跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/18 19:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林玉晟
研究生(外文):LIN, YU-CHENG
論文名稱:核酸轉導蛋白應用在豬環狀病毒第二型DNA疫苗之開發
論文名稱(外文):Development of Porcine Circovirus 2 DNA Vaccine Combined with Cell-Penetrating Peptides
指導教授:郭村勇
指導教授(外文):KUO, TSUN-YUNG
口試委員:孫忠男陳裕森
口試委員(外文):SUN, CHUNG-NANCHEN, YU-SAN
口試日期:2017-01-24
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:生物技術與動物科學系
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:56
中文關鍵詞:豬環狀病毒第二型DNA疫苗細胞轉導胜肽
外文關鍵詞:Porcine Circovirus type 2DNA vaccineCell-penetrating peptides
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
細胞轉導胜肽能協助親水性的大分子通過細胞膜,並已應用在各方面,如:細胞轉染、癌症治療、DNA疫苗開發等。豬環狀病毒第二型所引發的離乳後多系統消耗性綜合症被視為是影響豬隻產業的重大疾病之一,目前商品化疫苗多為次單位疫苗及死毒疫苗。上述疫苗主要是以體液性免疫來減少豬隻感染後造成的傷害,但難以清除病原。DNA疫苗可同時誘發出細胞性免疫及體液性免疫。本研究是以細胞轉導胜肽為基礎來提升PCV2 DNA疫苗之免疫效力。結果證明,本論文設計之細胞轉導胜肽可將綠螢光基因pEGFP-N1轉染至中國倉鼠卵巢細胞(CHO cell)中表現出綠螢光蛋白,證實其具有核酸轉導之能力。小鼠模式的免疫實驗中,發現僅DNA疫苗佐以細胞轉導胜肽免疫小鼠後,無法誘導抗體生成,但是若補強注射微量的不活化病毒抗原,則在抗體生成、中和抗體以及淋巴細胞增生上,都比僅施打DNA疫苗的組別及僅施打不活化病毒抗原快且高。本研究證實本研究所設計的兩種核酸轉導胜肽,確實能增強小鼠對於PCV2 DNA疫苗所帶來的免疫效力。
Many kinds of hydrophilic large molecules could be delivered into cells by cell-penetrating peptides (CPPs). CPPs had been used in many kinds applications, including cell transfection, cancer-targeting therapy and DNA vaccine, and so on. Porcine circovirus type 2 (PCV2), the causative agent of postweaning multisystemic wasting syndrome (PMWS), is one of the most important diseases affecting swine industry. The commercial PCV2 vaccines are either inactivated or subunit vaccine. These vaccines can induce humoral immunity to against the injury of virus, but the circulating PCV2 cannot be cleaned. Since DNA vaccine can induce both humoral and cell-mediated immunity, in this study, the cell-penetrating peptide was applied to improve the efficacy of PCV2 DNA vaccine. The cell-penetrating peptides designed in this study are able to deliver pEGFP-N1 into China hamster ovary (CHO) cell and the GFP protein will be expressed. The CPP-DNA vaccine cannot induce anti-PCV2 antibody; however, it will result in higher level of anti-PCV2 antibody, neatralizing antibody and PCV2-induced lymphocyte proliferation when booster with low dose inactivated PCV2 antigen in mice model. These results demonstrate that CPP can enhance the efficacy of PCV2 DNA vaccine via humoral and cell-mediated immunity.
