跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/12/10 13:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王萬
研究生(外文):WAWAN PURWANTO
論文名稱:利用參數設計來提升高速主軸電動機性能之研究
論文名稱(外文):Study of Spindle Motor Parameter Design for Improving the Performance of High-Speed Spindle Motor
指導教授:蘇啟宗
指導教授(外文):SU,CHIH-TSONG
口試委員:馮榮豐蘇啟宗楊玉森嚴成文楊錫凱
口試委員(外文):FUNG,RONG-FONGSU,CHIH-TSONGYANG,YU-SENYEN,CHEN-WENYANG,SHYI-KAE
口試日期:2017-06-09
學位類別:博士
校院名稱:國立高雄第一科技大學
系所名稱:工學院工程科技博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:357
中文關鍵詞:擊穿轉矩效率Hooke-Jeeves優化磁鏈響應面方法轉子設計主軸電機定子設計Taguchi方法
外文關鍵詞:breakdown torqueefficiencyHooke-Jeeves optimizationmagnetic flux linkageresponse surface methodologyrotor designspindle motorstator designTaguchi method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:397
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
高速加工是一種能夠大幅提高產量及減少成本的機器,這機器能對我們的生活產生影響。主軸電機的主要製造問題高扭力與高效力。一般來說,主軸電機的效能取決於漏抗值,而漏抗值對於磁鏈從定片到轉片起到很大的作用。本文專注於兩個重點,第一:定子參數的最佳設計,來改進最大力矩、效率、定子磁鏈,以及降低額外能量的損耗和溫度的上升。第二,定子槽幾何的最佳設計,來增加效能並且減少啟動電流。使用響應面方法,Hooke-Jeeves優化,Taguchi方法和有限元分析来開發最佳設計。在本研究中,主軸電機性能估計包括擊穿轉矩,效率,磁鏈有限元分析,定子交鏈磁通和定子洩漏分析,熱設計概念,額外的功率損耗減少策略,啟動性能分析已經描述。通過使用性能估計,可以識別關鍵設計參數並且可以獲得設計結果。此外,我們製造和測試了一個原型主軸電機工業設計,以驗證最佳設計計算結果。實驗結果表明,與當前的主軸電機設計相比,最適設計產生更高的擊穿轉矩,效率,磁鏈,啟動性能,更低的溫升,額外的功率損耗和啟動電流。最適設計和原型測量結果的比較驗證了擬議模型的準確性。總體上,誤差的百分比大約為8%。
High speed machining is a technology for drastically increasing productivity and reducing production cost which can have an effect on our life. The main fabrication issues of the spindle motors are high torque and efficiency. Generally, the performance of the spindle motor is largely determined by the value of the leakage reactance, which has a substantial influence on the flux linkage from the stator to the rotor. This dissertation focus an optimal design of stator parameters to improving breakdown (maximum) torque, efficiency, stator flux linkage, and reducing additional power loss and temperature rise of the spindle motor, and optimal design of the stator slot geometry to increasing starting performance and reducing starting current. The optimal designs were develop using response surface methodology (RSM), Hooke-Jeeves optimization, Taguchi method, and finite element method (FEM). In this study, a spindle motor performance estimate consist of breakdown torque, efficiency, flux linkage FEA, stator linkage flux and stator leakage analysis, the thermal design concept, additional power loss reduction strategy, starting performance analysis have been described. By using performance estimate, the key design parameter can be identified and design results can be obtained. Furthermore, we fabricated and tested a prototype spindle motor industrial design to validate the optimal design calculation results. The experimental results indicated that the optimal generates higher breakdown torque, efficiency, flux linkage, starting performances, lower temperature rise, additional power loss and starting current than does the current former spindle motor design. A comparison of the optimal design calculations and the prototype measurement results validated the accuracy of the proposed model. Overall, the percentage of error is approximately 8%.
