跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/07 14:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳映賜
研究生(外文):CHEN,YING-CI
論文名稱:熱整合變壓蒸餾系統分離二元勻相最大共沸混合物之經濟可行性
論文名稱(外文):Economic Feasibility of Heat Integration Pressure-Swing Distillation System for Separation of Binary Homogeneous Maximum Azeotropic Mixture
指導教授:薛梓湖薛梓湖引用關係
指導教授(外文):HSIUE,TZU-HU
口試委員:薛梓湖吳友平蔡美慧
口試委員(外文):HSIUE,TZU-HUWU,YO-PINGTSAI,MEI-HUI
口試日期:2017-07-13
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:140
中文關鍵詞:變壓蒸餾最大共沸混合物外部熱整合UNIQUAC熱泵
外文關鍵詞:pressure-swing distillationmaximum-azeotrope mixturesexternal thermal integrationUNIQUACheat pump
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
Luyben於2013年研究變壓蒸餾分離丙酮-氯仿之二元勻相最大共沸混合物,主要是利用壓力變化使其共沸點偏移,使高壓塔蒸餾出高純度的丙酮,低壓塔蒸餾出高純度的氯仿。為了處理不同於Luyben的進料濃度50 mol %之丙酮和50 mol %之氯仿,本研究將自行設計之進料濃度為25.25 mol %之丙酮和74.75 mol %之氯仿,由原本高壓塔進料位置移至低壓塔進料,此為低壓塔進料設計之研究,並探討高壓塔進料設計與低壓塔進料設計之高壓塔壓力變化與成本差距,此為壓力最適化研究。由於傳統蒸餾使用冷凝器和再沸器會耗費大量能源,以結合熱交換器之外部熱整合與熱泵輔助蒸餾設計之概念,進而取代傳統型冷凝器及再沸器,將多餘之熱能整合再利用,以達節省能源為目的。本研究使用Aspen Plus V8.8商業用軟體,在穩定狀態下UNIQUAC之熱力學模式進行模擬,將高壓塔進料設計與低壓塔進料設計之壓力最適化、外部熱整合、熱泵輔助蒸餾設計之模擬結果用APEA 進行經濟評估,將其總年成本與二氧化碳排放量進行比較。
模擬結果顯示,壓力最適化之11 atm傳統蒸餾塔相對於Luyben 10 atm傳統蒸餾塔,總年成本節省了每年336,800美元,約節省了3.4 %。外部熱整合設計相對於傳統蒸餾塔可以節省總年成本每年2,029,133美元,約節省了21.2 %,而熱泵輔助蒸餾設計之底部驟沸設計與蒸氣再壓縮設計較傳統蒸餾塔分別可以減少操作成本為每年3,425,480美元、每年1,690,700美元,大約減少43.8 %、21.7 %的操作成本,但熱泵輔助蒸餾設計的壓縮機設備成本太昂貴,導致底部驟沸與蒸氣再壓縮之總年成本較傳統塔為高。最後比較二氧化碳碳排放量,高壓塔進料設計之11 atm 外部熱整合系統,相較於Luyben的設計減少了每年2.249×107公斤二氧化碳,降低了約45.7 %。

Pressure swing distillation,which is separation of acetone-chloroform of binary homogeneous maximum azeotropic mixture that mainly use its azeotropic point shift when the pressure changed by Luyben’s study in 2013. High purity acetone is distillated with the high pressure column, and high purity chloroform is distillated with low pressure column. This study is designed with feed of concentration of 25.25 mol %- acetone and 74.75 mol %- chloroform in order to compare the different with Luyben's feed of concentration of 50 mol %- acetone and 50 mol %- chloroform. This is a design of low pressure tower feed study that feed of high pressure column position will change to the lower pressure tower. This is the pressure which optimized of the study that explored the high pressure column pressure changed and cost gap. The traditional distillation consumed a lot of energy because of it used of condensers and reboilers. To replace the traditional condenser and reboiler with the concept of external thermal integration and heat pump assisting distillation, combined with the use of excess heat energy for the purpose of saving energy, may lead to save more energy. In this study, the commercial software of Aspen Plus V8.8 was used. The thermodynamic model,UNIQUAC,was used as in a steady state. The results were economically evaluated using APEA to the design of high pressure column feed and the design of the low pressure column feed with the simulation of pressure which optimized , external thermal integration,heat pump assisted distillation design. Make to compare its total annual cost with carbon dioxide emissions.