第一章、 前言 - 5 -
第二章、 文獻探討 - 6 -
2.1、豬環狀病毒歷史 - 6 -
2.2、PCV2與相關疾病介紹 - 6 -
2.2.1、生殖障礙 - 7 -
2.2.2、離乳後多系統消耗性綜合症 - 7 -
2.2.3、豬皮膚炎腎病症候群 - 7 -
2.2.4、豬呼吸道疾病綜合症 - 7 -
2.3、PCV2疫苗開發 - 8 -
2.3.1、Circovac(Merial) - 8 -
2.3.2、Ingelvac CircoFLEX® (Boehringer Ingelheim)、 Circumvent (Intervet/Merck)、Porcillis PCV (Schering-Plough/Merck) - 8 -
2.3.3、Fostera™ PCV (Fort Dodge Pfizer) - 8 -
2.4、DNA疫苗介紹 - 9 -
2.5、DNA疫苗誘導細胞免疫相關機制 - 9 -
2.6、動物DNA疫苗之開發 - 10 -
2.7、DNA疫苗免疫方式之策略 - 10 -
2.7.1、物理性傳遞-基因槍 - 10 -
2.7.2、物理性傳遞-超聲波 - 10 -
2.7.3、物理性傳遞-電穿孔 - 10 -
2.7.4、非物理性傳遞-病毒載體 - 11 -
2.7.5、非物理性傳遞-微脂粒 - 11 -
2.7.6、非物理性傳遞-陽離子聚合物(多醣) - 11 -
2.7.7、非物理性傳遞-細胞轉導胜肽 - 11 -
2.8、細胞轉導胜肽應用於DNA疫苗 - 12 -
2.8.1、細胞轉導胜肽發現 - 12 -
2.8.2、細胞轉導胜肽機制 - 12 -
2.8.3、細胞轉導胜肽傳遞DNA - 12 -
2.9、構築PCV2 DNA疫苗 - 13 -
2.10、構築核酸轉導胜肽 - 14 -
2.11、優化DNA分子與核酸轉導胜肽結合之作用環境 - 15 -
第三章、 實驗策略 - 16 -
第四章、 材料與方法 - 17 -
4.1、構築PCV2 DNA疫苗 - 17 -
4.1.1以PCR法增幅Gaussia luciferase + HBc148 + rPCV2片段 - 17 -
4.1.2以洋菜膠電泳分析PCR增幅結果 - 17 -
4.1.3純化PCR產物 - 17 -
4.2、構築Gaussia luciferase + HBc148 + rPCV2 dNLS/pVAX1 重組載體 - 18 -
4.3、接合反應 - 18 -
4.4、勝任細胞的製備 - 18 -
4.5、轉形作用 - 19 -
4.6、重組質體的挑選與確認 - 19 -
4.7、大量製備質體DNA - 19 -
4.8、人工合成細胞轉導胜肽 - 20 -
4.9、SDS-PAGE確認合成胜肽之大小 - 20 -
4.10、蛋白質定量 - 20 -
4.11、洋菜膠電泳延阻試驗 - 21 -
4.12、細胞轉導胜肽細胞轉導效率分析 - 21 -
4.12.1對照組 - 21 -
4.12.2轉染pEGFP-N1(1× DPBS) - 21 -
4.12.3轉染pEGFP-N1 (10 mM CaCl2) - 21 -
4.12.4轉染Gaussia luciferase + HBc148 + rPCV2 dNLS/pVAX1組(1× DPBS) - 22 -
4.12.5轉染Gaussia luciferase + HBc148 + rPCV2 dNLS/pVAX1組(10 mM CaCl2) - 22 -
4.13、以免疫螢光染色法確認DNA疫苗可於轉染細胞內表現抗原 - 22 -
4.14、以流式細胞儀分析DNA質體之轉染效率 - 23 -
4.15、小鼠免疫試驗 - 23 -
4.15.1 DNA疫苗配製 - 23 -
4.15.2 小鼠免疫日程 - 23 -
4.15.3 以酵素連結免疫吸附分析法檢測小鼠抗PCV2之抗體 - 24 -
4.15.4中和抗體力價(VNT90)判讀 - 24 -
4.15.5小鼠脾臟細胞增生試驗 - 25 -
第五章、 結果 - 26 -
5.1、構築PCV2 DNA疫苗 - 26 -
5.2、 SDS-PAGE分析合成胜肽 - 26 -
5.3、細胞轉導胜肽與DNA疫苗結合能力測試 - 26 -
5.4、細胞轉導胜肽轉染DNA疫苗效率測試 - 27 -
5.5、以ELISA檢測小鼠免疫DNA疫苗後之血清抗體力價 - 27 -
5.6、分析小鼠血清中抗PCV2 的中和抗體力價 - 27 -
5.7、以PCV2不活化病毒刺激特異性脾臟細胞增生 - 27 -
第六章、 討論 - 28 -
第七章、 附錄 - 32 -
第八章、 參考文獻 - 52 -
表目錄

表一、選殖DNA疫苗之特異性引子序列 - 32 -
表二、合成胜肽之胺基酸序列 - 32 -
表三、細胞轉導胜肽細胞轉導效率分析之組別及配方 - 32 -

圖目錄

圖一、理想的DNA疫苗免疫機制 - 33 -
圖二、至2013年為止,於市面上發行的四種DNA疫苗 - 34 -
圖三、細胞穿透胜肽幫助核酸進入細胞膜及核膜示意圖 - 34 -
圖四、構築DNA疫苗Gaussia luciferase + HBc148 + rPCV2 dNLS/pVAX1示意圖 - 35 -