摘要 i
ABSTRACT ii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF TABLES x
LIST OF FIGURES xi
LIST OF SYMBOL xv
CHAPTER 1 Introduction - 1 -
1.1 Background and Motivation - 1 -
1.2 Problem Formulations -3 -
1.3 Proposed methods -4 -
1.4 Original Contribution Of The Study -5 -
1.5 Content guide -5 -

CHAPTER 2 Study of Stator Parameters Design Considering the Breakdown torque and Efficiency of a High-Speed Spindle Motor - 7 -
2.1 Introduction - 7 -
2.2 Design concept of high-speed spindle motors - 9 -
2.2.1 Design considerations of high-speed spindle motor -9 -
2.2.2 Output coefficient design concept -10-
2.2.3 Improve stator geometry concept -11-
2.2.4 Breakdown torque analysis -13-
2.2.5 Efficiency analysis -15-
2.2.6 Performance improvement of stator parameter design -16-
2.2.7 Evaluation of magnetic flux characteristics -16-
2.3 Optimal Design -17-
2.3.1 Concept of RSM -17-
2.3.2 CCD Experimental -19-
2.4 Optimization results -20-
2.4.1 Model fitting -20-
2.4.2 Effect of synthesis parameters -22-
2.4.3 Attaining optimal design -26-
2.5 Experiment result and discussion -27-
2.6 Conclusion -29-

CHAPTER 3 Evaluation of Magnetic Flux Linkage Characteristics and Iron Loss of Stator Winding Design -31-
3.1 Introduction - 31-
3.2 Analysis Approach - 32-
3.2.1 Introduction of stator winding design -32-
3.2.2 The idealtraveling in AC winding -33-
3.2.3 Magnetic forces (mmfs) considering to stator parameter analysis -36-
3.2.4 Classification of magnetic flux -37-
4.2.5 Stator flux leakage considering to the stator parameter analysis -38-
4.2.6 Increase magnetic flux in stator parameter changes analysis -40-
4.2.7 Flux linkage finite element analysis -40-
4.2.8 Influence of the stator flux linkage and stator linkage reactance in the
torque of a spindle motor -42-
4.2.9 Iron loss analysis considering to the changes stator parameter -43-
3.3 Analysis of stator leakage and iron loss based on RSM - 44-
3.3.1 Analysis stator leakage and iron loss considering to the stator
parameter -44-
3.3.2 Effect of stator leakage, magnetic flux leakage, and iron loss to the
spindle motor torque and efficiency -45-
3.3.3 Effect of stator leakage reactance to magnetizing current and
magnetizing reactance -46-
3.4 Design optimization -47-
3.5 Simulation and experimental results -50-
3.6 Conclusion -55-

CHAPTER 4 Optimal Design of Stator Parameter to Reduce the Temperature Rise of the Spindle Motor - 56-
4.1 Introduction - 56-
4.2 Thermal in Spindle motor - 57-
4.2.1 Basic thermal in induction motor -57-
4.2.2 Conduction Heat Transfer -59-
4.2.3 Convection heat transfer -62-
4.2.4 Heat transfer by radiation -63-
4.2.5 Heat transport (thermal transients) in a homogenous body -64-
4.2.6 Heat sources in spindle motor -65-
4.2.7 Thermal network theory -67-
4.2.8 Loss in induction motor -68-
4.3 Thermal Generation in spindle motor - 74-
4.3.1 Thermal design concept in spindle motor -74-
4.3.2 Heat formed by additional power loss -75-
4.3.3 Magnetic flux analysis considering additional power loss -76-
4.4 Optimization procedure -77-
4.5 Analysis of Power Losses and temperature rise of the spindle motor -78-
4.5.1 Analysis power losses considering the stator parameter -78-
4.5.2 Investigation of temperature rise considering of stator parameters and
additional power losses -81-
