中文文獻
俞志敏。2008。穀胱甘肽高產酵母菌的選育及其產物的分離純化。碩士論文。大連工業大學。
冮潔、卜紅宇。2009。釀酒酵母菌產穀胱甘肽的發酵條件研究。中國釀造,28(1),59-61。
劉娟、何秀萍、王雅琴、劉春秀、孔英俊、張博潤。2003。高產穀胱甘肽的酵母融合菌株的選育及其培養條件的研究。微生物學報,43(1),99-103。
劉娟、王雅琴、劉剛、張博潤。2004。發酵液中還原型穀胱甘肽三種測定方法的改進及其比較。北京化工大學學報。自然科學版,31(3),35-38。
劉振玉。1995。穀胱甘肽的研究與應用。生命的化學,15(1),19-21。
劉莉娟。2014。高產 GSH 釀酒酵母突變株 Y518 的生理代謝研究。碩士論文。蘇州大學。
吳堅平、林建平、劉慧敏、岑沛霖。2001。培養條件對產朊假絲酵母合成穀胱甘肽的影響。化學反應工程與工藝,17(1),89-93。
陳堅。2002。發酵過程優化原理與實踐。化學工業出版社。
施碧紅、黃建忠。1996。啤酒酵母 (Saccharomyces cerevisiae) M-05 變株合成光枯甘肽。福建師範大學學報。自然科學版,12(4),91-95。
李寅、陳堅、毛英鷹、倫世儀、Koo,Y. M.。1998。前體氨基酸和三磷酸腺苷對重組大腸桿菌生產穀胱甘肽的影響。無錫輕工大學學報,17(2),11-15。
王正剛。1999。啤酒酵母深加工及在食品醫藥工業中的應用。水解工業,3,37-39。
王輝、馮萬祥。1996。含汞樹脂分離提純穀胱甘肽。華東理工大學學報。自然科學版,22(6),717-721。
王輝、馮萬祥。1997。幾種國產樹脂對穀胱甘肽的分離性能測定。 離子交換與吸附,13(3),318-321。
程元愷。1994。穀胱甘肽的解毒作用與毒性代謝物。博士論文。
胡學智。2000。日本的保健食品。工業微生物,30(3),44-49。
董坤。2012。產穀胱甘肽釀酒酵母重組菌的構建及發酵研究。山東大學博士論文。
袁爾東、鄭建仙。1999。功能性食品基料 - 穀胱甘肽的研究進展。 食品與發酵工業,25(5),52-57。
詹谷宇、田田萍。1990。酵母菌生物合成穀胱甘肽。藥學學報,25(7),494-499。
賈建萍。2003。生物合成穀胱甘肽及其發酵動力學模型的構建。博士論文。杭州。浙江工業大學。
賈貞、王丹、遊松。2009。穀胱甘肽的研究進展。沉陽藥科大學學報,26(3),238-242。
趙少欣。2008。穀胱甘肽生產菌種的選育及搖瓶發酵研究。陝西科技大學論文。
趙旭東、魏東芝、萬群、俞俊棠。2000。穀胱甘肽的簡便測定法。 藥物分析雜誌,20(1),34-37。
鄭麗雪。2008。高產穀胱甘肽酵母菌選育及發酵條件優化研究。吉林農業大學碩士論文。
郝淼聞、俞志敏。2013。高產穀胱甘肽釀酒酵母菌株的誘變選育研究。沉陽農業大學學報,44(6),832-836。
陳儉梅。2009。高產穀胱甘肽酵母菌株選育及培養條件研究。博士論文,濟南。山東師範大學。
陳堅。2005。微生物重要代謝產物。發酵生產與過程解析。化學工業出版社。
陳俊傑。2006。以釀酒酵母 FC-3 批式生產 γ-GC 與 GSH 之發酵動力。國立雲林科技大學化學工程系。
陶漢州。1979。臨床生化檢驗(上)。
顏宏偉。2011。利用尼羅紅篩選高油脂含量酵母菌 (Rhodotorula glutinis) 並行進行高密度油脂油脂來源。
黃姿瑜。2016。微生物生產麩胱甘肽最適條件之探討。國立高雄海洋科技大學。水產食品科學研究所。碩士論文。黃富國。2005。酵母菌突變株 S.cerevisiae FC-3 生產 γ-GC 與 GSH 之最適化及相關生合成酵素之基因選殖。國立雲林科技大學。工業化學與災害防治研究所。碩士論文。黨建章、黎俊、黃錦珍、鐘承贊、陳海晏。2005。發酵技術概論。新文京開發出版股份有限公司。台灣台北。
英文文獻
Alfafara, C. G., Kanda, A., Shioi, T., Shimizu, H., Shioya, S and Suga, K. (1992a). Effect of amino acids on glutathione production by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 36(4), 538-540.
