistant organisms recovered at a military burn center. Burns : journal of the International Society for Burn Injuries 36:819-825. 17.Albrecht MC, Griffith ME, Murray CK, Chung KK, Horvath EE, Ward JA, Hospenthal DR, Holcomb JB, Wolf SE. 2006. Impact of Acinetobacter infection on the mortality of burn patients. Journal of the American College of Surgeons 203:546-550. 18.Sebeny PJ, Riddle MS, Petersen K. 2008. Acinetobacter baumannii skin and soft-tissue infection associated with war trauma. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 47:444-449. 19.Cascio A, Conti A, Sinardi L, Iaria C, Angileri FF, Stassi G, David T, Versaci A, Iaria M, David A. 2010. Post-neurosurgical multidrug-resistant Acinetobacter baumannii meningitis successfully treated with intrathecal colistin. A new case and a systematic review of the literature. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases 14:e572-579. 20.Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J. 2009. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 48:1-12. 21.Michalopoulos A, Falagas ME. 2010. Treatment of Acinetobacter infections. Expert opinion on pharmacotherapy 11:779-788. 22.Yang SC, Chang WJ, Chang YH, Tsai YS, Yang TP, Juan CW, Shiau MY. 2010. Prevalence of antibiotics resistance and OXA carbapenemases genes in multidrug-resistant Acinetobacter baumannii isolates in central Taiwan. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 29:601-604. 23.Sun Y, Cai Y, Liu X, Bai N, Liang B, Wang R. 2013. The emergence of clinical resistance to tigecycline. International journal of antimicrobial agents 41:110-116. 24.McGowan JE, Jr. 1983. Antimicrobial resistance in hospital organisms and its relation to antibiotic use. Reviews of infectious diseases 5:1033-1048. 25.Go ES, Urban C, Burns J, Kreiswirth B, Eisner W, Mariano N, Mosinka-Snipas K, Rahal JJ. 1994. Clinical and molecular epidemiology of acinetobacter infections sensitive only to polymyxin B and sulbactam. Lancet 344:1329-1332. 26.Afzal-Shah M, Livermore DM. 1998. Worldwide emergence of carbapenem-resistant Acinetobacter spp. The Journal of antimicrobial chemotherapy 41:576-577. 27.Da Silva GJ, Leitao GJ, Peixe L. 1999. Emergence of carbapenem-hydrolyzing enzymes in Acinetobacter baumannii clinical isolates. Journal of clinical microbiology 37:2109-2110. 28.Landman D, Quale JM, Mayorga D, Adedeji A, Vangala K, Ravishankar J, Flores C, Brooks S. 2002. Citywide clonal outbreak of multiresistant Acinetobacter baumannii and Pseudomonas aeruginosa in Brooklyn, NY: the preantibiotic era has returned. Archives of internal medicine 162:1515-1520. 29.Hsueh PR, Teng LJ, Chen CY, Chen WH, Yu CJ, Ho SW, Luh KT. 2002. Pandrug-resistant Acinetobacter baumannii causing nosocomial infections in a university hospital, Taiwan. Emerging infectious diseases 8:827-832. 30.Karlowsky JA, Draghi DC, Jones ME, Thornsberry C, Friedland IR, Sahm DF. 2003. Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from hospitalized patients in the United States, 1998 to 2001. Antimicrobial agents and chemotherapy 47:1681-1688. 31.Lee CM, Lim HK, Liu CP, Tseng HK. 2005. Treatment of pan-drug resistant Acinetobacter baumannii. Scandinavian journal of infectious diseases 37:195-199. 32.Robledo IE, Aquino EE, Sante MI, Santana JL, Otero DM, Leon CF, Vazquez GJ. 2010. Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrobial agents and chemotherapy 54:1354-1357. 33.Yum JH, Yi K, Lee H, Yong D, Lee K, Kim JM, Rossolini GM, Chong Y. 2002. Molecular characterization of metallo-beta-lactamase-producing Acinetobacter baumannii and Acinetobacter genomospecies 3 from Korea: identification of two new integrons carrying the bla(VIM-2) gene cassettes. The Journal of antimicrobial chemotherapy 49:837-840. 34.Tognim MC, Gales AC, Penteado AP, Silbert S, Sader HS. 2006. Dissemination of IMP-1 metallo- beta -lactamase-producing Acinetobacter species in a Brazilian teaching hospital. Infection control and hospital epidemiology 27:742-747. 35.Pfeifer Y, Wilharm G, Zander E, Wichelhaus TA, Gottig S, Hunfeld KP, Seifert H, Witte W, Higgins PG. 2011. Molecular characterization of blaNDM-1 in an Acinetobacter baumannii strain isolated in Germany in 2007. The Journal of antimicrobial chemotherapy 66:1998-2001. 36.Lin MF, Chang KC, Lan CY, Chou J, Kuo JW, Chang CK, Liou ML. 2011. Molecular epidemiology and antimicrobial resistance determinants of multidrug-resistant Acinetobacter baumannii in five proximal hospitals in Taiwan. Japanese journal of infectious diseases 64:222-227. 37.Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. 2007. