跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 13:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳映羽
研究生(外文):CHEN, YING-YU
論文名稱:提升微生物生產麩胱甘肽條件之探討
論文名稱(外文):Study on the Fermentation Conditions for Increasing Glutathione Production by Microorganism
指導教授:郭建民郭建民引用關係
指導教授(外文):KUO, JEN-MIN
口試委員:王柏森林泓廷吳建輝
口試委員(外文):WANG, BO-SENLIN, HONG-TINGWU, CHIEN-HUI
口試日期:2017-07-03
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:水產食品科學研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:91
中文關鍵詞:微生物麩胱甘肽誘變發酵庫德里阿茲威畢赤酵母
外文關鍵詞:microorganismglutathionemutagenesisfermentationPichia kudriavzevii
相關次數:
  • 被引用被引用:2
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
麩胱甘肽 (Glutathione, GSH) 係麩胺酸、半胱胺酸與甘胺酸縮合而成的三胜肽,具有護肝、解毒、抗腫瘤、修護細胞、避免生物體受到氧化損傷、改善皮膚光澤等功能。本研究目的乃以台農 10 號甘藷中分離得到的酵母菌 (Pichia kudriavzevii KR601,簡稱 KR601) 為試驗菌株,探討提升其 GSH 產量的發酵條件。於破菌方法中,KR601 發酵液以檸檬酸調整 pH 為 3.0 沸水加熱 10 分鐘者,獲得的 GSH 含量最高。KR601 以物理性長波 UVA (315~400 nm) 照射誘變後,無法提升 GSH 之產量;短波 UVC (100~280 nm) 照射 150 秒誘變後,GSH 產量提升 13%。試驗菌株以化學誘變劑 N-methyl-N′-nitro-N-nitrosoguanidine (NTG) (2000 µg/mL) 或 H2O2 (1.5 mM) 誘變後,菌株之 GSH 產量分別提升 7% 及 11%。
KR601 的最適碳源為葡萄糖,最適添加濃度為 9%,此時的 GSH 產量為 73.19 ± 1.49 mg/L。最適氮源為酵母萃取液,最適添加濃度為 1%,此時的 GSH 產量為 27.91 ± 0.32 mg/L。最適的前驅物為半胱胺酸 (分析級),最適的添加濃度為 0.15%,此時的GSH產量為 140.06 ± 1.06 mg/L。以食品級的 L-半胱胺酸鹽酸鹽取代分析級半胱胺酸,最適添加濃度為 0.15%,GSH 產量為 108.44 ± 1.93 mg/L。甲硫胺酸及乳清蛋白無法提升 KR601 之 GSH 產量。
KR601 於 35℃ 培養 6 小時,還原醣及胺基態氮急遽下降,故於饋料發酵中,選擇第 6 小時開始補充營養素。KR601 於 35℃ 批式發酵未補充營養素時,GSH 產量在 24 小時達最高,為 109.52 ± 1.82 mg/L。試驗菌株若於發酵至第 6 小時補充碳源 (9% 葡萄糖),於培養 32 小時之 GSH 產量達最高,為 147.44 ± 2.74 mg/L,補充碳源可提升 GSH 產量 34.6%。KR601 於發酵至第 6 小時補充氮源 (1% 酵母萃取液),於培養至 44 小時之 GSH 產量達最高,為 113.36 ± 0.95 mg/L,可提升 GSH 產量 3.5%。試驗菌株若於發酵至第 6 小時補充 0.15% 半胱胺酸,於培養至 12 小時之 GSH 產量最高,為 84.84 ± 1.26 mg/L,GSH 產量減少約 22%。KR601 於發酵過程同時補充碳氮源以及碳氮源加半胱胺酸時,均造成 GSH 產量減少。使用陽離子交換樹脂進行 KR601 發酵液中 GSH 分離純化,以 Amberlite IR120 之回收率較高,可達 61 %。