Alfafara, C., Miura, K., Shimizu, H., Shioya, S and Suga, K. (1992b). Cysteine addition strategy for maximum glutathione production in fed-batch culture of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 37(2), 141-146.
Arrigo, A. P. (1999). Gene expression and the thiol redox state. Free Radical Biology and Medicine, 27(9), 936-944.
Ayer, A., Gourlay, C. W and Dawes, I. W. (2014). Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae. FEMS Yeast Research, 14(1), 60-72.
Bachhawat, A. K., Ganguli, D., Kaur, J., Kasturia, N., Thakur, A., Kaur, H and Yadav, A. (2009). Glutathione production in yeast. In Yeast biotechnology: diversity and applications (pp. 259-280). Springer Netherlands.
Church, F. C., Swaisgood, H. E., Porter, D. H., & Catignani, G. L. (1983). Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins1. Journal of Dairy Science, 66(6), 1219-1227.
Cohen, G and Hochstein, P. (1963). Glutathione peroxidase: The primary agent for the elimination of hydrogen peroxide in erythrocytes. Biochemistry, 2(6), 1420-1428.
Dannenmann, B., Lehle, S., Hildebrand, D. G., Kübler, A., Grondona, P., Schmid, V and Schulze-Osthoff, K. (2015). High glutathione and glutathione peroxidase-2 levels mediate cell-type-specific DNA damage protection in human induced pluripotent stem cells. Stem cell reports, 4(5), 886-898.
Dolphin, D., Poulson, R and Avramović, O. (1989). Glutathione: chemical, biochemical, and medical aspects. John Wiley and Sons Inc.
Douglas, K. T. (1987). Mechanism of action of glutathione‐dependent enzymes. Advances in Enzymology and Related Areas of Molecular Biology, Volume 59, 103-167.
Forman, H. J., Zhang, H and Rinna, A. (2009). Glutathione: overview of its protective roles, measurement, and biosynthesis. Molecular aspects of medicine, 30(1), 1-12.
Gardner, C. R., Colton, C. K., Langer, R. S., Hamilton, B. K., Archer, M. C and Whitesides, G. M. (1974). Enzymatic Regeneration of ATP from AMP and ADP Part I. Thermodynamics, Kinetics, and Process Development. In Enzyme Engineering Volume 2 (pp. 209-216). Springer US.
Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G and Brown, P. O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Molecular biology of the cell, 11(12), 4241-4257.
Generally, G. S. H. (1997). Multiple roles of glutathione in the central nervous system. Biol. Chem, 378, 793-802.
Izawa, S., Inoue, Y and Kimura, A. (1995). Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS letters, 368(1), 73-76.
Kalaras, M. D., Richie, J. P., Calcagnotto, A and Beelman, R. B. (2017). Mushrooms: A rich source of the antioxidants ergothioneine and glutathione. Food Chemistry, 233, 429-433.
Katrusiak, A. E., Paterson, P. G., Kamencic, H., Shoker, A and Lyon, A. W. (2001). Pre-column derivatization high-performance liquid chromatographic method for determination of cysteine, cysteinyl–glycine, homocysteine and glutathione in plasma and cell extracts. Journal of Chromatography B: Biomedical Sciences and Applications, 758(2), 207-212.
Kawakami, S. K., Gledhill, M and Achterberg, E. P. (2006). Production of phytochelatins and glutathione by marine phytoplankton in response to metal stress. Journal of phycology, 42(5), 975-989.
Kreiner, M., Harvey, L. M and McNeil, B. (2002). Oxidative stress response of a recombinant Aspergillus niger to exogenous menadione and H2O2 addition. Enzyme and Microbial Technology, 30(3), 346-353.
Kugiyama, K., Ohgushi, M., Motoyama, T., Hirashima, O., Soejima, H., Misumi, K and Yasue, H. (1998). Intracoronary infusion of reduced glutathione improves endothelial vasomotor response to acetylcholine in human coronary circulation. Circulation, 97(23), 2299-2301.
Kwon, S., Lee, P. C., Lee, E. G., Chang, Y. K and Chang, N. (2000). Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme and microbial technology, 26(2), 209-215.
