跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴聖瑜
研究生(外文):Lai, Sheng-Yu
論文名稱:在離散小波轉換域中結合時間擴展回聲與有理抖動調變以增進音訊盲浮水印效能
指導教授:胡懷祖胡懷祖引用關係
指導教授(外文):Hu, Hwai-Tsu
口試委員:許輝煌繆紹綱
口試日期:2017-01-18
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:41
中文關鍵詞:音訊盲浮水印離散小波轉換時間擴展回聲有理抖動調製對數座標映射
外文關鍵詞:Blind audio watermarkingdiscrete wavelet transformtime-spread echorational dither modulationlog coordinate mapping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
隨著資料數位化的來臨,生活中處處可見各種多媒體資訊,然而這些數位化資料卻有著容易儲存、再製與傳播的特性,所以衍生出許多侵犯版權的問題。因此,近年來「數位浮水印」被提出做為版權保護的方法之一,當版權有爭議時則可以提取嵌入在多媒體資料中能夠證明其所有權的浮水印資訊,以達到版權保護的目的。

本論文提出在離散小波轉換 (discrete wavelet transform, DWT) 域之中,結合時間擴展回聲 (time-spread echo, TSE) 和有理抖動調變 (rational dither modulation, RDM) 及對數座標映射 (log coordinate mapping, LCM) 等技術來實現音訊盲浮水印。我們在原有DWT-RDM的高效能架構下於DWT高頻區域嵌入時間擴展回聲 (time-spread echo, TSE),俾用於偵測音訊信號的時間尺度是否遭到修改,如遭遇改變則反向恢復原有的時間尺度,讓浮水印嵌入和檢測的位置重回一致,如此也才能正確提取浮水印。在這之外,我們還探討了DWT-RDM中佈建時間擴展回聲的最佳配當,以使音訊浮水印強健性與不可察覺性達到一個平衡點。

在不影響浮水印強健性的條件下,我們釐清了估算量化步階所需的合宜時間。另外在嵌入回聲時,透過嵌入頻帶的挑選與回聲強度的調節使信噪比(signal-to-noise ratio, SNR) 與音質評分 (objective difference grade, ODG) 得到改善。實驗結果顯示,嵌入回聲後幾乎不會對音訊品質造成太大的影響,而且在加入時間擴展回聲後還能讓原本的DWT-RDM浮水印演算法架構進一步增強了抵抗播放速度修改的能力。

In the digital era, multimedia data appear everywhere in life. However, the easy manner by which digitized data can be stored, copied, and distributed, has led to numerous copyright infringement problems. To solve this issue, "digital watermarking" has been recently proposed as a copyright protection method, whereby proprietary information can be embedded into multimedia, and later extracted to prove ownership. This technology has the potential to settle copyright disputes and attain copyright protection.

This thesis proposes combining several techniques including discrete wavelet transform (DWT), time-spread echo (TSE), rational dither modulation (RDM) and log coordinate mapping (LCM) to achieve effective blind audio watermarking. To verify whether the time scale of a watermarked audio signal has been altered, we deliberately incorporate TSE into a competent watermarking framework called DWT-RDM. In case the playback speed was modified, the original time scale can be restored according to the gauge of TSE. In addition, the locations for watermark embedding and extraction can be aligned to enable correct watermark retrieval. We discuss the most suitable arrangement for deploying TSE inside the DWT-RDM algorithm. All efforts are meant to obtain a balance between robustness and imperceptibility for audio watermarks.

In the premise that the watermark robustness shall not be adversely degraded, we verify the adequate time duration for acquiring quantization steps. Both signal-to-noise ratio (SNR) and objective difference grade (ODG) can be further improved by choosing suitable DWT subbands for watermarking and by progressively adjusting the embedding strength. Experiment results show that the embedded TSE hardly affects the resulting audio quality. The TSE actually empowers the primordial DWT-RDM algorithm to resist playback speed modification.

