(3.236.122.9) 您好!臺灣時間:2021/05/09 07:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:劉韋佑
研究生(外文):LIU, WEI-YU
論文名稱:使用注入鎖定振盪器技術之向量調製相移器
論文名稱(外文):A Phase Shifter Based on Vector Modulator Using Injection-locked Oscillator Technique
指導教授:吳建銘吳建銘引用關係
指導教授(外文):WU, JIAN-MING
口試委員:吳建銘彭康峻黃智裕
口試委員(外文):WU, JIAN-MINGPENG, KANG-CHUNHUANG, CHIH-YU
口試日期:2017-03-30
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:56
中文關鍵詞:相移器注入鎖定相移器波束成形
外文關鍵詞:Phase ShifterInjection-locked Phase ShifterBeamforming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出應用於2.4 GHz頻段的大規模天線波束成形之相移器。在波束成形應用上,為了要有更好指向性的波束,相移器所提供的相位必須非常精準。在本論文針對傳統向量調製架構相移器之振盪訊號源,利用注入鎖定技術降低振盪器相位誤差,進而提高相移器之相位精準度。建造方塊包括注入鎖定式振盪器、環形耦合器、90度相移器、可變增益放大器以及功率合成器。注入鎖定振盪器串接環形耦合器與90度相移器產生0度與90度相位,透過可變增益放大器改變訊號大小,最後使用功率合成器產生目標相位,相位合成頻率設定在2.4 GHz。
This thesis presents a low-phase-error phase shifter for beamforming applications. The goal of this thesis focuses on designing a phase shifter using an injection-locked oscillator technique. The building blocks include an injection-locked oscillator, a ring coupler, a 90-degree phase shifter, a variable gain amplifier, and a power combiner. An oscilloscope is used to measure the output phases in this work. The measured results show that an injection-locked oscillator technique reduces the phase error of the phase shifter effectively.
目錄
第1章 緒論...1
1.1 大規模天線技術...1
1.2 波束成形技術...3
1.3 研究動機...4
1.4 章節介紹...5
第2章 相移器...6
2.1 相移器架構種類...6
2.1.1 向量調製型架構...6
2.1.2 切換式架構...7
2.1.3 反射式架構...8
2.1.4 分佈式架構...9
第3章 注入鎖定振盪器理論...10
第4章 相移器電路設計與量測...14
4.1 電路設計...14
4.1.1 注入鎖定振盪器...14
4.1.2 環形耦合器...16
4.1.3 90度相移器...23
4.1.4 可變增益放大器...29
4.1.5 功率合成器...36
4.2 相位合成量測...40
4.2.1 30度相位合成量測...44
4.2.2 45度相位合成量測...47
4.2.3 60度相位合成量測...50
第5章 結論...53
參考文獻...54

圖目錄
圖 1 1 MIMO系統 [4]...1
圖 1 2空間分集...2
圖 1 3空間多工...2
圖1 4波束成形技術 [7]...3
圖1 5相位誤差0度與12度場形量測圖 [8]...4
圖 1 6大規模多輸入多輸出與波束成形 [10]...5
圖2 1 向量調製理論基礎...6
圖2 2向量調製電路架構示意圖...7
圖2 3切換式架構...7
圖2 4反射式相移器架構...8
圖2 5分佈式架構示意圖...9
圖3 1 Adler電路模型 [25]...10
圖3 2向量表示圖 [25]...12
圖4 1系統架構圖...14
圖4 2注入鎖定振盪器成品...14
圖4 3 環形耦合器架構...16
圖4 4 環形耦合器成品...16
圖4 5環形耦合器S11參數...17
圖4 6環形耦合器S22參數...17
圖4 7環形耦合器S33參數...18
圖4 8環形耦合器S44參數...18
圖4 9環形耦合器差模量測實驗設置圖...19
圖4 10差模隔離度...19
圖4 11 差模輸出相位圖...20
圖4 12環形耦合器和模量測實驗設置圖...20
圖4 13 和模輸出相位圖...21
圖4 14和模隔離度...21
圖4 15 90度相移器實作圖...23
圖4 16 90度相移器S11參數...23
圖4 17 90度相移器S33參數...24
圖4 18 90度相移器S44參數...24
圖4 19 90度相移器S31參數...25
圖4 20 90度相移器S41參數...25
圖4 21 90度相移器S41相位參數...26
圖4 22 90度相移器S31相位參數...26
圖4 23 90度相移器S34參數...27
圖4 24 90度相移器實驗設置圖...28
圖4 25 90度相位輸出圖...28
圖4 26可變增益放大器實作圖...29
圖4 27可變增益放大器S11參數...30
圖4 28可變增益放大器S22參數...30
圖 4 29 可變增益放大器衰減選擇...31
圖4 30可變增益放大器最大功率輸出之增益量測結果...32