The simulation result shows that the pressure-optimized conventional distillation tower compared to Luyben 10 atm conventional distillation towers will save the annual cost of $ 336,800 per year, will save about 3.4 %. The design of external thermal integration relative to the traditional distillation towers that can save the total annual cost of $ 2,029,133 per year, saving about 21.2%. While the heat pump assisted distillation design of the bottom flashing design and vapor recompression compared to conventional distillation towers can reduce operating costs per year $ 3,425,480, $ 1,690,700 per year, approximately 43.8%, 21.7% operating costs of reduction. However, the cost of the compressor equipment design of heat pump assisted distillation is too expensive that resulting in a higher total cost of bottom flashing and vapor recompression than the traditional tower. Finally,it’s comparing the carbon dioxide emissions which the design of high pressure tower feed of 11 atm external thermal integration system that compared to Luyben's design reduced by 2.249 × 107 kg of carbon dioxide per year, reduced by about 45.7%.

目錄
摘要 I
ABSTRACT II
致謝 IV
目錄 VI
圖目錄 XII
表目錄 XVI
符號表 XX
第一章 緒論 1
1-1前言 1
1-2文獻回顧 3
1-2-1 共沸混合物 3
1-2-2 變壓蒸餾 4
1-2-3 低壓塔進料設計 8
1-2-4 外部熱整合 10
1-2-5 熱泵 14
1-3研究動機與目的 19
1-4組織章節 20
第二章 原理與架構 21
2-1前言 21
2-2原理 21
2-2-1 共沸混合物 21
2-2-2 變壓蒸餾 26
2-2-3 外部熱整合設計 31
2-2-4 熱泵設計 33
2-2-5 蒸餾塔質量平衡 35
2-2-6 熱力學模式 38
2-3經濟估算公式 42
2-3-1 設備成本 42
2-3-1-1 蒸餾塔 43
2-3-1-2 再沸器 44
2-3-1-3 冷凝器 45
2-3-1-4 壓縮機 46
2-3-2 操作成本 46
2-3-2-1 冷卻水成本 46
2-3-2-2 蒸汽成本 47
2-3-2-3 電力成本 47
2-3-3 總年成本 (TAC) 47
2-4研究架構 47
第三章 二元勻相最大共沸混合物之熱整合設計與模擬 49
3-1 前言 49
3-2 Luyben 文獻設計與模擬 52
3-2-1 Luyben 傳統變壓蒸餾 52
3-2-2 Luyben 外部熱整合之模擬設計 54
3-3 高壓塔壓力最適化之高壓塔進料設計與低壓塔進料設計 56
3-3-1 傳統變壓蒸餾之高壓塔進料設計高壓塔壓力最適化 57
3-3-2 傳統變壓蒸餾之低壓塔進料設計高壓塔壓力最適化 59
3-4 外部熱整合設計之高壓塔進料設計與低壓塔進料設計 62
3-4-1 外部熱整合設計之高壓塔進料設計 62
3-4-2 外部熱整合設計之低壓塔進料設計 64
3-5 熱泵設計與模擬之高壓塔進料設計與低壓塔進料設計 67
3-5-1 熱泵輔助蒸餾設計之底部驟沸於高壓塔 68
3-5-2 熱泵輔助蒸餾設計之蒸氣再壓縮於低壓塔 74
3-5-3 熱泵輔助蒸餾設計之合併底部驟沸與蒸氣再壓縮設計 79