Glutathione (GSH) is a tripeptide bearing γ-L-glutamyl-L-cysteinylglycine residues. Functions of glutathione are to reduce oxidative stress, detoxication, liver defends, antitumor, cell repair, and skin color improvement. In this study, Pichia kudriavzevii KR601 isolated from sweet potato will be used a test strain to investigate the fermentation comditions for increasing GSH production. Data obtained showed that KR601 cell disrupted by boiling water at pH 3 for 10 mins showed the highest efficiency to extract GSH. KR601 treated with high wavelength of UVA (320~400 nm) did not change its GSH production. KR601 treated with short wavelength of UVC (100~280 nm) increased its GSH production by 13%, while those treated with N-methyl-N′-nitro-N-nitrosoguanidine (NTG) and H2O2 increased their GSH production by 6 and 11%, respectively. Glucose is the best carbon source to KR601 for GSH production, the optimal concentration is 9%, and GSH production is 73.19 ± 1.49 mg/L, while yeast extract is the best nitrogen source, the optimal concentration is 1%, and GSH production is 27.91 ± 0.32 mg/L. Analytical grade cysteine is the best GSH precursor, the optimal concentration is 0.15%, GSH production is 140.06 ± 1.06 mg/L ; the optimal concentration of food grade cysteine is also 0.15%, while GSH production is 108.44 ± 1.93 mg/L. Methione and whey protein did not increase the GSH production of KR601.
Reducing sugar and amino nitrogen decreased rapidly at 6th hr. in the fermentation process of KR601 at 35℃., the 6th hr was thus selected as a point to supplement additional nutrient for KR601. In batch fermentation of KR601 with no supplement of additional nutrient, GSH production reached the highest amount at 24th hr. being 109.52 ± 1.82 mg/L. In feed-batch fermentation of KR601 with supplement of additional carbon source (9% glucose) at 6th hr. GSH production reached the highest amount at 32nd hr. being 147.44 ± 2.74 mg/L with 34.6% increase. KR601 with supplement of additional nitrogen source (1% yeast extract) at 6th hr., GSH production reached the highest amount at 44th hr. being 113.36 ± 0.95 mg/L with 3.5% increase. KR601 with supplement of additional 0.15% cysteine at 6th hr., GSH production reached the highest amount at 12th hr. being 84.84 ± 1.26 mg/L with 22% decrease. KR601 with supplement of additional either carbon source+nitrogen source or carbon source+nitrogen source+cysteine at 6th hr., both decrease their GSH production. In the purification of GSH from fermented liquid of KR601 with Cation exchanger, Amberlite IR120 showed the highest recovery being 61%.