圖4 31可變增益放大器實驗設置圖...32
圖4 32可變增益放大器16.7 dB輸出...33
圖4 33可變增益放大器衰減2 dB輸出...34
圖4 34可變增益放大器衰減4 dB輸出...34
圖4 35可變增益放大器衰減8 dB輸出...35
圖4 36可變增益放大器衰減16 dB輸出...35
圖4 37功率合成器...36
圖4 38功率合成器S11量測結果...36
圖4 39功率合成器S22量測結果...37
圖4 40功率合成器S33量測結果...37
圖4 41功率合成器S31量測結果...38
圖4 42功率合成器S32量測結果...38
圖4 43功率合成器S21 量測結果...39
圖4 44向量合成圖...40
圖4 45 0度與90度相位量測...40
圖4 46功率合成器相位延遲...41
圖4 47 未合成前基準點量測...42
圖 4 48 基準點直角坐標表示圖...42
圖 4 49 相位合成實驗流程圖...43
圖4 50相位合成實驗設置圖...44
圖4 51 30度未合成振幅大小...45
圖4 52 30度未注入相位合成...45
圖4 53 30度注入後相位合成...46
圖4 54 45度未合成振幅大小...47
圖4 55 45度未注入相位合成...48
圖4 56 45度注入後相位合成...48
圖4 57 60度未合成振幅大小...50
圖4 58 60度未注入相位合成...51
圖4 59 60度注入後相位合成...51

表目錄
表 1 Adler方程式參數定義...11
表2注入鎖定振盪器之量測結果...15
表3 環形耦合器量測結果...22
表4 90度相移器量測結果...27
表5可變增益放大器量測結果...31
表6功率合成量測結果...39
表7 輸出相位為30度之量測結果...46
表8 輸出相位為45度之量測結果...49
表9 輸出相位為60度之量測結果...52
表 10注入鎖定技術相移器量測總表...52


[1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong and J. C. Zhang, "What will 5G be?," IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065-1082, Jun. 2014.
[2] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin and R. Zhang, "An overview of massive MIMO: benefits and challenges," IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 742-758, Oct. 2014.
[3] Z. Zhang, X. Wang, K. Long, A. V. Vasilakos and L. Hanzo, "Large-scale MIMO-based wireless backhaul in 5G networks," IEEE Wireless Communications, vol. 22, no. 5, pp. 58-66, Oct. 2015.
[4] C. -X. Wang, F. Haider, X. Gao, X. -H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher and E. Hepsaydir, "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Communications Magazine, vol. 52, no. 2, pp. 122-130, Feb. 2014.
[5] "MIMO," 維基百科, [Online]. Available: https://zh.wikipedia.org/wiki/MIMO. [Accessed 27 3 2017].
[6] 吳建銘, 使用注入鎖定四相位正交壓控振盪器之波束成形專用的低相位誤差相移器, 科技部專題研究計畫(電磁), 2015.
[7] M. S. Islam, T. Jessy, M. S. Hassan, K. Mondal and T. Rahman, "Suitable beamforming technique for 5G wireless communications," Computing, Communication and Automation (ICCCA), 2016 International Conference, Noida, 2016, pp. 1554-1559.
[8] P. Sriploy, M. Uthansakul and R. Wongsan, "Investigation into Imperfection of phase shifter for smart antenna implementation," Microwave Conference, 2007. APMC 2007. Asia-pacific, Bangkok, 2007, pp. 1-4.
[9] J. Kim, K. Choi and H. Park, "Beamforming for full-duplex multiuser MIMO systems," IEEE Transactions on Vehicular Technology, vol. 66, no. 3, pp. 2423-2432, Mar. 2017.
[10] M. Agiwal, A. Roy and N. Saxena, "Next generation 5G wireless networks a comprehensive survey," IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 1617-1655, thirdquarter 2016.