第四章 結果與討論 84
4-1 高壓塔壓力最適化之高壓塔進料設計與低壓塔進料設計 84
4-1-1 傳統變壓蒸餾之高壓塔進料設計之高壓塔壓力最適化 84
4-1-1-1傳統變壓蒸餾之高壓塔進料設計之高壓塔壓力最適化 85
設備成本 85
4-1-1-2 傳統變壓蒸餾之高壓塔進料設計之高壓塔壓力最適化
操作成本 86
4-1-1-3 傳統變壓蒸餾之高壓塔進料設計之高壓塔壓力最適化
總年成本 88
4-1-2 傳統變壓蒸餾之低壓塔進料設計之高壓塔壓力最適化 88
4-1-2-1 傳統變壓蒸餾之低壓塔進料設計之高壓塔壓力最適化
設備成本 89
4-1-2-2 傳統變壓蒸餾之低壓塔進料設計之高壓塔壓力最適化
操作成本 90
4-1-2-3 傳統變壓蒸餾之低壓塔進料設計之高壓塔壓力最適化
總年成本 91
4-2 外部熱整合設計之高壓塔進料設計與低壓塔進料設計 92
4-2-1 外部熱整合設計之高壓塔進料設計 92
4-2-1-1 外部熱整合設計之高壓塔進料設計設備成本 93
4-2-1-2 外部熱整合設計之高壓塔進料設計操作成本 94
4-2-1-3 外部熱整合設計之高壓塔進料設計總年成本 95
4-2-2 外部熱整合設計之低壓塔進料設計 96
4-2-2-1 外部熱整合設計之低壓塔進料設計設備成本 96
4-2-2-2 外部熱整合設計之低壓塔進料設計操作成本 97
4-2-2-3 外部熱整合設計之低壓塔進料設計總年成本 98
4-3 熱泵輔助蒸餾設計之高壓塔進料設計與低壓塔進料設計 99
4-3-1 熱泵輔助蒸餾設計之高壓塔進料設計 99
4-3-1-1 熱泵輔助蒸餾設計之高壓塔進料設計設備成本 100
4-3-1-2 熱泵輔助蒸餾設計之高壓塔進料設計操作成本 101
4-3-1-3 熱泵輔助蒸餾設計之高壓塔進料設計總年成本 103
4-3-2 熱泵輔助蒸餾設計之低壓塔進料設計 104
4-3-2-1 熱泵輔助蒸餾設計之低壓塔進料設計設備成本 104
4-3-2-2 熱泵輔助蒸餾設計之低壓塔進料設計操作成本 105
4-3-2-3 熱泵輔助蒸餾設計之低壓塔進料設計總年成本 106
4-4 二氧化碳排放量 121
第五章 結論與未來展望 126
5-1 總設備成本 126
5-2 總操作成本 128
5-3 總年成本 131
5-4 二氧化碳排放量 133
5-5 未來展望 133
參考文獻 136
自述與著作發表 140


參考文獻
1.Luyben, W.L., Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation. Computers & Chemical Engineering, 2013. 50: p. 1-7.
2. 何宗仁,化工製程蒸餾單元熱能整合技術,工業技術研究院化學工業研究所
3.Kiss, A.A. and D.J.P.C. Suszwalak, Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Separation and Purification Technology, 2012. 86: p. 70-78.
4.Lladosa, E., J.B. Montón, and M. Burguet, Separation of di-n-propyl ether and n-propyl alcohol by extractive distillation and pressure-swing distillation: Computer simulation and economic optimization. Chemical Engineering and Processing: Process Intensification, 2011. 50(11–12): p. 1266-1274.
5.Chianese, A. and F. Zinnamosca, Ethanol dehydration by azeotropic distillation with a mixed-solvent entrainer. The Chemical Engineering Journal, 1990. 43(2): p. 59-65.
6.Muñoz, R., et al., Separation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation: Simulation and optimization. Separation and Purification Technology, 2006. 50(2): p. 175-183.