摘要
Abstract
致謝
目錄
圖目錄
表目錄
附圖目錄
附表目錄
壹、前言
貳、文獻整理
一、麩胱甘肽的簡介
二、麩胱甘肽的結構、生理功能特性與應用
(一) 麩胱甘肽的結構
(二) 麩胱甘肽的生理功能特性
(三) 麩胱甘肽的應用
三、麩胱甘肽生產方法
(一) 萃取法
(二) 化學合成法
(三) 生物合成法
四、麩胱甘肽高產菌株選育
(一) 麩胱甘肽生產菌種的選擇
(二) 麩胱甘肽生產菌種的改良
五、優化培養基產生麩胱甘肽
(一) 碳源的影響
(二) 氮源的影響
(三) 微量元素的影響
(四) 前驅物的影響
六、麩胱甘肽的分離純化
參、實驗設計
肆、實驗材料與方法
一、實驗材料
(一) 菌株來源介紹
(二) 培養基
(三) 化學藥品
(四) 陽離子交換樹脂
(五) 儀器設備
二、實驗方法
(一) 菌株活化
(二) 菌株保存
(三) 物理性誘變
(四) 化學性誘變
(五) 麩胱甘肽 (GSH) 及 GSSG 含量測定
(六) 菌體生物量 (Biomass) 分析
(七) 最適培養基配方探討
(八) DNS (3, 5-dinitrosalicylic acid) 還原醣含量測定 (Miller, 1959)
(九) 胺基態氮 (amino nitrogen) 測定 (Church et al., 1983)
(十) 批次發酵與饋料發酵
(十一) 以陽離子交換樹脂進行 GSH 分離純化
(十二) 統計分析
伍、結果與討論
一、微生物破菌方法之探討
(一) 以不同酒精濃度進行破菌
(二) 以不同 pH 值的檸檬酸進行破菌
二、利用菌株誘變提升 GSH 產量
(一) 物理性誘變
(二) 化學性誘變
三、KR601 菌株最適培養基組成
(一) 最適碳源及最適添加濃度
(二) 最適氮源添加濃度
(三) 最適前驅物以及最適添加量探討
四、批次發酵與饋料發酵對 GSH 之提升量
(一) KR601 發酵過程還原醣及胺基態氮的變化
(二) 批式發酵
(三) 饋料發酵
五、以陽離子交換樹脂進行 GSH 分離純化
(一) 以 GSH 標準品進行 Dowex IR100 陽離子交換純化
(二) 以培養液中 GSH 樣品進行 Dowex IR100 陽離子交換純化
(三) 以 GSH 標準品進行 Amberlite IR120 陽離子交換純化
(四) 以培養液中 GSH 樣品進行 Amberlite IR120 陽離子交換純化
陸、結論
柒、參考文獻
中文文獻
俞志敏。2008。穀胱甘肽高產酵母菌的選育及其產物的分離純化。碩士論文。大連工業大學。
冮潔、卜紅宇。2009。釀酒酵母菌產穀胱甘肽的發酵條件研究。中國釀造,28(1),59-61。
劉娟、何秀萍、王雅琴、劉春秀、孔英俊、張博潤。2003。高產穀胱甘肽的酵母融合菌株的選育及其培養條件的研究。微生物學報,43(1),99-103。
劉娟、王雅琴、劉剛、張博潤。2004。發酵液中還原型穀胱甘肽三種測定方法的改進及其比較。北京化工大學學報。自然科學版,31(3),35-38。
劉振玉。1995。穀胱甘肽的研究與應用。生命的化學,15(1),19-21。
劉莉娟。2014。高產 GSH 釀酒酵母突變株 Y518 的生理代謝研究。碩士論文。蘇州大學。
吳堅平、林建平、劉慧敏、岑沛霖。2001。培養條件對產朊假絲酵母合成穀胱甘肽的影響。化學反應工程與工藝,17(1),89-93。
陳堅。2002。發酵過程優化原理與實踐。化學工業出版社。
施碧紅、黃建忠。1996。啤酒酵母 (Saccharomyces cerevisiae) M-05 變株合成光枯甘肽。福建師範大學學報。自然科學版,12(4),91-95。
李寅、陳堅、毛英鷹、倫世儀、Koo,Y. M.。1998。前體氨基酸和三磷酸腺苷對重組大腸桿菌生產穀胱甘肽的影響。無錫輕工大學學報,17(2),11-15。
王正剛。1999。啤酒酵母深加工及在食品醫藥工業中的應用。水解工業,3,37-39。
王輝、馮萬祥。1996。含汞樹脂分離提純穀胱甘肽。華東理工大學學報。自然科學版,22(6),717-721。
王輝、馮萬祥。1997。幾種國產樹脂對穀胱甘肽的分離性能測定。 離子交換與吸附,13(3),318-321。
程元愷。1994。穀胱甘肽的解毒作用與毒性代謝物。博士論文。
胡學智。2000。日本的保健食品。工業微生物,30(3),44-49。
董坤。2012。產穀胱甘肽釀酒酵母重組菌的構建及發酵研究。山東大學博士論文。
袁爾東、鄭建仙。1999。功能性食品基料 - 穀胱甘肽的研究進展。 食品與發酵工業,25(5),52-57。
詹谷宇、田田萍。1990。酵母菌生物合成穀胱甘肽。藥學學報,25(7),494-499。
賈建萍。2003。生物合成穀胱甘肽及其發酵動力學模型的構建。博士論文。杭州。浙江工業大學。
賈貞、王丹、遊松。2009。穀胱甘肽的研究進展。沉陽藥科大學學報,26(3),238-242。