4.6 Experiment result and discussion -83-
4.7 Conclusion -84-

CHAPTER 5 Study of Rotor Slot Geometry to Reduce of Rotor Leakage Reactance and Increase Starting Performance of the Spindle Motor - 85-
5.1 Introduction - 85-
5.2 Squirrel cage rotor design - 86-
5.2.1 Squirrel cage material -86-
5.2.2 Rotor design concept and effect -90-
5.2.3 Reactance of the Induction Motor -96-
5.2.4 Magnetizing Reactance -97-
5.2.5 Effect of rotor bar diameter to the magnetizing reactance and leakage
reactance -100-
5.3 Starting performance analysis - 102-
5.3.1 Normal starting conditions calculation -102-
5.3.2 Analysis of starting performance considering stator leakage
reactance -103-
5.3.3 Flux linkage FEM analysis -104-
5.4 Design optimization -105-
5.4.1 Initialization, evaluation, and parameter analysis of the rotor slot
geometry design -105-
5.4.2 Response surface model construction -107-
5.4.3 DOE process -108-
5.4.4 Selection of optimal value -108-
5.5 Analysis effect of rotor slot leakage reactance -109-
5.6 Simulation and experimental results -111-
5.7 Conclusion -114-

CHAPTER 6 Conclusions - 116-
REFERENCES -125-
PUBLICATION LIST -135-

Appendix
1. Parameter analysis -107-
2. Spindle motor design flowchart and experimental analysis -163-
3. Design flowchart with ANSOFT MAXWELL -188-
4. Table of design results -190-
5. Design calculation in excel software -318-

[1] F. Cui, and P. Liu, “Development and trend of high-speed hydrodynamic and
hydrostatic hybrid spindle unit”, Mechanic Automation and Control Engineering
(MACE), 2nd International Conference on Hohhot, pp. 1221-1224, 2011.
[2] D. K. Hong, J.H. Choi, D.J. Kim, Y.D. Chun, B.C. Woo, and Dae-Hyun Koo,
“Development of a high speed induction motor for spindle systems”, IEEE
Trans. on Magnetics, vol. 49, no. 7, pp. 4088-4091, 2013.
[3] C. Zwyssig, J.W. Kolar and S.D. Round, “Megaspeed drive systems: pushing
beyond 1 million r/min”, IEEE Trans. on Mechatronics, vol.14, no. 5, pp. 564-
574. 2009.
[4] S. M. Jang, H.W. Cho, J.Y. Vhoi, J. H. Park, and S. K. Choi, “Development of
high-speed brushless DC motor for turbo-compressor”, IEEE-ICEMS, Conf.
Proc. of the Eight International Conference on Electrical Machines and Systems,
vol.2, pp. 877-882, 2005.
[5] W.L. Soong, G.B. Kliman, R.N. Johnson, R.A. White, and J.E. Miller, “Novel
high-speed induction motor for a commercial centrifugal compressor”, IEEE
Trans. on Industry Applications, vol.36, no. 3, pp. 706-713, 2000.
[6] W.R. Canders, “High speed machines on magnetic bearings – design concepts and
power limits”, Proc. of the Int. Conf. ICEM on Instanbul, Turkey, pp. 20-25,
1998.
[7] B.H. Bae, S.K. Sul, J.H. Kwon, and J.S. Byeon, “Implementation of sensorless
vector control for super high-speed PMSM of turbo-compressor”, IEEE Trans.
on on Industry Applications, vol.39, no. 3, pp. 811-818, 2003.
[8] O. Bottauscio, F. Casaro, M. Chiampi, S. Giors, C. Maccarrone, and M. Zucca,
“High-speed drag-cup induction motors for turbo-molecular pumps
applications”, IEEE International Magnetic Conference, pp. 964-964, 2006.
[9] A. Drumea, N.D. Codreanu, and P. Svasta, “Integrated electronic module for
controlling a turbomolecular pump”, International Spring Seminar on Electronics
technology: Concurrent Engineering in Electronic Packaging, pp. 212-214, 2001.