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrobial agents and chemotherapy 51:3471-3484. 38.Walther-Rasmussen J, Hoiby N. 2006. OXA-type carbapenemases. The Journal of antimicrobial chemotherapy 57:373-383. 39.Hsieh WS, Wang NY, Feng JA, Weng LC, Wu HH. 2014. Types and prevalence of carbapenem-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii complex in Northern Taiwan. Antimicrobial agents and chemotherapy 58:201-204. 40.Kuo HY, Yang CM, Lin MF, Cheng WL, Tien N, Liou ML. 2010. Distribution of blaOXA-carrying imipenem-resistant Acinetobacter spp. in 3 hospitals in Taiwan. Diagnostic microbiology and infectious disease 66:195-199. 41.Ribera A, Ruiz J, Vila J. 2003. Presence of the Tet M determinant in a clinical isolate of Acinetobacter baumannii. Antimicrobial agents and chemotherapy 47:2310-2312. 42.Higgins PG, Wisplinghoff H, Stefanik D, Seifert H. 2004. Selection of topoisomerase mutations and overexpression of adeB mRNA transcripts during an outbreak of Acinetobacter baumannii. The Journal of antimicrobial chemotherapy 54:821-823. 43.Choi CH, Lee EY, Lee YC, Park TI, Kim HJ, Hyun SH, Kim SA, Lee SK, Lee JC. 2005. Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cellular microbiology 7:1127-1138. 44.Gaddy JA, Tomaras AP, Actis LA. 2009. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infection and immunity 77:3150-3160. 45.Jin JS, Kwon SO, Moon DC, Gurung M, Lee JH, Kim SI, Lee JC. 2011. Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. PloS one 6:e17027. 46.Piddock LJ. 2006. Multidrug-resistance efflux pumps - not just for resistance. Nature reviews. Microbiology 4:629-636. 47.Liu J, Takiff HE, Nikaido H. 1996. Active efflux of fluoroquinolones in Mycobacterium smegmatis mediated by LfrA, a multidrug efflux pump. Journal of bacteriology 178:3791-3795. 48.Magnet S, Courvalin P, Lambert T. 2001. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrobial agents and chemotherapy 45:3375-3380. 49.Marchand I, Damier-Piolle L, Courvalin P, Lambert T. 2004. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrobial agents and chemotherapy 48:3298-3304. 50.Dreier J, Ruggerone P. 2015. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Frontiers in microbiology 6:660. 51.Du D, van Veen HW, Murakami S, Pos KM, Luisi BF. 2015. Structure, mechanism and cooperation of bacterial multidrug transporters. Current opinion in structural biology 33:76-91. 52.Nikaido H, Takatsuka Y. 2009. Mechanisms of RND multidrug efflux pumps. Biochimica et biophysica acta 1794:769-781. 53.Putman M, Van Veen HW, Degener JE, Konings WN. 2000. Antibiotic resistance: era of the multidrug pump. Molecular microbiology 36:772-773. 54.Chau SL, Chu YW, Houang ET. 2004. Novel resistance-nodulation-cell division efflux system AdeDE in Acinetobacter genomic DNA group 3. Antimicrobial agents and chemotherapy 48:4054-4055. 55.Pagdepanichkit S, Tribuddharat C, Chuanchuen R. 2016. Distribution and expression of the Ade multidrug efflux systems in Acinetobacter baumannii clinical isolates. Canadian journal of microbiology 62:794-801. 56.Ruzin A, Keeney D, Bradford PA. 2007. AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in Acinetobacter calcoaceticus-Acinetobacter baumannii complex. The Journal of antimicrobial chemotherapy 59:1001-1004. 57.Karageorgopoulos DE, Kelesidis T, Kelesidis I, Falagas ME. 2008. Tigecycline for the treatment of multidrug-resistant (including carbapenem-resistant) Acinetobacter infections: a review of the scientific evidence. The Journal of antimicrobial chemotherapy 62:45-55. 58.CLSI. Quality Control Minimal Inhibitory Concenration (MIC) Limits for Broth Microdilution and MIC Interpretive Breakpoints. Clinical and Laboratory Standards Institute 2nd ed:Document M27-S22. 59.Navon-Venezia S, Leavitt A, Carmeli Y. 2007. High tigecycline resistance in multidrug-resistant Acinetobacter baumannii. The Journal of antimicrobial chemotherapy 59:772-774. 60.Peleg AY, Adams J, Paterson DL. 2007. Tigecycline Efflux as a Mechanism for Nonsusceptibility in Acinetobacter baumannii. Antimicrobial agents and chemotherapy 51:2065-2069. 61.Cheung J, Hendrickson WA. 2010. Sensor domains of two-component regulatory systems. Current opinion in microbiology 13:116-123. 62.Szurmant H, White RA, Hoch JA. 2007. Sensor complexes regulating two-component signal transduction. Current opinion in structural biology 17:706-715. 63.Bem AE, Velikova N, Pellicer MT, Baarlen P, Marina A, Wells JM. 2015. Bacterial histidine kinases as novel antibacterial drug targets. ACS chemical biology 10:213-224. 