摘要...............................................I
Abstract..........................................II
目錄.............................................III
圖目錄.............................................V
表目錄............................................VI
第一章 導論........................................1
1-1 研究動機.......................................1
1-2 浮水印介紹.....................................1
1-3 浮水印架構.....................................2
1-4 浮水印嵌入方式.................................3
1-5 現有抵抗去同步的播放速度攻擊技術...............5
1-6 論文架構.......................................6
第二章 背景知識....................................7
2-1 離散小波轉換...................................7
2-2 遮蔽效應.......................................8
2-3 有理抖動調變..................................10
2-4 Arnold轉換....................................11
2-5 離散傅立葉轉換................................12
第三章 改良之DWT-RDM盲浮水印演算架構..............13
3-1 前言..........................................13
3-2 浮水印嵌入流程................................13
3-2-1 同步碼嵌入..................................14
3-2-2 回聲嵌入....................................15
3-2-3 浮水印嵌入..................................16
3-3 浮水印提取流程................................18
3-3-1 偵測縮放因子................................18
3-3-2 偵測同步碼..................................19
3-3-3 浮水印提取..................................20
第四章 作為效能比較的其它代表方法.................21
4-1 Fan 與 Wang[23]...............................21
4-2 Kang等人[22]..................................23
4-3 三種浮水印方法差異比較........................25
第五章 實驗材料與實驗結果分析.....................26
5-1 效能評判標準..................................27
5-2 音訊處理攻擊類型..............................28
5-3 優化結果......................................29
5-3-1 回聲嵌入區域選擇與強度α修正................29
5-3-2 最佳參考過去L的選擇.........................31
5-4 實驗結果比較與討論............................34
5-4-1 十首歌遭受音訊攻擊的BER(%)總平均結果........35
第六章 結論與未來展望.............................38
參考文獻..........................................39