圖五、以PCR法增幅PCV2 ORF2 片段之電泳分析圖 - 35 -
圖六、酵素切割確認 (Gaussia luciferase + HBc148 + rPCV2 dNLS/pVAX1) - 36 -
圖七、DNA疫苗(Gaussia luciferase + HBc148 + rPCV2 dNLS/pVAX1)定序結果 - 39 -
圖八、分析胺基酸大小 - 40 -
圖九、以EMSA 法測試合成胜肽Antp-Mu-NLS與DNA之結合能力 - 41 -
圖十、以EMSA 法測試合成胜肽Antp-Mu與DNA之結合能力 - 42 -
圖十一、以EMSA 法測試合成胜肽TAT-Mu-NLS與DNA之結合能力 - 43 -
圖十二、以EMSA 法測試合成胜肽TAT-Mu與DNA之結合能力 - 44 -
圖十三、合成胜肽可促進DNA分子進入目標細胞之分析圖(A) - 45 -
圖十四、合成胜肽促進DNA分子進入真核細胞並表現抗原之分析圖(A) - 46 -
圖十五、合成胜肽佐以氯化鈣可促進DNA分子進入目標細胞之分析圖(B) - 47 -
圖十六、合成胜肽佐以氯化鈣促進DNA分子進入真核細胞之分析圖(B) - 48 -
圖十七、BALB/c小鼠DNA疫苗及PCV2不活化疫苗補強免疫日程 - 48 -
圖十八、以ELISA法檢測免疫後小鼠體內抗PCV2之特異性抗體力價 - 48 -
圖十九、免疫後小鼠體內抗PCV2之中和抗體力價分析圖 - 51 -
圖二十、免疫後小鼠脾臟以增生試驗分析圖 - 51 -


Conference Proceedings
1Harding, J. in Proc. Am. Assoc. Swine Pract. 503.
Generic
1Josephson, G. & Charbonneau, G. (AMER ASSOC SWINE PRACTITIONERS 902 1ST AVE, PERRY, IA 50220-1703 USA, 2001).
Journal Article
1Alhakamy, N. A., Dhar, P. & Berkland, C. J. Charge Type, Charge Spacing, and Hydrophobicity of Arginine-Rich Cell-Penetrating Peptides Dictate Gene Transfection. Molecular pharmaceutics 13, 1047-1057 (2016).
2Allan, G. M. & Ellis, J. A. Porcine circoviruses: a review. Journal of Veterinary Diagnostic Investigation 12, 3-14 (2000).
3Baekbo, P., Kristensen, C. & Larsen, L. Porcine circovirus diseases: a review of PMWS. Transboundary and emerging diseases 59, 60-67 (2012).
4Baoum, A. A. & Berkland, C. J. Calcium condensation of DNA complexed with cell-penetrating peptides offers efficient, noncytotoxic gene delivery. Journal of pharmaceutical sciences 100, 1637-1642, doi:10.1002/jps.22407 (2011).
5Bergman, P. et al. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine 24, 4582-4585 (2006).
6Blanchard, P. et al. Protection of swine against post-weaning multisystemic wasting syndrome (PMWS) by porcine circovirus type 2 (PCV2) proteins. Vaccine 21, 4565-4575 (2003).
7Bolhassani, A., Safaiyan, S. & Rafati, S. Improvement of different vaccine delivery systems for cancer therapy. Molecular Cancer 10, 3, doi:10.1186/1476-4598-10-3 (2011).
8Brooks, N. A., Pouniotis, D. S., Tang, C.-K., Apostolopoulos, V. & Pietersz, G. A. Cell-penetrating peptides: application in vaccine delivery. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1805, 25-34 (2010).