Langer, R. S., Hamilton, B. K., Gardner, C. R., Archer, M. C and Colton, C. K. (1976). Enzymatic regeneration of ATP. I. Alternative routes. AIChE Journal, 22(6), 1079-1090.
Lee, J. C., Straffon, M. J., Jang, T. Y., Higgins, V. J., Grant, C. M and Dawes, I. W. (2001). The essential and ancillary role of glutathione in Saccharomyces cerevisiae analysed using a grande gsh1 disruptant strain. FEMS yeast research, 1(1), 57-65.
Leslie, E. M., Bowers, R. J., Deeley, R. G and Cole, S. P. (2003). Structural requirements for functional interaction of glutathione tripeptide analogs with the human multidrug resistance protein 1 (MRP1). Journal of Pharmacology and Experimental Therapeutics, 304(2), 643-653.
Li, Y., Chen, J., Mao, Y. Y., Lun, S. Y and Koo, Y. M. (1998). Effect of additives and fed-batch culture strategies on the production of glutathione by recombinant Escherichia coli. Process Biochemistry, 33(7), 709-714.
Li, Y., Li, H., Lin, J and Chen, J. (2001). Biosynthesis of glutathione: construction of ATP regeneration system between recombinant E. coli and S. cerevisiae. Wei sheng wu xue bao= Acta microbiologica Sinica, 41(2), 191-197.
Li, Y., Wei, G and Chen, J. (2004). Glutathione: a review on biotechnological production. Applied microbiology and biotechnology, 66(3), 233-242.
Liang, G., Liao, X., Du, G and Chen, J. (2008). Elevated glutathione production by adding precursor amino acids coupled with ATP in high cell density cultivation of Candida utilis. Journal of applied microbiology, 105(5), 1432-1440.
Liang, G., Liao, X., Du, G and Chen, J. (2009). A new strategy to enhance glutathione production by multiple H2O2-induced oxidative stresses in Candida utilis. Bioresource technology, 100(1), 350-355.
Liang, G., Wang, B., Xie, J and Mo, Y. (2009). Novel pH control strategy for glutathione overproduction in batch cultivation of Candida utilis. African Journal of Biotechnology, 8(22).
Linko, P., Linko, Y. Y and Kennedy, J. F. (1983). Industrial applications of immobilized cells. Critical Reviews in Biotechnology, 1(4), 289-338.
Liu, C. H., Hwang, C. F and Liao, C. C. (1999). Medium optimization for glutathione production by Saccharomyces cerevisiae. Process Biochemistry, 34(1), 17-23.
Lorenz, E., Schmacht, M., Stahl, U and Senz, M. (2015). Enhanced incorporation yield of cysteine for glutathione overproduction by fed-batch fermentation of Saccharomyces cerevisiae. Journal of biotechnology, 216, 131-139.
Lu, S. C. (2013). Glutathione synthesis. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(5), 3143-3153.
Marz, U and Yeasts, Y. E. (2014). Autolysates and Related Products The Global Market. BCC Research Report Code: CHM053B.
May, M. J and Leaver, C. J. (1993). Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiology, 103(2), 621-627.
Meister, A and Anderson, M. E. (1983). Glutathione. Annual review of biochemistry, 52(1), 711-760.
Meister, A. (1994). Glutathione-ascorbic acid antioxidant system in animals. Journal of Biological Chemistry-Paper Edition, 269(13), 9397-9400.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), 426-428.
Mongeau, R., Brassard, R and Verdier, P. (1989). Measurement of dietary fiber in a total diet study. Journal of Food Composition and Analysis, 2(4), 317-326.
Monje-Casas, F., MICHáN, C and Pueyo, C. (2004). Absolute transcript levels of thioredoxin-and glutathione-dependent redox systems in Saccharomyces cerevisiae: response to stress and modulation with growth. Biochemical Journal, 383(1), 139-147.
Monostori, P., Wittmann, G., Karg, E and Túri, S. (2009). Determination of glutathione and glutathione disulfide in biological samples: an in-depth review. Journal of Chromatography B, 877(28), 3331-3346.
Murata, K and Kimura, A. (1990). Overproduction of glutathione and its derivatives by genetically engineered microbial cells. Biotechnology advances, 8(1), 59-96.
Murata, K., Tani, K., Kato, J and Chibata, I. (1979). Application of immobilized ATP in the production of glutathione by a multienzyme system. J. Appl. Biochem, 1, 283-290.
Murata, K., Tani, K., Kato, J and Chibata, I. (1981). Glutathione production by immobilized Saccharomyces cerevisiae cells containing an ATP regeneration system. Applied Microbiology and Biotechnology, 11(2), 72-77.