[10] M. Kruger and W. Leonhard, “Compact Electrical Power Supply for On-Board
Use”, IEEE-EPE Conf. on Power Electronics and Applications , Firenze, Italy,
Vol. 4, pp. 82-87, 1991.
[11] C. Zwyssig, J.W. Kolar, W. Thaler, and M. Vohrer, “Design of a 100 W 500000
rpm permanent magnet generator for mesoscale gas turbines”, Proc. of the 40th
IEEE-IAS Ann. Meeting, Hongkong, China, pp. 253-260, 2005.
[12] A.J. Mitcham and J.J.A. Cullen, “Permanent magnet generator options for the
more electric aircraft”, Conf. on Power Electronics, Machines and Drives, Publ.
no. 487, pp. 241-245, 2002.
[13] R. Hall, A.G. Jack, B.C. Mecrow, and A.J. Mitcham, “Design and initial testing of
an outer rotating segmented rotor switched reluctance machine for an aeroengine
shaft-line-embedded starter/generator”, IEEE Conf. on Electrical
Machines and Drives, pp. 1870-1877, 2005.
[14] E. Richter, and C. Ferreira, “Performance evaluation of a 250 kW switched
reluctance starter generator”, IEEE Industry Applications Conference, vol.1, pp.
434-440, 1995.
[15] P.P. Acarnley, B.C. Mecrow, J.S. Burdess, J.N. Fawcett, J.G. Kelly, and P.G.
Dickinson, “Design Principles for a Flywheel Energy Store for Road Vehicles”,
IEEE Trans. on Industry Applications, vol.32, no. 6, pp. 1402-1408, 1996.
[16] I. Takahashi, T. Koganezawa, G. Su, and K. Ohyama, “A Super High Speed PM
Motor Drive System by a Quasi-Current Source Inverter”, IEEE Trans. on
Industrial Application, vol. 30, no. 3, pp. 683-690, 1994.
[17] A. Boglietti, P. Ferraris, M. Lazzari, and F. Profumo, “Test procedure for very
high speed spindle motors”, Conf. Rec. of the IEEE-IAS Seattle, vol. 1, pp. 102-
108, 1990.
[18] K. Rajit Kumar, D. Sakhibala, and S. Palaminiswami, “Efficiency optimization of
induction motor drive using soft computer techniques”, International Journal of
Computer Applications, vol. 3, no. 1, pp. 0975-8887, 2010.
[19] M. Akbaba, M. Taleb, and A. Rumeli, “Improved estimation of induction
machine Parameter, Electronic Power System Research, vol. 34, pp. 65-73, 1995.
[20] O. Chiver, E. Micu, and C. Barz, “Stator winding leakage inductances
determination using finite elements method”, Optimization of Electrical and
Electronic Equipment, OPTIM,11th International Conference, pp. 69-74, 2008.
[21] H. N. Phyu, N. L. H. Aung, and C. Bi, “Influence of winding structure and the
effect of MMF harmonics to the spindle motor performance for ultrahigh TPI
HDD”, IEEE Trans. on Magnetics, vol. 49, no. 6, pp. 2776-2782, 2013.
[22] J. K. Dong, D. K. Hong, J. H. Choi, Y. D. Chun, B. C. Woo, and D. H. Koo, “An
analytical approach for a high speed and high efficiency induction motor
considering magnetic and mechanical problems”, IEEE Trans. on Magnetics, vol.
49, no. 5, pp. 2319-2322, 2013.
[23] Y. C. Sin, “Study of winding design on the characteristic of the built-in highspeed
spindle motors”, MS Thesis, National Kaohsiung First University of
Science and Technology.
[24] M. Prakesh, L. H. Tong, L. Zhijie, and Y. Ibrahim, “Robust design of spindle
motor: a case study”, Reliability Engineering and System Safety, vol. 75, pp.
313-319, 2002.