64.Hornsey M, Loman N, Wareham DW, Ellington MJ, Pallen MJ, Turton JF, Underwood A, Gaulton T, Thomas CP, Doumith M, Livermore DM, Woodford N. 2011. Whole-genome comparison of two Acinetobacter baumannii isolates from a single patient, where resistance developed during tigecycline therapy. The Journal of antimicrobial chemotherapy 66:1499-1503. 65.Higgins PG, Schneiders T, Hamprecht A, Seifert H. 2010. In vivo selection of a missense mutation in adeR and conversion of the novel blaOXA-164 gene into blaOXA-58 in carbapenem-resistant Acinetobacter baumannii isolates from a hospitalized patient. Antimicrobial agents and chemotherapy 54:5021-5027. 66.Mugnier PD, Poirel L, Nordmann P. 2009. Functional analysis of insertion sequence ISAba1, responsible for genomic plasticity of Acinetobacter baumannii. Journal of bacteriology 191:2414-2418. 67.Pagano M, Martins AF, Machado AB, Barin J, Barth AL. 2013. Carbapenem-susceptible Acinetobacter baumannii carrying the ISAba1 upstream blaOXA-51-like gene in Porto Alegre, southern Brazil. Epidemiology and infection 141:330-333. 68.Sun JR, Perng CL, Chan MC, Morita Y, Lin JC, Su CM, Wang WY, Chang TY, Chiueh TS. 2012. A truncated AdeS kinase protein generated by ISAba1 insertion correlates with tigecycline resistance in Acinetobacter baumannii. PloS one 7:e49534. 69.Yoon EJ, Courvalin P, Grillot-Courvalin C. 2013. RND-type efflux pumps in multidrug-resistant clinical isolates of Acinetobacter baumannii: major role for AdeABC overexpression and AdeRS mutations. Antimicrobial agents and chemotherapy 57:2989-2995. 70.Stauff DL, Torres VJ, Skaar EP. 2007. Signaling and DNA-binding activities of the Staphylococcus aureus HssR-HssS two-component system required for heme sensing. The Journal of biological chemistry 282:26111-26121. 71.Torres VJ, Stauff DL, Pishchany G, Bezbradica JS, Gordy LE, Iturregui J, Anderson KL, Dunman PM, Joyce S, Skaar EP. 2007. A Staphylococcus aureus regulatory system that responds to host heme and modulates virulence. Cell host & microbe 1:109-119. 72.Zhang T, Wang M, Xie Y, Li X, Dong Z, Liu Y, Wang L, Yang M, Song H, Cao H, Cao W. 2017. Active efflux pump adeB is involved in multidrug resistance of Acinetobacter baumannii induced by antibacterial agents. Experimental and therapeutic medicine 13:1538-1546. 73.Yuhan Y, Ziyun Y, Yongbo Z, Fuqiang L, Qinghua Z. 2016. Over expression of AdeABC and AcrAB-TolC efflux systems confers tigecycline resistance in clinical isolates of Acinetobacter baumannii and Klebsiella pneumoniae. Revista da Sociedade Brasileira de Medicina Tropical 49:165-171. 74.Jimenez-Castellanos JC, Wan Ahmad Kamil WN, Cheung CH, Tobin MS, Brown J, Isaac SG, Heesom KJ, Schneiders T, Avison MB. 2016. Comparative effects of overproducing the AraC-type transcriptional regulators MarA, SoxS, RarA and RamA on antimicrobial drug susceptibility in Klebsiella pneumoniae. The Journal of antimicrobial chemotherapy 71:1820-1825. 75.Ma D, Alberti M, Lynch C, Nikaido H, Hearst JE. 1996. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Molecular microbiology 19:101-112. 76.Adler M, Anjum M, Andersson DI, Sandegren L. 2016. Combinations of mutations in envZ, ftsI, mrdA, acrB and acrR can cause high-level carbapenem resistance in Escherichia coli. The Journal of antimicrobial chemotherapy 71:1188-1198. 77.Raczkowska A, Trzos J, Lewandowska O, Nieckarz M, Brzostek K. 2015. Expression of the AcrAB Components of the AcrAB-TolC Multidrug Efflux Pump of Yersinia enterocolitica Is Subject to Dual Regulation by OmpR. PloS one 10:e0124248. 78.Brzostek K, Brzostkowska M, Bukowska I, Karwicka E, Raczkowska A. 2007. OmpR negatively regulates expression of invasin in Yersinia enterocolitica. Microbiology 153:2416-2425. 79.Raczkowska A, Skorek K, Bielecki J, Brzostek K. 2011. OmpR controls Yersinia enterocolitica motility by positive regulation of flhDC expression. Antonie van Leeuwenhoek 99:381-394. 80.Richmond GE, Evans LP, Anderson MJ, Wand ME, Bonney LC, Ivens A, Chua KL, Webber MA, Sutton JM, Peterson ML, Piddock LJ. 2016. The Acinetobacter baumannii Two-Component System AdeRS Regulates Genes Required for Multidrug Efflux, Biofilm Formation, and Virulence in a Strain-Specific Manner. mBio 7:e00430-00416. 81.Lin MF, Lin YY, Lan CY. 2015. The Role of the Two-Component System BaeSR in Disposing Chemicals through Regulating Transporter Systems in Acinetobacter baumannii. PloS one 10:e0132843. 82.Lin MF, Lin YY, Yeh HW, Lan CY. 2014. Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility. BMC microbiology 14:119. 83.Montana S, Vilacoba E, Traglia GM, Almuzara M, Pennini M, Fernandez A, Sucari A, Centron D, Ramirez MS. 2015. Genetic Variability of AdeRS Two-Component System Associated with Tigecycline Resistance in XDR-Acinetobacter baumannii Isolates. Current microbiology 71:76-82. 