趙少欣。2008。穀胱甘肽生產菌種的選育及搖瓶發酵研究。陝西科技大學論文。
趙旭東、魏東芝、萬群、俞俊棠。2000。穀胱甘肽的簡便測定法。 藥物分析雜誌,20(1),34-37。
鄭麗雪。2008。高產穀胱甘肽酵母菌選育及發酵條件優化研究。吉林農業大學碩士論文。
郝淼聞、俞志敏。2013。高產穀胱甘肽釀酒酵母菌株的誘變選育研究。沉陽農業大學學報,44(6),832-836。
陳儉梅。2009。高產穀胱甘肽酵母菌株選育及培養條件研究。博士論文,濟南。山東師範大學。
陳堅。2005。微生物重要代謝產物。發酵生產與過程解析。化學工業出版社。
陳俊傑。2006。以釀酒酵母 FC-3 批式生產 γ-GC 與 GSH 之發酵動力。國立雲林科技大學化學工程系。
陶漢州。1979。臨床生化檢驗(上)。
顏宏偉。2011。利用尼羅紅篩選高油脂含量酵母菌 (Rhodotorula glutinis) 並行進行高密度油脂油脂來源。
黃姿瑜。2016。微生物生產麩胱甘肽最適條件之探討。國立高雄海洋科技大學。水產食品科學研究所。碩士論文。
黃富國。2005。酵母菌突變株 S.cerevisiae FC-3 生產 γ-GC 與 GSH 之最適化及相關生合成酵素之基因選殖。國立雲林科技大學。工業化學與災害防治研究所。碩士論文。
黨建章、黎俊、黃錦珍、鐘承贊、陳海晏。2005。發酵技術概論。新文京開發出版股份有限公司。台灣台北。

英文文獻
Alfafara, C. G., Kanda, A., Shioi, T., Shimizu, H., Shioya, S and Suga, K. (1992a). Effect of amino acids on glutathione production by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 36(4), 538-540.
Alfafara, C., Miura, K., Shimizu, H., Shioya, S and Suga, K. (1992b). Cysteine addition strategy for maximum glutathione production in fed-batch culture of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 37(2), 141-146.
Arrigo, A. P. (1999). Gene expression and the thiol redox state. Free Radical Biology and Medicine, 27(9), 936-944.
Ayer, A., Gourlay, C. W and Dawes, I. W. (2014). Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae. FEMS Yeast Research, 14(1), 60-72.
Bachhawat, A. K., Ganguli, D., Kaur, J., Kasturia, N., Thakur, A., Kaur, H and Yadav, A. (2009). Glutathione production in yeast. In Yeast biotechnology: diversity and applications (pp. 259-280). Springer Netherlands.
Church, F. C., Swaisgood, H. E., Porter, D. H., & Catignani, G. L. (1983). Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins1. Journal of Dairy Science, 66(6), 1219-1227.
Cohen, G and Hochstein, P. (1963). Glutathione peroxidase: The primary agent for the elimination of hydrogen peroxide in erythrocytes. Biochemistry, 2(6), 1420-1428.
Dannenmann, B., Lehle, S., Hildebrand, D. G., Kübler, A., Grondona, P., Schmid, V and Schulze-Osthoff, K. (2015). High glutathione and glutathione peroxidase-2 levels mediate cell-type-specific DNA damage protection in human induced pluripotent stem cells. Stem cell reports, 4(5), 886-898.
