[1]J.-A. Pineiro, “Algorithm and architecture for logarithm, exponential, and powering computation,” IEEE Transaction on Computers, vol. 53, no. 9, pp. 1085–1096, Sep. 2004.
[2]J. A. Pineiro, M. D. Ercegovac, and J. D. Bruguera, “High-radix logarithm with selection by rounding: algorithm and implementation,” Journal of VLSI Signal Processing Systems, vol. 40, pp. 109–123, May 2005.
[3]D. K. Kostopoulos, “An algorithm for the computation of binary logarithms,” IEEE Transaction on Computers, vol. 40, no. 11, pp. 1267–1270, Nov. 1991.
[4]M. J. Schulte and J. E. E. Swartzlander, “Hardware designs for exactly rounded elementary functions,” IEEE Transaction on Computers, vol. 43, no. 8, pp. 964–973, Aug. 1994.
[5]P. T. P. Tang, “Table-lookup algorithms for elementary functions and their error analysis,” Proc. 10th Symp. Comput. Arithmetic, pp. 232–236. Jun. 1991,
[6]J. E. Stine and M. J. Schulte, “The symmetric table addition method for accurate function approximation,” Journal of VLSI Signal Procesing Systmes, vol. 21, pp. 167–177, Jun. 1999.
[7]M. J. Schulte and J. E. Stine, “Approximating elementary functions with symmetric bipartite tables,” IEEE Transactions on Computers, vol. 48, no. 8, pp. 842–847, Aug. 1999.
[8]K. Johansson, O. Gustafsson and L. Wanhammar, “Implementation of elementary functions for logarithmic number systems,” IET Computer & Digital Techniques, vol. 2, no. 4, pp. 295-304, July 2008.
[9]S. Paul, N. Jayakumar, and S. P. Khatri, “A Fast Hardware Approach for Approximate, Efficient Logarithm and Antilogarithm Computations,” IEEE Transactions on VLSI Systems, vol. 17, no. 2 pp. 269-277, February 2009.
[10]J. N. Mitchell, Jr., “Computer multiplication and division using binary logarithms,” IRE Transanstions on Electronics Computers, vol. 11, no. 11, pp. 512–517, Nov. 1962.
[11]M. Combet, H. V. Zonneveld and L. Verbeek, “Computation of the base two logarithm of binary numbers,” IEEE Transactions on Electronic Computers, vol. 14, no. 6, pp. 863–867, June 1965.
[12]S. L. SanGregory, R.E. Siferd, C. Brother, and D. Gallagher, “A fast, low-power logarithm approximation with CMOS VLSI implementation,” Proc. IEEE Midwest Symp. Circuits and Systems (MWSCAS), vol. 1, pp. 388-391, Aug. 1999.
[13]K. H. Abed and R. E. Siferd, “CMOS VLSI implementation of a low-power logarithmic converter,” IEEE Transactions on Computers, vol. 52, no. 11, pp. 1421–1433, Nov. 2003.
[14]H. Kim, B. –G. Nam, J. –H. Sohn, J. –H. Woo, and H. –J. Yoo, “A 231-MHz, 2.18-mW 32-bit Logarithmic Arithmetic Unit for Fixed-Point 3-D Graphics System”, IEEE Journal of Solid-State Circuits (JSSC), Vol. 41, No. 11, pp.2373-2381, Nov. 2006.
[15]T. –B. Juang, S. –H. Chen and H. –J. Cheng, “A lower-error and ROM-free logarithmic converter for digital signal processing applications,” IEEE Transactions on Circuits and Systems II, Vol. 56, no. 12, pp. 931-935, December 2009.
[16]Vojin G. Oklobdzija, “An Algorithmic and Novel Design of a Leading Zero Detector Circuit: Comparison with Logic Synthesis,” IEEE Transactions on Vera Large Scale Integration System, Vol. 2 , pp. 124 - 128, March 1994.
[17]T. –B. Juang, H. –L. Kuo, and K–S Jan, “Lower-error and area-efficient antilogarithmic converters with bit-correction schemes,” Journal of the Chinese Institute of Engineers, Vol. 39, no. 1, pp. 56-63, Aug 2015.
[18]Mircea Vladutiu, 2012, “Computer Arithmetic, ” Springer Berlin Heidelberg.
[19]陳昇宏,莊作彬,2009,使用對稱二區段為基礎的低誤差及無唯讀記憶體之對數轉換器超大型積體電路設計,國立屏東商業技術學院資訊工程系碩士論文。[20]詹凱翔,莊作彬,2011,高效能對數轉換器的研究與實作,國立屏東商業技術學院資訊工程系碩士論文。[21]Tso-Bing Juang, Ying-Ren Lee, Chin-Chieh Chiu, “Low-Cost Concurrent Error Detection Schemes for Logarithmic Converters,” International SoC Design Conference (ISOCC) pp. 213-214, Oct 2016.