[25] C. H. Chang, S. S. Hung, C. T. Liu, and S. P. Cheng, “Optimal design of a high
speed SPM motor for machine tool applications”, IEEE Trans. on Magnetics,vol. 50, no. 1, pp.4002304, 2014.
[26] Z. Li, Y. Huang, J. Dong, B. Guo, and T. Zhou, “Stator winding design of
induction motors for high efficiency”, 17th International Conference on Electrical
Machines and Systems (ICEMS), Hangzhou, China, pp. 130-134, 2014.
[27] T. D.A. Aníbal, F. J. T. E. Ferreira, and A. Q. Duarte, “Technical and economical
considerations on super high-Efficiency three-phase motors”, IEEE Trans. on
Industry Applications, vol. 50, no. 2, pp. 1274-1285, 2014.
[28] Z. Ke, X. Jiang, Y. Wu, L. Zhang, and X. Wu, “Effect of slot shape in rotor of
electrical motor with high-speed spindle on slot ripples”, Proceedings of the
International Conference on Modeling, Identification, and Control, Okayama,
Japan, pp. 670-675, 2010.
[29] C. Bruzzese, “Analysis and application of particular current signatures
(symptoms) for cage monitoring in non sinusoidally fed motors with high
rejection to drive load, inertia, and frequency variations”, IEEE Trans. on
Industrial Electronics, vol. 55, no. 12, pp.4137–4155, 2008.
[30] L. Gyeorye, S. Min, and J. P. Hong, “Optimal shape design of rotor slot in
squirrel-cage induction motor considering torque characteristics”, IEEE Trans.
on Magnetics, vol. 49, no. 5, pp. 2197-2200, 2013.
[31] Z. Dianhai, C. S. Park, and C. S. Koh, “A new optimal design method of rotor
slot of three-phase squirrel cage induction motor for NEMA class D speed-torque
characteristic using multi-objective optimization algorithm”, IEEE Trans. on
Magnetics, vol. 48, no. 2, pp. 879-882, 2012.
[32] L. Leonard, A. Simion, A. Munteanu, M. Cojan, and O. Dabija, “Dual cage high
power induction motor with direct start-up design and FEM analysis”, Advances
in Electrical and Computer Engineering, vol. 13, no. 2, pp. 55-58, 2013.
[33] B. Aldo, R. I. Bojoi, A. Cavagnino, P. Guglielmi, and A. Miotto, “Analysis andmodeling of rotor slot enclosure effects in high-speed induction motors”, IEEE
Trans. on Industry Applications, vol. 48, no. 4, pp. 1279-1287, 2012.
[34] W. Stephen, and C. I. McClay, “Optimization of the geometry of closed rotor
slots for cage induction motors”, IEEE Trans. on Industry Applications, vol. 32,
no. 3, pp. 560-568, 1996.
[35] I. Boldea, and Nasar S.A, “The induction machines design handbook, CRC
Press”, 2nd edition, 2010.
[36] Ansoft Maxwell user’s guidance ver. 14. 2010. ANSYS. Inc, Southpointe,
Canonsburg, USA.
[37] X. Bao, Di C, and Fang. Y, “Analysis of slot leakage reactance of submersible
motor with closed slots during starting transient operation” Journal of Electrical
Engineering and Technology, vol. 10, no. 6, pp. 709-716, 2015.
[38] J. Cheaytani, A. Benabou, A.Tounzi, M.Dessoude, L.Chevallier, and T.Henneron,
“End-region leakage fluxes and losses analysis of cage induction motors using 3-
D finite-element method”, IEEE Trans. on Magnetics, vol. 51, no. 3, pp.
810100439, 2015.
[39] H. Grop, Soulard. J, and Persson H, “Stator slot leakage in AC-machines
equipped with fractional conductor windings”, International Conference of
Electrical Machines and Systems (ICEMS), Tokyo, pp. 1-6, 2009.