[11] S. M. Razavizadeh, M. Ahn and I. Lee, "Three-dimensional beamforming: a new enabling technology for 5G wireless networks," IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 94-101, Nov. 2014.
[12] F. Ellinger, U. Mayer, M. Wickert, N. Joram, J. Wagner, R. Eickhoff, I. Santamaria, C. Scheytt and R. Kraemer, "Integrated adjustable phase shifters," IEEE Microwave Magazine, vol. 11, no. 6, pp. 97-108, Oct. 2010.
[13] K. -J. Koh and G. M. Rebeiz, "0.13-μm CMOS phase shifters for X-, Ku-, and K-band phased arrays," IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp. 2535-2546, Nov. 2007.
[14] B. Wang, G. Tasselli, C. Botteron and P. -A. Farine, "24 GHz LNA and vector modulator phase shifter for phased-array receiver in CMOS technology," 2013 IEEE International Symposium on Phased Array Systems and Technology, Waltham, MA, 2013, pp. 89-92.
[15] N. Joram, U. Mayer, R. Eickhoff and F. Ellinger, "Fully integrated active CMOS vector modulator for 802.11a compliant diversity transceivers," 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, Tel Aviv, 2009, pp. 1-4.
[16] J. -H. Tsai, C. -K. Liu and J. -Y. Lin, "A 12 GHz 6-bit switch-type phase shifter MMIC," European Radar Conference (EuRAD), 2014 11th, Rome, pp. 613-616, 2014.
[17] M. T. Gul, H. V. Duong, S. -Y. Kim and J. -W. Lee, "A 60 GHz switched-line type phase shifter using body-floating switches," 2013 International SoC Design Conference (ISOCC), Busan, 2013, pp. 353-355.
[18] Y. Huang, J. Bao, X. Li, Y. Wang and Y. Du, "A 4-bit switched-line phase shifter based on MEMS switches," Nano/Micro Engineered and Molecular Systems (NEMS), 2015 IEEE 10th International Conference, Xian, pp. 405-408, 2015.
[19] F. Ellinger, R. Vogt and W. Bächtold, "Compact reflective-type phase-shifter MMIC for C-Band using a lumped-element coupler," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 5, pp. 913 - 917, May 2001.
[20] H. Zarei, C. T. Charles and D. J. Allstot, "Reflective-type phase shifters for multiple-antenna transceivers," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 8, pp. 1647-1656, Aug. 2007.
[21] 陳偉志, 全通網路相位偏移器之設計與製作, 碩士論文,國立中央大學電機工程研究所, 2011.
[22] F. Ellinger, R. Vogt and W. Bächtold, "Ultracompact reflective-type phase shifter MMIC at C-band with 360° phase-control range for smart antenna combining," IEEE Journal of Solid-State Circuits, vol. 37, no. 4, pp. 481-486, Apr. 2002.
[23] A. S. Nagra and R. A. York, "Distributed analog phase shifters with low insertion loss," IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 9, pp. 1705 - 1711, Sep. 1999.
[24] 林昱齊, 分佈式類比相位偏移器之設計與製作, 碩士論文,國立中央大學電機工程研究所, 2011.
[25] R. ADLER, "A study of locking phenomena in oscillators," Proceedings of the IRE, vol. 34, no. 6, pp. 351-357, Jun. 1946.
[26] K. Kurokawa, "Injection locking of microwave solid-state oscillators," Proceedings of the IEEE, vol. 61, no. 10, pp. 1386-1410, Oct. 1973.
[27] C. -J. Li, C. -H. Hsiao, F. -K. Wang, T. -S. Horng and K. -C. Peng, "A rigorous analysis of a phase-locked oscillator under injection," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 5, pp. 1391-1400, May 2010.
[28] L. J. Paciorek, "Injection locking of oscillators," Proceedings of the IEEE, vol. 53, no. 11, pp. 1723-1727, Nov. 1965.
[29] 蕭介勛, 本地振盪源的注入鎖定與牽引現象研究, 碩士論文,國立中山大學電機工程學系研究所, 2008.
[30] 張哲欣, 採用注入鎖定技術之極座標接收機設計, 碩士論文,國立臺北科技大學, 2013.
[31] 柯顯威, 應用於感測與波束成形之注入鎖定壓控振盪器設計, 碩士論文,國立高雄師範大學電子工程學系, 2015.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