7.Modla, G., P. Lang, and F. Denes, Feasibility of separation of ternary mixtures by pressure swing batch distillation. Chemical Engineering Science, 2010. 65(2): p. 870-881.
8.Knapp, J.P. and M.F. Doherty, A new pressure-swing-distillation process for separating homogeneous azeotropic mixtures.Industrial & Engineering Chemistry Research, 1992. 31(1): p. 346-357.
9.Hamad, A. and R.F. Dunn, Energy Optimization of Pressure-Swing Azeotropic Distillation Systems. Industrial & Engineering Chemistry Research, 2002. 41(24): p. 6082-6093.
10.Luyben, W.L., Comparison of Pressure-Swing and Extractive-Distillation Methods for Methanol-Recovery Systems in the TAME Reactive-Distillation Process. Industrial & Engineering Chemistry Research, 2005. 44(15): p. 5715-5725.
11.Luyben, W.L., Control of the Maximum-Boiling Acetone/Chloroform Azeotropic Distillation System. Industrial & Engineering Chemistry Research, 2008. 47(16): p. 6140-6149.
12.Modla, G., P. Lang, and F. Denes, Feasibility of separation of ternary mixtures by pressure swing batch distillation. Chemical Engineering Science, 2010. 65(2): p. 870-881.
13.Luyben, W.L., Pressure-Swing Distillation for Minimum- and Maximum-Boiling Homogeneous Azeotropes. Industrial & Engineering Chemistry Research, 2012. 51(33): p. 10881-10886.
14.柯志穎,設計分離二元勻相最大共沸混合物於變壓蒸餾系統之最適化操作.國立宜蘭大學化學工程與材料工程學系碩士論文,2015.
15.Luyben, W.L., Methanol/Trimethoxysilane Azeotrope Separation Using Pressure-Swing Distillation. Industrial & Engineering Chemistry Research, 2014. 53(13): p. 5590-5597.
16.Abu-Eishah, S.I. and W.L. Luyben, Design and control of a two-column azeotropic distillation system. Industrial & Engineering Chemistry Process Design and Development, 1985. 24(1): p. 132-140.
17.Gadalla, M., et al., Reducing CO2 emissions of internally heat-integrated distillation columns for separation of close boiling mixtures. Energy, 2006. 31(13): p. 2409-2417.
18.Huang, K., et al., Adding rectifying/stripping section type heat integration to a pressure-swing distillation (PSD) process. Applied Thermal Engineering, 2008. 28(8–9): p. 923-932.
19. Modla, G. and P. Lang, Separation of an Acetone−Methanol Mixture by Pressure-Swing Batch Distillation in a Double-Column System with and without Thermal Integration. Industrial & Engineering Chemistry Research, 2010. 49(8): p. 3785-3793.
20. Jana, A.K., Heat integrated distillation operation. Applied Energy,2010. 87(5): p. 1477-1494.
21. Harwardt, A. and W. Marquardt, Heat-integrated distillation columns: Vapor recompression or internal heat integration? AIChE Journal, 2012. 58(12): p. 3740-3750.
22. 黃惠昕,二元勻相共沸混合物於變壓蒸餾系統之熱整合設計.國立宜蘭大學化學工程與材料工程學系碩士論文,2014.
23. Ferre, J.A., F. Castells, and J. Flores, Optimization of a distillation column with a direct vapor recompression heat pump. Industrial & Engineering Chemistry Process Design and Development, 1985. 24(1): p. 128-132.
24. Annakou, O. and P. Mizsey, Rigorous investigation of heat pump assisted distillation. Heat Recovery Systems and CHP, 1995. 15(3): p. 241-247.
25. Gao, X., et al., Simulation and Optimization of Distillation Processes for Separating the Methanol–Chlorobenzene Mixture with Separate Heat-Pump Distillation. Industrial & Engineering Chemistry Research, 2013. 52(33): p. 11695-11701.