9Brown, M. et al. Preliminary characterization of novel amino acid based polymeric vesicles as gene and drug delivery agents. Bioconjugate chemistry 11, 880-891 (2000).
10Chae, C. A review of porcine circovirus 2-associated syndromes and diseases. The Veterinary Journal 169, 326-336, doi:http://dx.doi.org/10.1016/j.tvjl.2004.01.012 (2005).
11Chae, C. Commercial porcine circovirus type 2 vaccines: Efficacy and clinical application. The Veterinary Journal 194, 151-157, doi:http://dx.doi.org/10.1016/j.tvjl.2012.06.031 (2012).
12Condon, C., Watkins, S. C., Celluzzi, C. M., Thompson, K. & Falo, L. D. DNA–based immunization by in vivo transfection of dendritic cells. Nature medicine 2, 1122-1128 (1996).
13Daft, B., Nordhausen, R., Latimer, K. & Niagro, F. Interstitial pneumonia and lymphadenopathy associated with circoviral infection in a six-week-old pig. Proc Am Assoc Vet Lab Diag 39, 32 (1996).
14Davidson, A. H. et al. Immunologic responses to West Nile virus in vaccinated and clinically affected horses. Journal of the American Veterinary Medical Association 226, 240-245 (2005).
15Deshayes, S., Morris, M., Divita, G. & Heitz, F. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cellular and Molecular Life Sciences CMLS 62, 1839-1849 (2005).
16Done, S., Gresham, A., Potter, R. & Chennells, D. PMWS and PDNS-two recently recognised diseases of pigs in the UK. In Practice (0263841X) 23 (2001).
17Doria-Rose, N. A. & Haigwood, N. L. DNA vaccine strategies: candidates for immune modulation and immunization regimens. Methods 31, 207-216 (2003).
18Drolet, R., Thibault, S., D'Allaire, S., Thomson, J. R. & Done, S. H. Porcine dermatitis and nephropathy syndrome (PDNS): an overview of the disease. Swine Health and Production 7, 283-286 (1999).
19Dufour, V. DNA vaccines: new applications for veterinary medicine. Veterinary Sciences Tomorrow 1, 1-19 (2001).
20Elliott, G. & O'Hare, P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88, 223-233 (1997).
21Ellis, J. et al. Isolation of circovirus from lesions of pigs with postweaning multisystemic wasting syndrome. The Canadian veterinary journal 39, 44 (1998).
22Fraile, L. et al. Inactivated PCV2 one shot vaccine applied in 3-week-old piglets: improvement of production parameters and interaction with maternally derived immunity. Vaccine 30, 1986-1992 (2012).
23Frankel, A. D. & Pabo, C. O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189-1193 (1988).
24Garver, K. A., LaPatra, S. E. & Kurath, G. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon. Diseases of aquatic organisms 64, 13-22 (2005).
25Goldfarb, D. S., Gariépy, J., Schoolnik, G. & Kornberg, R. D. Synthetic peptides as nuclear localization signals. Nature 322, 641-644 (1985).
26Green, M. & Loewenstein, P. M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55, 1179-1188 (1988).
27Gresham, A., Allan, G., McNeilly, F. & Kennedy, S. Links between post-weaning multisystemic wasting syndrome and porcine dermatitis nephropathy syndrome. Pig Journal 47, 155-159 (2001).
28Guo, X. Q. et al. Enhancement of the immunogenicity of a porcine circovirus type 2 DNA vaccine by a recombinant plasmid coexpressing capsid protein and porcine interleukin‐6 in mice. Microbiology and immunology 59, 174-180 (2015).
29Guo, Z., Peng, H., Kang, J. & Sun, D. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomedical Reports 4, 528-534, doi:10.3892/br.2016.639 (2016).
30Harding, J. Post-weaning multisystemic syndrome: preliminary epidemiology and clinical findings. Proceedings. Western Can. Assoc. Swine Pract., P 21 (1996).
31Harms, P. A., Halbur, P. G. & Sorden, S. D. Three cases of porcine respiratory disease complex associated with porcine circovirus type 2 infection. Journal of Swine Health and Production 10, 27-32 (2002).