84.Sun JR, Jeng WY, Perng CL, Yang YS, Soo PC, Chiang YS, Chiueh TS. 2016. Single amino acid substitution Gly186Val in AdeS restores tigecycline susceptibility of Acinetobacter baumannii. The Journal of antimicrobial chemotherapy 71:1488-1492. 85.Nowak J, Schneiders T, Seifert H, Higgins PG. 2016. The Asp20-to-Asn Substitution in the Response Regulator AdeR Leads to Enhanced Efflux Activity of AdeB in Acinetobacter baumannii. Antimicrobial agents and chemotherapy 60:1085-1090. 86.Sun F, Li C, Jeong D, Sohn C, He C, Bae T. 2010. In the Staphylococcus aureus two-component system sae, the response regulator SaeR binds to a direct repeat sequence and DNA binding requires phosphorylation by the sensor kinase SaeS. Journal of bacteriology 192:2111-2127. 87.Wang L, Pan Y, Yuan ZH, Zhang H, Peng BY, Wang FF, Qian W. 2016. Two-Component Signaling System VgrRS Directly Senses Extracytoplasmic and Intracellular Iron to Control Bacterial Adaptation under Iron Depleted Stress. PLoS pathogens 12:e1006133. 88.Wu CJ, Huang YW, Lin YT, Ning HC, Yang TC. 2016. Inactivation of SmeSyRy Two-Component Regulatory System Inversely Regulates the Expression of SmeYZ and SmeDEF Efflux Pumps in Stenotrophomonas maltophilia. PloS one 11:e0160943. 89.Johnson LN, Lewis RJ. 2001. Structural basis for control by phosphorylation. Chemical reviews 101:2209-2242. 90.Wright MS, Haft DH, Harkins DM, Perez F, Hujer KM, Bajaksouzian S, Benard MF, Jacobs MR, Bonomo RA, Adams MD. 2014. New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. mBio 5:e00963-00913. 91.Yang Y, Chua KL. 2013. Assessment of the effect of efflux pump inhibitors on in vitro antimicrobial susceptibility of multidrug-resistant Acinetobacter baumannii. International journal of antimicrobial agents 42:283-284. 92.Verma P, Tiwari M, Tiwari V. 2017. In silico high-throughput virtual screening and molecular dynamics simulation study to identify inhibitor for AdeABC efflux pump of Acinetobacter baumannii. Journal of biomolecular structure & dynamics:1-13. 93.Igarashi M, Watanabe T, Hashida T, Umekita M, Hatano M, Yanagida Y, Kino H, Kimura T, Kinoshita N, Inoue K, Sawa R, Nishimura Y, Utsumi R, Nomoto A. 2013. Waldiomycin, a novel WalK-histidine kinase inhibitor from Streptomyces sp. MK844-mF10. The Journal of antibiotics 66:459-464. 94.Yuan YG, Peng QL, Gurunathan S. 2017. Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy. International journal of molecular sciences 18. 95.Ghareib M, Tahon MA, Saif MM, El-Sayed Abdallah W. 2016. Rapid Extracellular Biosynthesis of Silver Nanoparticles by Cunninghamella phaeospora Culture Supernatant. Iranian journal of pharmaceutical research : IJPR 15:915-924. 96.Beyth N, Yudovin-Farber I, Perez-Davidi M, Domb AJ, Weiss EI. 2010. Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proceedings of the National Academy of Sciences of the United States of America 107:22038-22043. 97.Bou G, Martinez-Beltran J. 2000. Cloning, nucleotide sequencing, and analysis of the gene encoding an AmpC beta-lactamase in Acinetobacter baumannii. Antimicrobial agents and chemotherapy 44:428-432. 98.Chen CH, Young TG, Huang CC. 2006. Predictive biomarkers for drug-resistant Acinetobacter baumannii isolates with bla(TEM-1), AmpC-type bla and integrase 1 genotypes. Journal of microbiology, immunology, and infection. Wei mian yu gan ran za zhi 39:372-379. 99.Nagano N, Nagano Y, Cordevant C, Shibata N, Arakawa Y. 2004. Nosocomial transmission of CTX-M-2 beta-lactamase-producing Acinetobacter baumannii in a neurosurgery ward. Journal of clinical microbiology 42:3978-3984. 100.Chen Y, Zhou Z, Jiang Y, Yu Y. 2011. Emergence of NDM-1-producing Acinetobacter baumannii in China. The Journal of antimicrobial chemotherapy 66:1255-1259. 101.Koh TH, Sng LH, Wang GC, Hsu LY, Zhao Y. 2007. IMP-4 and OXA beta-lactamases in Acinetobacter baumannii from Singapore. The Journal of antimicrobial chemotherapy 59:627-632. 102.Siroy A, Molle V, Lemaitre-Guillier C, Vallenet D, Pestel-Caron M, Cozzone AJ, Jouenne T, De E. 2005. Channel formation by CarO, the carbapenem resistance-associated outer membrane protein of Acinetobacter baumannii. Antimicrobial agents and chemotherapy 49:4876-4883. 103.Vashist J, Tiwari V, Das R, Kapil A, Rajeswari MR. 2011. Analysis of penicillin-binding proteins (PBPs) in carbapenem resistant Acinetobacter baumannii. The Indian journal of medical research 133:332-338. 104.Hamouda A, Amyes SG. 2004. Novel gyrA and parC point mutations in two strains of Acinetobacter baumannii resistant to ciprofloxacin. The Journal of antimicrobial chemotherapy 54:695-696. 