Dolphin, D., Poulson, R and Avramović, O. (1989). Glutathione: chemical, biochemical, and medical aspects. John Wiley and Sons Inc.
Douglas, K. T. (1987). Mechanism of action of glutathione‐dependent enzymes. Advances in Enzymology and Related Areas of Molecular Biology, Volume 59, 103-167.
Forman, H. J., Zhang, H and Rinna, A. (2009). Glutathione: overview of its protective roles, measurement, and biosynthesis. Molecular aspects of medicine, 30(1), 1-12.
Gardner, C. R., Colton, C. K., Langer, R. S., Hamilton, B. K., Archer, M. C and Whitesides, G. M. (1974). Enzymatic Regeneration of ATP from AMP and ADP Part I. Thermodynamics, Kinetics, and Process Development. In Enzyme Engineering Volume 2 (pp. 209-216). Springer US.
Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G and Brown, P. O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Molecular biology of the cell, 11(12), 4241-4257.
Generally, G. S. H. (1997). Multiple roles of glutathione in the central nervous system. Biol. Chem, 378, 793-802.
Izawa, S., Inoue, Y and Kimura, A. (1995). Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS letters, 368(1), 73-76.
Kalaras, M. D., Richie, J. P., Calcagnotto, A and Beelman, R. B. (2017). Mushrooms: A rich source of the antioxidants ergothioneine and glutathione. Food Chemistry, 233, 429-433.
Katrusiak, A. E., Paterson, P. G., Kamencic, H., Shoker, A and Lyon, A. W. (2001). Pre-column derivatization high-performance liquid chromatographic method for determination of cysteine, cysteinyl–glycine, homocysteine and glutathione in plasma and cell extracts. Journal of Chromatography B: Biomedical Sciences and Applications, 758(2), 207-212.
Kawakami, S. K., Gledhill, M and Achterberg, E. P. (2006). Production of phytochelatins and glutathione by marine phytoplankton in response to metal stress. Journal of phycology, 42(5), 975-989.
Kreiner, M., Harvey, L. M and McNeil, B. (2002). Oxidative stress response of a recombinant Aspergillus niger to exogenous menadione and H2O2 addition. Enzyme and Microbial Technology, 30(3), 346-353.
Kugiyama, K., Ohgushi, M., Motoyama, T., Hirashima, O., Soejima, H., Misumi, K and Yasue, H. (1998). Intracoronary infusion of reduced glutathione improves endothelial vasomotor response to acetylcholine in human coronary circulation. Circulation, 97(23), 2299-2301.
Kwon, S., Lee, P. C., Lee, E. G., Chang, Y. K and Chang, N. (2000). Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme and microbial technology, 26(2), 209-215.
Langer, R. S., Hamilton, B. K., Gardner, C. R., Archer, M. C and Colton, C. K. (1976). Enzymatic regeneration of ATP. I. Alternative routes. AIChE Journal, 22(6), 1079-1090.
Lee, J. C., Straffon, M. J., Jang, T. Y., Higgins, V. J., Grant, C. M and Dawes, I. W. (2001). The essential and ancillary role of glutathione in Saccharomyces cerevisiae analysed using a grande gsh1 disruptant strain. FEMS yeast research, 1(1), 57-65.
Leslie, E. M., Bowers, R. J., Deeley, R. G and Cole, S. P. (2003). Structural requirements for functional interaction of glutathione tripeptide analogs with the human multidrug resistance protein 1 (MRP1). Journal of Pharmacology and Experimental Therapeutics, 304(2), 643-653.
Li, Y., Chen, J., Mao, Y. Y., Lun, S. Y and Koo, Y. M. (1998). Effect of additives and fed-batch culture strategies on the production of glutathione by recombinant Escherichia coli. Process Biochemistry, 33(7), 709-714.
Li, Y., Li, H., Lin, J and Chen, J. (2001). Biosynthesis of glutathione: construction of ATP regeneration system between recombinant E. coli and S. cerevisiae. Wei sheng wu xue bao= Acta microbiologica Sinica, 41(2), 191-197.