32Joliot, A., Pernelle, C., Deagostini-Bazin, H. & Prochiantz, A. Antennapedia homeobox peptide regulates neural morphogenesis. Proceedings of the National Academy of Sciences 88, 1864-1868 (1991).
33Karpati, G., Pouliot, Y. & Carpenter, S. Expression of immunoreactive major histocompatibility complex products in human skeletal muscles. Annals of neurology 23, 64-72 (1988).
34Kim, J., Chung, H.-K. & Chae, C. Association of porcine circovirus 2 with porcine respiratory disease complex. The Veterinary Journal 166, 251-256 (2003).
35Kundig, T. M., Bachmann, M. F., DiPaolo, C. & Simard, J. J. Fibroblasts as efficient antigen-presenting cells in lymphoid organs. Science 268, 1343 (1995).
36Kutzler, M. A. & Weiner, D. B. DNA vaccines: ready for prime time? Nature Reviews Genetics 9, 776-788 (2008).
37Ladekjaer-Mikkelsen, A. et al. Transplacental infection with PCV-2 associated with reproductive failure in a gilt. Veterinary Record (2001).
38Lam, A. & Dean, D. Progress and prospects: nuclear import of nonviral vectors. Gene therapy 17, 439-447 (2010).
39Lanford, R. E., Kanda, P. & Kennedy, R. C. Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 46, 575-582 (1986).
40Larochelle, R., Bielanski, A., Müller, P. & Magar, R. PCR detection and evidence of shedding of porcine circovirus type 2 in boar semen. Journal of clinical microbiology 38, 4629-4632 (2000).
41Layek, B., Lipp, L. & Singh, J. Cell Penetrating Peptide Conjugated Chitosan for Enhanced Delivery of Nucleic Acid. International Journal of Molecular Sciences 16, 28912-28930, doi:10.3390/ijms161226142 (2015).
42Liu, M. DNA vaccines: a review. Journal of internal medicine 253, 402-410 (2003).
43Lu, S. Heterologous Prime-Boost Vaccination. Current opinion in immunology 21, 346-351, doi:10.1016/j.coi.2009.05.016 (2009).
44Ludewig, B. et al. Dendritic cells efficiently induce protective antiviral immunity. Journal of virology 72, 3812-3818 (1998).
45Martin, M. E. & Rice, K. G. Peptide-guided gene delivery. The AAPS journal 9, E18-E29 (2007).
46Meehan, B. et al. Isolation and characterization of porcine circovirus 2 from cases of sow abortion and porcine dermatitis and nephropathy syndrome. Archives of virology 146, 835-842 (2001).
47Mills, K. H. Designer adjuvants for enhancing the efficacy of infectious disease and cancer vaccines based on suppression of regulatory T cell induction. Immunology letters 122, 108-111 (2009).
48Narayani, R. Polymeric delivery systems in biotechnology: a mini review. Trends Biomater Artif Organs 21, 14-19 (2007).
49Nawagitgul, P. et al. Modified indirect porcine circovirus (PCV) type 2-based and recombinant capsid protein (ORF2)-based enzyme-linked immunosorbent assays for detection of antibodies to PCV. Clinical and Diagnostic Laboratory Immunology 9, 33-40 (2002).
50Nigg, E. A. Nucleocytoplasmic transport: signals, mechanisms and regulation. (1997).
51O'Connor, B. et al. Multiple porcine circovirus 2-associated abortions and reproductive failure in a multisite swine production unit. The Canadian Veterinary Journal 42, 551 (2001).
52Opriessnig, T. et al. Difference in severity of porcine circovirus type two-induced pathological lesions between Landrace and Pietrain pigs. Journal of animal science 87, 1582-1590 (2009).
53Pedraza, C. E. et al. The importance of particle size and DNA condensation salt for calcium phosphate nanoparticle transfection. Biomaterials 29, 3384-3392, doi:http://dx.doi.org/10.1016/j.biomaterials.2008.04.043 (2008).
54Peyret, H. et al. Tandem Fusion of Hepatitis B Core Antigen Allows Assembly of Virus-Like Particles in Bacteria and Plants with Enhanced Capacity to Accommodate Foreign Proteins. PLoS ONE 10, e0120751, doi:10.1371/journal.pone.0120751 (2015).