105.Lee JK, Lee YS, Park YK, Kim BS. 2005. Mutations in the gyrA and parC genes in ciprofloxacin-resistant clinical isolates of Acinetobacter baumannii in Korea. Microbiology and immunology 49:647-653. 106.Moniri R, Farahani RK, Shajari G, Shirazi MN, Ghasemi A. 2010. Molecular epidemiology of aminoglycosides resistance in Acinetobacter spp. With emergence of multidrug-resistant strains. Iranian journal of public health 39:63-68. 107.Yoon EJ, Chabane YN, Goussard S, Snesrud E, Courvalin P, De E, Grillot-Courvalin C. 2015. Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. mBio 6. 108.Beheshti M, Talebi M, Ardebili A, Bahador A, Lari AR. 2014. Detection of AdeABC efflux pump genes in tetracycline-resistant Acinetobacter baumannii isolates from burn and ventilator-associated pneumonia patients. Journal of pharmacy & bioallied sciences 6:229-232. 109.Germond A, Kim SJ. 2015. Genetic diversity of oxytetracycline-resistant bacteria and tet(M) genes in two major coastal areas of South Korea. Journal of global antimicrobial resistance 3:166-173. 110.Sepahvand S, Doudi M, Davarpanah MA, Bahador A, Ahmadi M. 2016. Analyzing pmrA and pmrB genes in Acinetobacter baumannii resistant to colistin in Shahid Rajai Shiraz, Iran Hospital by PCR: First report in Iran. Pakistan journal of pharmaceutical sciences 29:1401-1406.
Part 2 1.Rai M, Yadav A, Gade A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances 27:76-83. 2.Castellano JJ, Shafii SM, Ko F, Donate G, Wright TE, Mannari RJ, Payne WG, Smith DJ, Robson MC. 2007. Comparative evaluation of silver-containing antimicrobial dressings and drugs. International wound journal 4:114-122. 3.Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine : nanotechnology, biology, and medicine 3:95-101. 4.Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346-2353. 5.Sanyasi S, Majhi RK, Kumar S, Mishra M, Ghosh A, Suar M, Satyam PV, Mohapatra H, Goswami C, Goswami L. 2016. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Scientific reports 6:24929. 6.Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M. 2014. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Applied microbiology and biotechnology 98:1951-1961. 7.Sondi I, Salopek-Sondi B. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science 275:177-182. 8.Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh SS. 2010. Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite. Langmuir : the ACS journal of surfaces and colloids 26:5901-5908. 9.Neal AL. 2008. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362-371. 10.Gordon O, Vig Slenters T, Brunetto PS, Villaruz AE, Sturdevant DE, Otto M, Landmann R, Fromm KM. 2010. Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrobial agents and chemotherapy 54:4208-4218. 11.Kujda M, Ocwieja M, Adamczyk Z, Bochenska O, Bras G, Kozik A, Bielanska E, Barbasz J. 2015. Charge Stabilized Silver Nanoparticles Applied as Antibacterial Agents. Journal of nanoscience and nanotechnology 15:3574-3583. 12.Dakal TC, Kumar A, Majumdar RS, Yadav V. 2016. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Frontiers in microbiology 7:1831. 13.Donlan RM. 2001. Biofilms and device-associated infections. Emerging infectious diseases 7:277-281. 14.Di Giulio M, Di Bartolomeo S, Di Campli E, Sancilio S, Marsich E, Travan A, Cataldi A, Cellini L. 2013. The effect of a silver nanoparticle polysaccharide system on streptococcal and saliva-derived biofilms. International journal of molecular sciences 14:13615-13625. 15.Wang J, Li J, Guo G, Wang Q, Tang J, Zhao Y, Qin H, Wahafu T, Shen H, Liu X, Zhang X. 2016. Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: new insight into the antimicrobial action of silver. Scientific reports 6:32699. 16.Dai X, Chen X, Zhao J, Zhao Y, Guo Q, Zhang T, Chu C, Zhang X, Li C. 2017. Structure-Activity Relationships of Membrane-Targeting Cationic Ligand on Silver Nanoparticle Surface in the Antibiotic-Resistant Antibacterial and Antibiofilm Activity Assay. ACS applied materials & interfaces. 17.Boonkaew B, Kempf M, Kimble R, Cuttle L. 2014. Cytotoxicity testing of silver-containing burn treatments using primary and immortal skin cells. Burns : journal of the International Society for Burn Injuries 40:1562-1569. 18.Harding K, Gottrup F, Jawien A, Mikosinski J, Twardowska-Saucha K, Kaczmarek S, Sopata M, Shearman C, Pieronne A, Kommala D. 2012. A prospective, multi-centre, randomised, open label, parallel, comparative study to evaluate effects of AQUACEL(R) Ag and Urgotul(R) Silver dressing on healing of chronic venous leg ulcers. International wound journal 9:285-294. 