Li, Y., Wei, G and Chen, J. (2004). Glutathione: a review on biotechnological production. Applied microbiology and biotechnology, 66(3), 233-242.
Liang, G., Liao, X., Du, G and Chen, J. (2008). Elevated glutathione production by adding precursor amino acids coupled with ATP in high cell density cultivation of Candida utilis. Journal of applied microbiology, 105(5), 1432-1440.
Liang, G., Liao, X., Du, G and Chen, J. (2009). A new strategy to enhance glutathione production by multiple H2O2-induced oxidative stresses in Candida utilis. Bioresource technology, 100(1), 350-355.
Liang, G., Wang, B., Xie, J and Mo, Y. (2009). Novel pH control strategy for glutathione overproduction in batch cultivation of Candida utilis. African Journal of Biotechnology, 8(22).
Linko, P., Linko, Y. Y and Kennedy, J. F. (1983). Industrial applications of immobilized cells. Critical Reviews in Biotechnology, 1(4), 289-338.
Liu, C. H., Hwang, C. F and Liao, C. C. (1999). Medium optimization for glutathione production by Saccharomyces cerevisiae. Process Biochemistry, 34(1), 17-23.
Lorenz, E., Schmacht, M., Stahl, U and Senz, M. (2015). Enhanced incorporation yield of cysteine for glutathione overproduction by fed-batch fermentation of Saccharomyces cerevisiae. Journal of biotechnology, 216, 131-139.
Lu, S. C. (2013). Glutathione synthesis. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(5), 3143-3153.
Marz, U and Yeasts, Y. E. (2014). Autolysates and Related Products The Global Market. BCC Research Report Code: CHM053B.
May, M. J and Leaver, C. J. (1993). Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiology, 103(2), 621-627.
Meister, A and Anderson, M. E. (1983). Glutathione. Annual review of biochemistry, 52(1), 711-760.
Meister, A. (1994). Glutathione-ascorbic acid antioxidant system in animals. Journal of Biological Chemistry-Paper Edition, 269(13), 9397-9400.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), 426-428.
Mongeau, R., Brassard, R and Verdier, P. (1989). Measurement of dietary fiber in a total diet study. Journal of Food Composition and Analysis, 2(4), 317-326.
Monje-Casas, F., MICHáN, C and Pueyo, C. (2004). Absolute transcript levels of thioredoxin-and glutathione-dependent redox systems in Saccharomyces cerevisiae: response to stress and modulation with growth. Biochemical Journal, 383(1), 139-147.
Monostori, P., Wittmann, G., Karg, E and Túri, S. (2009). Determination of glutathione and glutathione disulfide in biological samples: an in-depth review. Journal of Chromatography B, 877(28), 3331-3346.
Murata, K and Kimura, A. (1990). Overproduction of glutathione and its derivatives by genetically engineered microbial cells. Biotechnology advances, 8(1), 59-96.
Murata, K., Tani, K., Kato, J and Chibata, I. (1979). Application of immobilized ATP in the production of glutathione by a multienzyme system. J. Appl. Biochem, 1, 283-290.
Murata, K., Tani, K., Kato, J and Chibata, I. (1981). Glutathione production by immobilized Saccharomyces cerevisiae cells containing an ATP regeneration system. Applied Microbiology and Biotechnology, 11(2), 72-77.
Neuschwander-Tetri, B. A and Roll, F. J. (1989). Glutathione measurement by high-performance liquid chromatography separation and fluorometric detection of the glutathione-orthophthalaldehyde adduct. Analytical biochemistry, 179(2), 236-241.
Ohtake, Y., Watanabe, K., Tezuka, H., Ogata, T., Yabuuchi, S., Murata, K and Kimura, A. (1988). The expression of the γ-glutamylcysteine synthetase gene of Escherichia coli B in Saccharomyces cerevisiae. Agricultural and biological chemistry, 52(11), 2753-2762.