[1]I. J. Cox and M. L. Miller, "The First 50 Years of Electronic Watermarking," EURASIP Journal on Advances in Signal Processing, vol. 2002, p. 820936, 2002.
[2]Y. Lin, W. H. Abdulla, and Y. Ma, "Audio Watermarking Detection Resistant to Time and Pitch Scale Modification," in Signal Processing and Communications, 2007. ICSPC 2007. IEEE International Conference on, 2007, pp. 1379-1382.
[3]H.-T. Hu and L.-Y. Hsu, "A DWT-Based Rational Dither Modulation Scheme for Effective Blind Audio Watermarking," Circuits, Systems, and Signal Processing, vol. 35, pp. 553-572, 2016.
[4]H.-T. Hu, H.-H. Chou, and L.-Y. Hsu, "The Use of Highpass Filtered Time-Spread Echo for Pitch Scaling Detection," IEICE Trans. Fundamentals, vol. 97, pp. 1623-1626, 2014.
[5]L. Boney, A. H. Tewfik, and K. N. Hamdy, "Digital watermarks for audio signals," in Multimedia Computing and Systems, 1996., Proceedings of the Third IEEE International Conference on, 1996, pp. 473-480.
[6]P. Bassia, I. Pitas, and N. Nikolaidis, "Robust audio watermarking in the time domain," IEEE Transactions on Multimedia, vol. 3, pp. 232-241, 2001.
[7]R. Martinez-Noriega, M. Nakano, and K. Yamaguchi, "Self-Synchronous Time-Domain Audio Watermarking Based on Coded-Watermarks," in 2010 Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2010, pp. 135-138.
[8]L. Wen-Nung and C. Li-Chun, "Robust and high-quality time-domain audio watermarking based on low-frequency amplitude modification," IEEE Transactions on Multimedia, vol. 8, pp. 46-59, 2006.
[9]W. Shaoquan, H. Jiwu, H. Daren, and Y. Q. Shi, "Efficiently self-synchronized audio watermarking for assured audio data transmission," IEEE Transactions on Broadcasting, vol. 51, pp. 69-76, 2005.
[10]X.-Y. Wang, P.-P. Niu, and H.-Y. Yang, "A robust digital audio watermarking based on statistics characteristics," Pattern Recognition, vol. 42, pp. 3057-3064, 2009.
[11]B. Lei, I. Yann Soon, F. Zhou, Z. Li, and H. Lei, "A robust audio watermarking scheme based on lifting wavelet transform and singular value decomposition," Signal Processing, vol. 92, pp. 1985-2001, 2012.
[12]B. Y. Lei, I. Y. Soon, and Z. Li, "Blind and robust audio watermarking scheme based on SVD–DCT," Signal Processing, vol. 91, pp. 1973-1984, 2011.
[13]X. Y. Wang and H. Zhao, "A Novel Synchronization Invariant Audio Watermarking Scheme Based on DWT and DCT," IEEE Transactions on Signal Processing, vol. 54, pp. 4835-4840, 2006.
[14]B. Yubao, B. Sen, Z. Guibin, Y. Chunyan, and L. Bowen, "A blind audio watermarking algorithm based on FFT coefficients quantization," in 2010 International Conference on Artificial Intelligence and Education (ICAIE), 2010, pp. 529-533.
[15]H.-T. Hu and W.-H. Chen, "A dual cepstrum-based watermarking scheme with self-synchronization," Signal Processing, vol. 92, pp. 1109-1116, 2012.
[16]S. C. Liu and S. D. Lin, "BCH Code-Based Robust Audio Watermarking in the Cepstrum Domain," Journal of information science and engineering 22, pp. 535-543, 2006.
[17]L. Xin and H. H. Yu, "Transparent and robust audio data hiding in cepstrum domain," in 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532), 2000, pp. 397-400 vol.1.
[18]J. Haitsma, T. Kalker, and F. Bruekers, "Audio watermarking for monitoring and copy protection," Proceedings of the 2000 ACM workshops on Multimedia, pp. 119-122, 2000.
[19]B. S. Ko, R. Nishimura, and Y. Suzuki, "Log-scaling watermark detection in digital audio watermarking," in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, pp. iii-81-4 vol.3.
[20]L. Wei, X. Xiangyang, and L. Peizhong, "Localized audio watermarking technique robust against time-scale modification," IEEE Transactions on Multimedia, vol. 8, pp. 60-69, 2006.
[21]S. Xiang, J. Huang, and R. Yang, "Time-scale Invariant Audio Watermarking Based on the Statistical Features in Time Domain," presented at the Guangdong Key Laboratory of Information Security Technology, Guangzhou 510275, China, 2006.
[22]X. Kang, R. Yang, and J. Huang, "Geometric Invariant Audio Watermarking Based on an LCM Feature," IEEE Transactions on Multimedia, vol. 13, pp. 181-190, 2011.
[23]M.-Q. Fan and H.-X. Wang, "Statistical characteristic-based robust audio watermarking for resolving playback speed modification," Digital Signal Processing, vol. 21, pp. 110-117, 2011.
[24]X. He and M. S. Scordilis, "An enhanced psychoacoustic model based on the discrete wavelet packet transform," Journal of the Franklin Institute, vol. 343, pp. 738-755, 11 2006.
[25]T. Painter and A. Spanias, "Perceptual coding of digital audio," Proceedings of the IEEE, vol. 88, pp. 451-515, 2000.
[26]M. R. Abuturab, "Securing color information using Arnold transform in gyrator transform domain," Optics and Lasers in Engineering, vol. 50, pp. 772-779, 5 2012.
[27]K. Byeong-Seob, R. Nishimura, and Y. Suzuki, "Time-spread echo method for digital audio watermarking," IEEE Transactions on Multimedia, vol. 7, pp. 212-221, 2005.
[28]M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, "RWC Music Database: Music Genre Database and Musical Instrument Sound Database, Proceedings of the 4th International Conference on Music Information Retrieval," ISMIR 2003, pp. 229-230, October 2003.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top