[40] K.W. Lee, D.S. Hyun, and E.J. Wiedenbrug, “Detection of stator-slot magnetic
wedge failures for induction motors without disassembly”, IEEE Trans. Industry
Applications, vol. 50, no. 4, pp. 2410- 2419, 2014.
[41] G.Q. Hong, S.G. Ho, and G.J. Hwang, “Characteristics of a squirrel cage
induction motor”, IEE Proceedings B-Electric Power Applications, vol. 138, no.
3, pp.115-124, 1991.
[42] C.C. Hwang, Hung S.S, Liu C.T, and Cheng S.P, “Optimal design of a high speedSPM motor for machine tool applications”, IEEE Trans. on Magnetics, vol. 50,
no. 1, pp. 1-4, 2014.
[43] D.J. Kim, Hong. D.K, Choi J.H, Chun Y.D, Woo B.C, and D.H. Koo, “An
analytical approach for a high speed and high efficiency induction motor
considering magnetic and mechanical problems”, IEEE Trans. on Magnetics, vol.
49, no.5, pp. 2319-2322.
[44] J. L.Jr. Kirtley, “Analytic design evaluation of induction machines”,
Massachusetts Institute of Technology, 2003.
[45] P. Menon, Tong L.H, Zhijie L, and Ibrahim Y, “Robust design of spindle motor: a
case study”, Reliability Engineering and System Safety, vol. 75, pp. 313-319,
2002.
[46] L. Monjo, Corcoles F, and Pedra J, “Saturation effects on torque- and current–
slip curves of squirrel-cage induction motors, IEEE Trans. on Energy
Conversion, vol. 28, vol. 1, pp. 243-254, 2013.
[47] K. Nishihama, Ide K, H.Mikami, T. Fujigaki, and S. Mizutani, “Starting torque
analysis of cage induction motor using permeance model considering magnetic
saturation by leakage flux”, International Conference of Electrical Machines and
Systems (ICEMS) Tokyo, pp.1-6, 2009.
[48] W. Purwanto and Su.J.C.T, “Improving the performance of high-speed spindle
motor for machine tool applications”, Asia Life Sciences, vol. 25, no. 2, pp. 675-
689, 2016.
[49] J. Pyrhonen, Jokinen. T, and Hrabovcova V, “Design of Rotating Electrical
Mechines, John Wiley& Sons, Ltd, 2008.
[50] Z. Rui, Li L.G, Jing W.Q, Hui F.G, and G.X. Wen, “Leakage field computational
analysis of closed slot motor based on ANSOFT”, 17th International Conference
on Electrical Machines and Systems (ICEMS), Hangzhou, China, pp. 1963-1965,2014.
[51] S.D. Sudhoff, Aliprantis. D.C, Kuhn B.T, and P. L.Chapman, “Experimental
characterization procedure for use with an advanced induction machine model”,
IEEE Trans. on Energy Conversion, vol. 18, no. 1, pp. 48-56, 2003.
[52] A. Tessarolo. “Leakage field analytical computation in semi closed slots of
unsaturated electric machines” IEEE Trans. on Energy Conversion, vol.30, no. 2,
pp. 431-440, 2015.
[53] T. Tuovinen, Hinkkanen. M, and Luomi. J, “Modeling of saturation due to main
and leakage flux interaction in induction machines”, IEEE Trans. on Industry
Applications, vol. 46, no. 3, pp. 937-945, 2010.
[54] S. Williamson and Mc Clay. C.I, “Optimization of the geometry of closed rotor
slots for cage induction motors” IEEE Trans. on Industry Applications, vol.32,
no. 3, pp. 560-568, 1996.
[55] G. Scutaru, Horia Gavrila, and Ioan Peter, “An estimation method of the
manufacturing process effect on iron losses”, Advances in Electrical and
Computer Engineering, vol. 14, no. 2, pp. 49-52, 2014.
[56] D. K. Hong, J. H. Choi, D. J. Kim, Y. D. Chun, B. C. Woo, and D. H. Koo,
“Development of a high speed induction motor for spindle systems”, IEEE
Trans. on Magnetics, vol. 49, no. 7, pp. 4088-4091, 2013.