Penninckx, M. J and Elskens, M. T. (1993). Metabolism and functions of glutathione in micro-organisms. Advances in microbial physiology, 34, 239-301.
Penninckx, M. J. (2002). An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS yeast research, 2(3), 295-305.
Perego, P and Howell, S. B. (1997). Molecular mechanisms controlling sensitivity to toxic metal ions in yeast. Toxicology and applied pharmacology, 147(2), 312-318.
Pinkus, R., Weiner, L. M and Daniel, V. (1995). Role of quinone-mediated generation of hydroxyl radicals in the induction of glutathione S-transferase gene expression. Biochemistry, 34(1), 81-88.
Pryor, W. A. (1986). Oxy-radicals and related species: their formation, lifetimes, and reactions. Annual review of Physiology, 48(1), 657-667.
Rollini, M., Musatti, A and Manzoni, M. (2010). Production of glutathione in extracellular form by Saccharomyces cerevisiae. Process Biochemistry, 45(4), 441-445.
Schieber, M and Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current biology, 24(10), R453-R462.
Sellers, Z. P., Williams, R. A., Overbay, J. W., Cho, J., Henderson, M and Reed, T. T. (2014). Current Therapeutic Modalities, Enzyme Kinetics, and Redox Proteomics in Traumatic Brain Injury. In Traumatic Brain Injury. InTech.
Sies, H. (2005). Glutathione and its role in cellular functions. Free Radical Biology and Medicine, 39(10), 1281.
Stephen, D. W and Jamieson, D. J. (1997). Amino acid‐dependent regulation of the Saccharomyces cerevisiae GSH1 gene by hydrogen peroxide. Molecular microbiology, 23(2), 203-210.
Tietze, F. (1969). Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Analytical biochemistry, 27(3), 502-522.
Tilly, J. L. (1996). The molecular basis of ovarian cell death during germ cell attrition, follicular atresia, and luteolysis. Front Biosci, 1, d1-d11.
Tochikura, T., Kariya, Y., Yano, T., Tachiki, T and Kimura, A. (1974). Studies on utilization of fermentation and respiration energy to biosynthetic processes. Amino Acid and Nucleic Acid, 29, 59-74.
Udeh, K. O and Achremowicz, B. (1996). High-glutathione containing yeast Saccharomyces cerevisiae: optimization of production. Acta Microbiologica Polonica, 46(1), 105-114.
Ueda, Y., Yonemitsu, M., Tsubuku, T., Sakaguchi, M and Miyajima, R. (1997). Flavor characteristics of glutathione in raw and cooked foodstuffs. Bioscience, biotechnology, and biochemistry, 61(12), 1977-1980.
Wang, M., Sun, J., Xue, F., Shang, F., Wang, Z and Tan, T. (2012). The effect of intracellular amino acids on GSH production by high-cell-density cultivation of Saccharomyces cerevisiae. Applied biochemistry and biotechnology, 168(1), 198-205.
Wen, S., Zhang, T and Tan, T. (2005). Optimization of the amino acid composition in glutathione fermentation. Process Biochemistry, 40(11), 3474-3479.
Wen, S., Zhang, T and Tan, T. (2006). Maximizing production of glutathione by amino acid modulation and high-cell-density fed-batch culture of Saccharomyces cerevisiae. Process Biochemistry, 41(12), 2424-2428.
Whitesides, G. M., Siegel, M and Garrett, P. (1975). Large-scale synthesis of diammonium acetyl phosphate. The Journal of Organic Chemistry, 40(17), 2516-2519.
Winterbourn, C. C. (1993). Superoxide as an intracellular radical sink. Free Radical Biology and Medicine, 14(1), 85-90.
Zhang, T., Wen, S and Tan, T. (2007). Optimization of the medium for glutathione production in Saccharomyces cerevisiae. Process biochemistry, 42(3), 454-458.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top