55Porgador, A. et al. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. The Journal of experimental medicine 188, 1075-1082 (1998).
56Rajagopalan, R., Xavier, J., Rangaraj, N., Rao, N. M. & Gopal, V. Recombinant fusion proteins TAT‐Mu, Mu and Mu‐Mu mediate efficient non‐viral gene delivery. The journal of gene medicine 9, 275-286 (2007).
57Raz, E. et al. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proceedings of the National Academy of Sciences 91, 9519-9523 (1994).
58Rodriguez, F., Zhang, J. & Whitton, J. L. DNA immunization: ubiquitination of a viral protein enhances cytotoxic T-lymphocyte induction and antiviral protection but abrogates antibody induction. Journal of Virology 71, 8497-8503 (1997).
59Segalés, J. & Domingo, M. Postweaning mulstisystemic wasting syndrome (PMWS) in pigs. A review. Veterinary Quarterly 24, 109-124 (2002).
60Singh, R. & Kostarelos, K. Designer adenoviruses for nanomedicine and nanodiagnostics. Trends in biotechnology 27, 220-229 (2009).
61Smith, W., Thomson, J. & Done, S. Dermatitis/nephropathy syndrome of pigs. Veterinary Record 132, 47-47 (1993).
62Thacker, E., Holtkamp, D., Khan, A., Brown, P. & Draghia-Akli, R. Plasmid-mediated growth hormone-releasing hormone efficacy in reducing disease associated with and porcine reproductive and respiratory syndrome virus infection. Journal of animal science 84, 733-742 (2006).
63Thacker, E. L. Porcine respiratory disease complex-what is it and why does it remain a problem? Pig Journal 48, 66-70 (2001).
64Tischer, I., Gelderblom, H., Vettermann, W. & Koch, M. A very small porcine virus with circular single-stranded DNA. Nature 295, 64-66 (1982).
65Tischer, I., Rasch, R. & Tochtermann, G. Characterization of papovavirus and picornavirus-like particles in permanent pig kidney cell lines. Zenibl. Bukt. 226, 153-167 (1974).
66Torres, C., Iwasaki, A., Barber, B. H. & Robinson, H. L. Differential dependence on target site tissue for gene gun and intramuscular DNA immunizations. The Journal of Immunology 158, 4529-4532 (1997).
67Ulmer, J. et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745-1749, doi:10.1126/science.8456302 (1993).
68Velders, M. P. et al. Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine. The Journal of Immunology 166, 5366-5373 (2001).
69Villarreal, D. O., Talbott, K. T., Choo, D. K., Shedlock, D. J. & Weiner, D. B. Synthetic DNA vaccine strategies against persistent viral infections. Expert review of vaccines 12, 537-554 (2013).
70Wallace, M. et al. Tolerability of two sequential electroporation treatments using MedPulser DNA delivery system (DDS) in healthy adults. Molecular Therapy 17, 922-928 (2009).
71Wang, H.-Y. et al. Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei. Journal of Controlled Release 155, 26-33, doi:http://dx.doi.org/10.1016/j.jconrel.2010.12.009 (2011).
72West, K. H. et al. Myocarditis and abortion associated with intrauterine infection of sows with porcine circovirus 2. Journal of Veterinary Diagnostic Investigation 11, 530-532 (1999).
73Wolff, J. et al. Direct gene transfer into mouse muscle in vivo. Science 247, 1465-1468, doi:10.1126/science.1690918 (1990).
74Xiang, R. et al. An autologous oral DNA vaccine protects against murine melanoma. Proceedings of the National Academy of Sciences 97, 5492-5497 (2000).
75Yi, W.-J. et al. Enhanced nuclear import and transfection efficiency of TAT peptide-based gene delivery systems modified by additional nuclear localization signals. Bioconjugate chemistry 23, 125-134 (2011).
76Yin, S. et al. Self-assembly of virus-like particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli. Virology journal 7, 166 (2010).
77Ziegler, A., Nervi, P., Dürrenberger, M. & Seelig, J. The cationic cell-penetrating peptide CPPTAT derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence. Biochemistry 44, 138-148 (2005).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top