26. Kasiri,Shahandeh, H., et al., Economic optimization of heat pump-assisted distillation columns in methanol-water separation. Energy, 2015. 80: p. 496-508.
27. 駱竑儒,熱泵輔助變壓蒸餾系統分離二元勻相最小共沸混合物之經濟可行性.國立宜蘭大學化學工程與材料工程學系碩士論文.2016
28. Hilmen, E.-K., Separation of Azeotropic Mixtures:Tools for Analysis and Studies on Batch Distillation Operation. 2000.
29. Widagdo, S. and W.D. Seider, Journal review. Azeotropic distillation. AIChE Journal, 1996. 42(1): p. 96-130.
30. Wu, Y.-C. and I.L. Chien, Design and Control of Heterogeneous Azeotropic Column System for the Separation of Pyridine and Water. Industrial & Engineering Chemistry Research, 2009. 48(23): p. 10564-10576.
31. Chien, I.L., K.-L. Zeng, and H.-Y. Chao, Design and Control of a Complete Heterogeneous Azeotropic Distillation Column System. Industrial & Engineering Chemistry Research, 2004. 43(9): p. 2160-2174.
32. Aspen Technology, I., Aspen Physical Property System V8.8. 2016.
33. Wang, Y., P. Cui, and Z. Zhang, Heat-Integrated Pressure-Swing-Distillation Process for Separation of Tetrahydrofuran/Methanol with Different Feed Compositions. Industrial & Engineering Chemistry Research, 2014. 53(17): p. 7186-7194.
34. Luyben, W.L., Design and Control of a Fully Heat-Integrated
Pressure-Swing Azeotropic Distillation System. Industrial & Engineering Chemistry Research, 2008. 47(8): p. 2681-2695.
35. Mukherjee, R., Effectively Design shell-and-tube heat exchangers. CHEMICAL ENGINEERING PROGRESS, 1998.
36. Fonyo, Z. and N. Benkö, Comparison of Various Heat Pump Assisted Distillation Configurations. Chemical Engineering Research and Design, 1998. 76(3): p. 348-360.
37. Sandler, S.I., chemistry biochemistry and engineering thermodynamics. John Wiley & Sons, 2006. 4E: p. 399-575.
38.Filho, P., A modified UNIQUAC equation for mixtures containing self-associating compounds. Brazilian Journal of Chemical Engineering, 2005. 22(03): p. 471 - 487.
39.Koretsky, M.D., Engineering and Chemical Thermodynamics, 2nd Edition. Wiley, 2012: p. 441-447.
40. Douglas, J.M., Conceptual design of chemical processes. McGraw-Hill, 1988.
41.Tang, Y.-T., et al., Design of reactive distillations for acetic acid esterification. AIChE Journal, 2005. 51(6): p. 1683-1699.
42.Hsu, P.H.-C., Design and Control of Separating Various Azeotropic Mixtures via an Extractive Divided-Wall Column. 2012.
41.Luyben, W.L. and I.-L. Chien, Design and Control of Distillation Systems for Separating Azeotropes. John Wiley & Sons, 2011.
42.Shen, Y.H., et al., Design and control of biodiesel production processes with phase split and recycle in the reactor system. Journal of the Taiwan Institute of Chemical Engineers, 2011. 42(5): p. 741-750.
43.Lin, Y.-D., et al., Process alternatives for methyl acetate conversion using reactive distillation. 1. Hydrolysis. Chemical Engineering Science, 2008. 63(6): p. 1668-1682.
44.Marshall & Swift Equipment Cost Index Chemical Engineering, 2011.
45. Aspen Technology, I., Aspen Process Economic Analyzer V8.8. 2016.
46. 中技社節能技術發展中心, 蒸汽鍋爐高效率作業技術手冊.
47. 經濟部能源局, http://web3.moeaboe.gov.tw/ECW/populace/home/Home.aspx


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top