Neuschwander-Tetri, B. A and Roll, F. J. (1989). Glutathione measurement by high-performance liquid chromatography separation and fluorometric detection of the glutathione-orthophthalaldehyde adduct. Analytical biochemistry, 179(2), 236-241.
Ohtake, Y., Watanabe, K., Tezuka, H., Ogata, T., Yabuuchi, S., Murata, K and Kimura, A. (1988). The expression of the γ-glutamylcysteine synthetase gene of Escherichia coli B in Saccharomyces cerevisiae. Agricultural and biological chemistry, 52(11), 2753-2762.
Penninckx, M. J and Elskens, M. T. (1993). Metabolism and functions of glutathione in micro-organisms. Advances in microbial physiology, 34, 239-301.
Penninckx, M. J. (2002). An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS yeast research, 2(3), 295-305.
Perego, P and Howell, S. B. (1997). Molecular mechanisms controlling sensitivity to toxic metal ions in yeast. Toxicology and applied pharmacology, 147(2), 312-318.
Pinkus, R., Weiner, L. M and Daniel, V. (1995). Role of quinone-mediated generation of hydroxyl radicals in the induction of glutathione S-transferase gene expression. Biochemistry, 34(1), 81-88.
Pryor, W. A. (1986). Oxy-radicals and related species: their formation, lifetimes, and reactions. Annual review of Physiology, 48(1), 657-667.
Rollini, M., Musatti, A and Manzoni, M. (2010). Production of glutathione in extracellular form by Saccharomyces cerevisiae. Process Biochemistry, 45(4), 441-445.
Schieber, M and Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current biology, 24(10), R453-R462.
Sellers, Z. P., Williams, R. A., Overbay, J. W., Cho, J., Henderson, M and Reed, T. T. (2014). Current Therapeutic Modalities, Enzyme Kinetics, and Redox Proteomics in Traumatic Brain Injury. In Traumatic Brain Injury. InTech.
Sies, H. (2005). Glutathione and its role in cellular functions. Free Radical Biology and Medicine, 39(10), 1281.
Stephen, D. W and Jamieson, D. J. (1997). Amino acid‐dependent regulation of the Saccharomyces cerevisiae GSH1 gene by hydrogen peroxide. Molecular microbiology, 23(2), 203-210.
Tietze, F. (1969). Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Analytical biochemistry, 27(3), 502-522.
Tilly, J. L. (1996). The molecular basis of ovarian cell death during germ cell attrition, follicular atresia, and luteolysis. Front Biosci, 1, d1-d11.
Tochikura, T., Kariya, Y., Yano, T., Tachiki, T and Kimura, A. (1974). Studies on utilization of fermentation and respiration energy to biosynthetic processes. Amino Acid and Nucleic Acid, 29, 59-74.
Udeh, K. O and Achremowicz, B. (1996). High-glutathione containing yeast Saccharomyces cerevisiae: optimization of production. Acta Microbiologica Polonica, 46(1), 105-114.
Ueda, Y., Yonemitsu, M., Tsubuku, T., Sakaguchi, M and Miyajima, R. (1997). Flavor characteristics of glutathione in raw and cooked foodstuffs. Bioscience, biotechnology, and biochemistry, 61(12), 1977-1980.
Wang, M., Sun, J., Xue, F., Shang, F., Wang, Z and Tan, T. (2012). The effect of intracellular amino acids on GSH production by high-cell-density cultivation of Saccharomyces cerevisiae. Applied biochemistry and biotechnology, 168(1), 198-205.
Wen, S., Zhang, T and Tan, T. (2005). Optimization of the amino acid composition in glutathione fermentation. Process Biochemistry, 40(11), 3474-3479.
Wen, S., Zhang, T and Tan, T. (2006). Maximizing production of glutathione by amino acid modulation and high-cell-density fed-batch culture of Saccharomyces cerevisiae. Process Biochemistry, 41(12), 2424-2428.
Whitesides, G. M., Siegel, M and Garrett, P. (1975). Large-scale synthesis of diammonium acetyl phosphate. The Journal of Organic Chemistry, 40(17), 2516-2519.
Winterbourn, C. C. (1993). Superoxide as an intracellular radical sink. Free Radical Biology and Medicine, 14(1), 85-90.
Zhang, T., Wen, S and Tan, T. (2007). Optimization of the medium for glutathione production in Saccharomyces cerevisiae. Process biochemistry, 42(3), 454-458.