19.Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R. 2004. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25:4383-4391. 20.Hussmann B, Johann I, Kauther MD, Landgraeber S, Jager M, Lendemans S. 2013. Measurement of the silver ion concentration in wound fluids after implantation of silver-coated megaprostheses: correlation with the clinical outcome. BioMed research international 2013:763096. 21.Paladini F, Pollini M, Deponti D, Di Giancamillo A, Peretti G, Sannino A. 2013. Effect of silver nanocoatings on catheters for haemodialysis in terms of cell viability, proliferation, morphology and antibacterial activity. Journal of materials science. Materials in medicine 24:1105-1112. 22.Paladini F, Picca RA, Sportelli MC, Cioffi N, Sannino A, Pollini M. 2015. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications. Materials science & engineering. C, Materials for biological applications 52:1-10. 23.El-Rafie MH, Ahmed HB, Zahran MK. 2014. Characterization of nanosilver coated cotton fabrics and evaluation of its antibacterial efficacy. Carbohydrate polymers 107:174-181. 24.Bumbudsanpharoke N, Choi J, Ko S. 2015. Applications of Nanomaterials in Food Packaging. Journal of nanoscience and nanotechnology 15:6357-6372. 25.Bhople S, Gaikwad S, Deshmukh S, Bonde S, Gade A, Sen S, Brezinska A, Dahm H, Rai M. 2016. Myxobacteria-mediated synthesis of silver nanoparticles and their impregnation in wrapping paper used for enhancing shelf life of apples. IET nanobiotechnology 10:389-394. 26.Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. 2016. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes. Molecules 21. 27.Chauhan A, Zubair S, Tufail S, Sherwani A, Sajid M, Raman SC, Azam A, Owais M. 2011. Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. International journal of nanomedicine 6:2305-2319. 28.Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS. 2006. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophysical journal 90:619-627. 29.Burygin GL, Khlebtsov BN, Shantrokha AN, Dykman LA, Bogatyrev VA, Khlebtsov NG. 2009. On the Enhanced Antibacterial Activity of Antibiotics Mixed with Gold Nanoparticles. Nanoscale research letters 4:794-801. 30.Chatterjee AK, Sarkar RK, Chattopadhyay AP, Aich P, Chakraborty R, Basu T. 2012. A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 23:085103. 31.Pramanik A, Laha D, Bhattacharya D, Pramanik P, Karmakar P. 2012. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids and surfaces. B, Biointerfaces 96:50-55. 32.Wong MS, Chu WC, Sun DS, Huang HS, Chen JH, Tsai PJ, Lin NT, Yu MS, Hsu SF, Wang SL, Chang HH. 2006. Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens. Applied and environmental microbiology 72:6111-6116. 33.He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP, Jr., Irwin P. 2016. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. Journal of nanobiotechnology 14:54. 34.Wei L, Lu J, Xu H, Patel A, Chen ZS, Chen G. 2015. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug discovery today 20:595-601. 35.You H, Yang S, Ding B, Yang H. 2013. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chemical Society reviews 42:2880-2904. 36.Sotiriou GA, Pratsinis SE. 2010. Antibacterial activity of nanosilver ions and particles. Environmental science & technology 44:5649-5654. 37.Sotiriou GA, Teleki A, Camenzind A, Krumeich F, Meyer A, Panke S, Pratsinis SE. 2011. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area. Chemical engineering journal 170:547-554. 38.Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. 2014. Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in pharmaceutical sciences 9:385-406. 39.Shirtcliffe N, Nickel U, Schneider S. 1999. Reproducible Preparation of Silver Sols with Small Particle Size Using Borohydride Reduction: For Use as Nuclei for Preparation of Larger Particles. Journal of colloid and interface science 211:122-129. 40.Hamedi S, Shojaosadati SA, Shokrollahzadeh S, Hashemi-Najafabadi S. 2014. Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity. World journal of microbiology & biotechnology 30:693-704. 41.Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L. 2012. Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. International journal of molecular sciences 13:466-476. 42.Luo Y, Shen S, Luo J, Wang X, Sun R. 2015. Green synthesis of silver nanoparticles in xylan solution via Tollens reaction and their detection for Hg(2+). Nanoscale 7:690-700. 43.Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R. 2006. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The journal of physical chemistry. B 110:16248-16253. 