[57] M. V. Cistelecan, Fernando J. T, E. Ferreira, and M. Popescu, “Adjustable flux
three-phase AC machines with combined multiple-step star–delta winding
connections”, IEEE Trans. Energy Conversion, vol. 25, no. 2, pp. 348-355, 2010.
[58] N. Z. Avdiu, “Modeling of the induction motor with two sets of three phase
windings in the stator and squirrel cage rotor”, IECON 2012 - 38th Annual
Conference on IEEE Industrial Electronics Society, pp. 1900 – 1907, 2012.
[59] M. Mohan, “A Comparative study on performance of 3 kW induction motor withdifference shapes of stator slots”, International Journal of engineering and
Technology, vol. 4, no. 06, 2012.
[60] M. Sundaram and P. Navaneethan, “On the influence of stator slot sharp on the
energy conversation associated with the submersible induction motors”,
American Journal of Applied Sciences, vol. 8, no. 4, pp. 393-399, 2011.
[61] G. Madescu, M. Greconici, M. Biriescu, and M. Moţ, “Effects of stator slot
magnetic wedges on the induction motor performances”, Optimization of
Electrical and Electronic Equipment (OPTIM), 13th International Conference,
pp. 489 – 492, 2012.
[62] J. Kappatou, C. Gyftakis, and A. Safacas, “A study of the effects of the stator
slots wedges material on the behavior of an induction machine”, Proceedings of
the International Conference on Electrical Machines, pp. 1-6, 2008.
[63] L. Wang, L. Zhang, and M. Xu, “Simulation analysis on the influence of
magnetic field distribution caused by motor spindle air-gap”, International
Conference on Electronic & Mechanical Engineering and Information
Technology, pp. 215-218, 2011.
[64] S. Giurgea, D. Fodorean, G. Cirrincione, A. Miraoui, and M. Cirrincione,
“Multimodel optimization based on the response surface of the reduced FEM
simulation model with application to a PMSM”, IEEE Trans. on Magnetics, vol.
44, no. 9, pp. 2153-2157, 2008.
[65] B. H. Lee, J. P. Hong, and J. H. Lee, “Optimum design criteria for maximum
torque and efficiency of a line-start permanent-magnet motor using response
surface methodology and finite element method”, IEEE Trans. on Magnetics,
vol. 48, no. 2, pp. 863-866, 2012.
[67] K. H. Seong, J. H. Hwang, J. Y. Shim, and H. W. Cho, “Investigation of
temperature rise in an induction motor considering the effect of loading”, IEEETrans. on Magnetics, vol. 50, no. 11, article. 8206304, 2014.
[68] C. M. Ong, “Dynamic simulation of electric machinery using Matlab Simulink”,
Practice-Hall, Inc, New Jersey, 2008.
[69] IEEE standard test procedure for polyphase induction motors and generators.
IEEE Standard 112-2004. 2004, pp. 1-79.
[70] G. Bertotti, “General properties of power losses in soft ferromagnetic materials,”
IEEE Trans. on Magnetices, vol. 24, no. 1, pp. 621–630, 1988.
[71] K. Yang, and B. El-Haik, “Design for six sigma”, McGraw-Hill Companies, inc.
USA, 2003.
[72] Y. C. Liang, Chen W, Sun Y, Yu N, Zhang P, and Liu H, “An expert system for
hydro/aero-static spindle design used in ultra precision machine tool”, Robotics
and Computer-Integrated Manufacturing, vol. 30, no. 2, pp. 107–113, 2014.
[73] R. Dupont, “Robust rotor dynamics for high-speed air bearing spindles”,
Precision Engineering, vol. 40, pp. 7-13, 2015.
[74] B. Bossmanns and Tu J. F, “A thermal model for high speed motorized spindle”,
International Journal of Machine Tools & Manufacture, vol. 39, no. 9, pp. 1345-
1366, 2009.