44.Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briede JJ, van Loveren H, de Jong WH. 2011. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810-9817. 45.Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. 2014. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Particle and fibre toxicology 11:11. 46.Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB. 2010. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4:319-330. 47.Kim S, Ryu DY. 2013. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. Journal of applied toxicology : JAT 33:78-89. 48.Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y. 2008. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and applied pharmacology 233:404-410. 49.Lopez-Carballo G, Higueras L, Gavara R, Hernandez-Munoz P. 2013. Silver ions release from antibacterial chitosan films containing in situ generated silver nanoparticles. Journal of agricultural and food chemistry 61:260-267. 50.Murugadoss A, Chattopadhyay A. 2008. A 'green' chitosan-silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnology 19:015603. 51.Kumari R, Dutta PK. 2010. Physicochemical and biological activity study of genipin-crosslinked chitosan scaffolds prepared by using supercritical carbon dioxide for tissue engineering applications. International journal of biological macromolecules 46:261-266. 52.Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. 2015. Alternative antimicrobial approach: nano-antimicrobial materials. Evidence-based complementary and alternative medicine : eCAM 2015:246012. 53.Song J, Kong H, Jang J. 2011. Bacterial adhesion inhibition of the quaternary ammonium functionalized silica nanoparticles. Colloids and surfaces. B, Biointerfaces 82:651-656. 54.Qie Y, Yuan H, von Roemeling CA, Chen Y, Liu X, Shih KD, Knight JA, Tun HW, Wharen RE, Jiang W, Kim BY. 2016. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Scientific reports 6:26269. 55.Rai MK, Deshmukh SD, Ingle AP, Gade AK. 2012. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. Journal of applied microbiology 112:841-852. 56.Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J. 2014. Optimization and Characterization of Silver Nanoparticle by Endophytic Fungi Penicillium sp. Isolated from Curcuma longa (Turmeric) and Application Studies against MDR E. coli and S. aureus. Bioinorganic chemistry and applications 2014:408021. 57.Yuan YG, Peng QL, Gurunathan S. 2017. Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy. International journal of molecular sciences 18. 58.Kumari M, Pandey S, Giri VP, Bhattacharya A, Shukla R, Mishra A, Nautiyal CS. 2017. Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria. Microbial pathogenesis 105:346-355. 59.Li Y, Lin Z, Zhao M, Xu T, Wang C, Hua L, Wang H, Xia H, Zhu B. 2016. Silver Nanoparticle Based Codelivery of Oseltamivir to Inhibit the Activity of the H1N1 Influenza Virus through ROS-Mediated Signaling Pathways. ACS applied materials & interfaces 8:24385-24393. 60.Asgary V, Shoari A, Baghbani-Arani F, Sadat Shandiz SA, Khosravy MS, Janani A, Bigdeli R, Bashar R, Cohan RA. 2016. Green synthesis and evaluation of silver nanoparticles as adjuvant in rabies veterinary vaccine. International journal of nanomedicine 11:3597-3605. 61.Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. 2011. Silver nanoparticles as potential antiviral agents. Molecules 16:8894-8918. 62.Vijayakumar PS, Prasad BL. 2009. Intracellular biogenic silver nanoparticles for the generation of carbon supported antiviral and sustained bactericidal agents. Langmuir : the ACS journal of surfaces and colloids 25:11741-11747. 63.Kataria M, Sethi M, Kaur J, Punia S, Kumar K. 2015. Formulation of Nanoparticles Against TB--A Review. Recent patents on inflammation & allergy drug discovery 9:120-127. 64.Cheng KM, Hung YW, Chen CC, Liu CC, Young JJ. 2014. Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification. Carbohydrate polymers 110:195-202. 65.Eising R, Signori AM, Fort S, Domingos JB. 2011. Development of catalytically active silver colloid nanoparticles stabilized by dextran. Langmuir : the ACS journal of surfaces and colloids 27:11860-11866. 66.Mayrhofer S, Domig KJ, Mair C, Zitz U, Huys G, Kneifel W. 2008. Comparison of broth microdilution, Etest, and agar disk diffusion methods for antimicrobial susceptibility testing of Lactobacillus acidophilus group members. Appl Environ Microbiol. 74:3745-3748. 67.Luber P, Bartelt E, Genschow E, Wagner J, Hahn H. 2003. Comparison of broth microdilution, E Test, and agar dilution methods for antibiotic susceptibility testing of Campylobacter jejuni and Campylobacter coli. J Clin Microbiol. 41:1062-1068. 68.Hsieh WS, Wang NY, Feng JA, Weng LC, Wu HH. 2014. Types and prevalence of carbapenem-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii complex in Northern Taiwan. Antimicrobial agents and chemotherapy 58:201-204. 69.Shankar SS, Rai A, Ahmad A, Sastry M. 2004. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of colloid and interface science 275:496-502. 70.Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. 2006. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology progress 22:577-583. 71.Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A. 2011. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids and surfaces. B, Biointerfaces 82:152-159. 72.Hema JA, Malaka R, Muthukumarasamy NP, Sambandam A, Subramanian S, Sevanan M. 2016. Green synthesis of silver nanoparticles using Zea mays and exploration of its biological applications. IET nanobiotechnology 10:288-294. 73.Oliveira MM, Ugarte D, Zanchet D, Zarbin AJ. 2005. Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. Journal of colloid and interface science 292:429-435. 74.Bardajee GR, Hooshyar Z, Rezanezhad H. 2012. A novel and green biomaterial based silver nanocomposite hydrogel: synthesis, characterization and antibacterial effect. Journal of inorganic biochemistry 117:367-373. 75.Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W. 2003. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457-1465. 76.Burkatovskaya M, Castano AP, Demidova-Rice TN, Tegos GP, Hamblin MR. 2008. Effect of chitosan acetate bandage on wound healing in infected and noninfected wounds in mice. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society 16:425-431. 77.Dai T, Tegos GP, Burkatovskaya M, Castano AP, Hamblin MR. 2009. Chitosan acetate bandage as a topical antimicrobial dressing for infected burns. Antimicrobial agents and chemotherapy 53:393-400. 78.Rhim JW, Hong SI, Park HM, Ng PK. 2006. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of agricultural and food chemistry 54:5814-5822. 79.He C, Hu Y, Yin L, Tang C, Yin C. 2010. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657-3666. 80.Cortez C, Tomaskovic-Crook E, Johnston AP, Scott AM, Nice EC, Heath JK, Caruso F. 2007. Influence of size, surface, cell line, and kinetic properties on the specific binding of A33 antigen-targeted multilayered particles and capsules to colorectal cancer cells. ACS nano 1:93-102. 81.Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M. 2012. Antibacterial properties of nanoparticles. Trends in biotechnology 30:499-511. 82.Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M. 2015. Silver nanoparticles as potential antibacterial agents. Molecules 20:8856-8874. 83.Nguyen VQ, Ishihara M, Mori Y, Nakamura S, Kishimoto S, Fujita M, Hattori H, Kanatani Y, Ono T, Miyahira Y, Matsui T. 2013. Preparation of size-controlled silver nanoparticles and chitosan-based composites and their anti-microbial activities. Bio-medical materials and engineering 23:473-483. 84.Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. 2008. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta biomaterialia 4:707-716. 85.Wang L, Hu C, Shao L. 2017. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine 12:1227-1249. 86.Cavassin ED, de Figueiredo LF, Otoch JP, Seckler MM, de Oliveira RA, Franco FF, Marangoni VS, Zucolotto V, Levin AS, Costa SF. 2015. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. Journal of nanobiotechnology 13:64. 87.Khameneh B, Diab R, Ghazvini K, Fazly Bazzaz BS. 2016. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microbial pathogenesis 95:32-42. 88.Fakhri A, Tahami S, Naji M. 2017. Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens. Journal of photochemistry and photobiology. B, Biology 169:21-26. 89.Abdel Rahim KA, Ali Mohamed AM. 2015. Bactericidal and Antibiotic Synergistic Effect of Nanosilver Against Methicillin-Resistant Staphylococcus aureus. Jundishapur journal of microbiology 8:e25867. 90.Akram FE, El-Tayeb T, Abou-Aisha K, El-Azizi M. 2016. A combination of silver nanoparticles and visible blue light enhances the antibacterial efficacy of ineffective antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). Annals of clinical microbiology and antimicrobials 15:48. 91.Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK. 2009. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Letters in applied microbiology 48:173-179. 92.Wan G, Ruan L, Yin Y, Yang T, Ge M, Cheng X. 2016. Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii. International journal of nanomedicine 11:3789-3800.
|