[75] C.H. Chien, and Jang J.Y, “3-D numerical and experimental analysis of a built-in
motorized high-speed spindle with helical water cooling channel”, Applied
Thermal Engineering, vol. 28, no. 17, pp. 2327–2336, 2008.
[76] W. L. Chi, Jay F. T, and Joe k., “An integrated thermo-mechanical-dynamic
model and characterize motorized machine tool spindle during very high speed
rotation”, International journal of machine tools and manufacture, vol. 43, no.
10, pp.1035-1050, 2003.
[77] S. B. Park, Lee H. B, and Hahn S. Y, “Stator slot shape design of induction
motors for iron loss reduction”, IEEE Trans. on Magnetics, vol. 31, no. 3,pp.2004-2007, 1995.
[78] M. Mohan, “A comparative study on performance of 3 kW induction motor with
difference shapes of stator slots”, International Journal of Engineering and
Technology, vol. 4, no. 6, pp. 2446-2450, 2012.
[79] E. Abele, Altintas. Y, and Brecher. C, “Machine tool spindle units”, CIRP Annals
- Manufacturing Technology, vol. 59, no. 2, pp. 781–802, 2010.
[80] N. Z. Avdiu, “Modeling of the induction motor with two sets of three phase
windings in the stator and squirrel cage rotor, IECON 2012 - 38th Annual
Conference on IEEE Industrial Electronics Society, vol. 38, pp. 1900–1907,
2012.
[81] W. L. Chi, Jay F. T, and Joe k, “An integrated thermo-mechanical-dynamic model
and characterize motorized machine tool spindle during very high speed
rotation”, International journal of machine tools and manufacture, vol.43, no.10,
pp.1035-1050, 2003.
[82] E. Uhlmann and Hu J, “Thermal modelling of a high-speed motor spindle”,
Procedia CIRP, vol. 1, pp. 313-318, 2012.
[83] A. Bousbaine, “An investigation into the thermal modelling of induction motors”,
PhD Thesis in University of Sheffield, 1993.
[84] J. Pyrhonen, T. Jokinen, and V. Hrabovcova, “Design of rotating electrical
machines, John Wiley & Sons, Ltd., New York, USA, 2008.
[85] S. C. Jeng and Wei. Y. H, “Characterization and model s for the thermal growth
of a motorized high speed spindle”, International Journal of Machine Tools and
Manufacture, vol. 43, no. 11, pp.1163-1170, 2003.
[86] L. Wang, L. Zhang, and M. Y. Xu, “Simulation analysis on the influence of
magnetic field distribution caused by motor spindle air-gap”, International
Conference on Electronic & Mechanical Engineering and InformationTechnology, pp. 215-218, 2011.
[87] L. Leonard, A. Simion, A. Munteanu, M. Cojan, and O. Dabija, “Dual cage high
power induction motor with direct start-up design and FEM analysis”, Advances
in Electrical and Computer Engineering, vol. 13, no. 2, pp. 55-58, 2013.
[88] A. Barbour and W. T. Thomson, “Finite element study of rotor slot designs with
respect to current monitoring for detecting static air-gap eccentricity in squirrelcage
induction motors”, IEEE Industrial Applications Society Annual Meeting
New Orleans, Louisiana, pp. 112-119, 1997.
[89] L. Leonard, A. Simion, A. Munteanu, M. Cojan, and O. Dabija, “Dual cage high
power induction motor with direct start-up design and FEM analysis”, Advances
in Electrical and Computer Engineering, vol. 13, no. 2, pp. 55-58, 2013.
[90] P. R. Hao, Z. Haisen, Z. D. Dong, and L. J. Xuan, “Analytical method for starting
performance calculation of induction motors considering skin effect and leakage
flux saturation”, 2014 17th International Conference on Electrical Machines and
Systems (ICEMS), Hangzhou, China, pp. 135-138, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