(54.236.58.220) 您好!臺灣時間:2021/03/09 16:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊文賓
研究生(外文):Chuang, Wen-Pin
論文名稱:RC建築物漸進式崩塌強度與水平耐震能力關係之研究
論文名稱(外文):Relationship between the Progressive Collapse Resistance and Seismic Resistance of RC Building Frames
指導教授:蔡孟豪蔡孟豪引用關係
指導教授(外文):Tsai, Meng-Hao
口試委員:林子剛李明輝盧俊愷
口試委員(外文):Lin, Tzu-KangLee Ming-HuiLu, Jun-Kai
口試日期:2017-01-13
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:126
中文關鍵詞:漸進式崩塌側推分析下推分析崩塌強度耐震強度
外文關鍵詞:progressive collapsepushover analysispushdown analysiscollapse resistanceseismic resistance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:33
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
許多研究顯示,經耐震設計之結構物能提升抗漸進式崩塌之能力。本研究為了解漸進式崩塌強度與水平耐震強度之關係,建立二維RC梁柱次構架模型與設計實尺寸RC結構模型,探討移除柱後的崩塌強度與耐震強度之關係。利用塑性分析理論解析推導,再以不同結構參數進行非線性靜力分析;同時設計實尺寸RC結構模型,針對跨徑、樓層數、震力係數與不同樓層柱移除等因素,以側推分析(Pushover)得到水平耐震強度;另以下推分析(Pushdown)與擬靜態分析推估垂直崩塌強度,比較兩者垂直/側力強度比值。結果顯示,強度比值主要受跨徑影響,樓層數、移除柱位與震力係數相對影響較小。當跨徑或是跨徑/樓高比值增加,強度比值則會降低,而該比值會隨樓層數增加而提升。震力係數增加能提升耐震力與抗垂直崩塌力強度,但會使強度比值略微降低。移除柱樓層越高,則垂直崩塌強度越小,因此強度比值下降。從本研究得知,跨徑增加時強度比值降低則漸進式崩塌風險較高;支撐柱破壞樓層越高時會增加漸進式崩塌風險;從解析與數值分析比較結果可知,以塑性分析方法能概估三維結構物之垂直崩塌強度。
Several studies have indicated that enhancing seismic resistance may benefit the progressive collapse resistance for building frames under column loss. This ongoing study intends to investigate the relationship between the column-loss and seismic shear resistances by using beam-column sub-assemblages. The resistance ratio is defined and used as a measure for quantifying the relationship. An analytical expression of the ratio is derived based on the strong column and weak beam mechanism and plastic analysis technique. Three dimensional RC building models with different structural parameters are designed. Nonlinear static analyses are performed to evaluate the influences of the design parameters on the resistance ratio. The analysis results indicate that the span length or span-to-height ratio is the most important factor for the resistance ratio. Lower resistance ratios are observed with increased span length, which implied a higher collapse potential. Although larger seismic design force can increase both the seismic shear and column-loss resistances, the resistance ratio slightly decreases with increased seismic coefficient. An opposite trend is observed for the effect of story numbers. An approximate resistance ratio can be obtained with the analytical expression.
摘要 I
Abstract II
謝誌 III
目錄 IV
表目錄 VI
圖目錄 VIII
符號索引 XII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究方法 2
1.3 論文內容 2
第二章 次構架塑性分析 4
2.1 彈塑性分析 4
2.1.1梁之彈塑性分析 4
2.1.2梁受垂直載重 5
2.1.3超靜定梁 7
2.2次構架塑性分析 8
2.3 次構架參數設定 9
2.4 次構架數值模擬 10
2.4.1 SAP2000結構分析程式簡介 10
2.4.2 次構架模型建立及設定 10
2.4.3 次構架模型分析模式 11
2.4.4 次構架數值分析及結果 12
2.5 小結 13
第三章 實尺寸建築結構耐震設計 27
3.1 結構物模型 27
3.1.1 結構尺寸參數 27
3.1.2 台灣震力係數範圍 28
3.2 Midas結構分析程式 30
3.2.1 模型建置 30
3.2.2 梁柱設計 31
3.3設計調整 31
3.4結構物設計實例 32
3.5 設計結果 33
第四章 耐震結構物分析 69
4.1 建立結構物模型 69
4.2 耐震能力分析 70
4.2.1側推分析 70
4.2.2 分析結果 70
4.3 垂直崩塌力分析 72
4.3.1 下推分析 72
4.3.2 分析結果 72
4.4結構物模型數值分析與解析值比較 73
4.4.1 強度比值結果 73
4.4.2 解析解調整 74
4.4.3 漸進式崩塌預估方式 75
4.5 小結 76
第五章 結論與建議 108
5.1結論 108
5.2建議 109
參考文獻 110
附件一 Midas軟體提供之設計流程圖 113
作者簡介 126
1.ASCE 7-02, 2002, “Minimum Design Loads for Buildings and Other Structures Structural Engineering Institute, American Society of Civil Engineers,” Reston, VA.

2.DoD, 2013, “Unified facilities criteria: design of buildings to resist progressive collapse,” UFC 4-023-03. Department of Defense, Washington D.C., USA.

3.GSA, 2003, “Progressive Collapse Analysis and Design Guidelines for New Federal Office Building and Major Modernization Projects.” General Service Administration.

4.Corly, W. G., Mlakar, P., Sozen, M. and Thornton, C., 1998, “The Oklahoma City Bombing: Summary and recommendations for multihazard mitigation.” Journal of Performance of Constructed Facilities, ASCE, 12(3):100-112.

5.Nethercot D. A., 2011, “Design of Building Structures to Improve their Resistance to Progressive Collapse”, The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction, NO. 14, pp. 1-13.

6.Khandelwal, K., El-Tawil, S., Kunnath, S. K., and Lew, H. S., 2008, “Macromodel-Based Simulation of Progressive Collapse: Steel Frame Structures”,Journal of Structural Engineering, NO. 134(7), pp. 1070-1078.

7.Bao, Y., Kunnath, S. K., El-Tawil, S., and Lew, H. S., 2008, “Macromodel-Based Simulation of Progressive Collapse: RC Frame Structures,” Journal of Structural Engineering, NO. 134(7), pp. 1079-1091.

8.Kim, T., Kim, J., and Park, J., 2009, ” Investigation of progressive collapse-resisting capability of steel moment frames using push-down analysis”, Journal of Performance of Constructed Facilities, NO. 23(5), pp. 327-335.

9.Hadianfard M.A., M. Wassegh, M, SoltaniMohammadi, 2012, “Linear and nonlinear analysis of progressive collapse for seismic designed steel moment frames.”14th International Conference on Computing in Civil and Building Engineering, Moscow, Russia, June 27~29.

10.Marchis, A., Botez, M., and Ioani, A. M., 2012, “Vulnerability to progressive collapse of seismically designed reinforced concrete framed structures in Romania,” 15th World Conference on Earthquake Engineering (15WCEE), Lisbon, Portugal, September 24-28.

11.Livingston, E., Sasani, M., Bazan, M., and Sagiroglu, S., 2014, “Progressive collapse resistances of RC beams,” Engineering Structures, NO. 95, pp. 61-70.

12.Lin, K., Li, Y., Lu, X., and Guan, H., 2016, “Effects of Seismic and Progressive Collapse Designs on the Vulnerability of RC Frame Structures.” American Society of Civil, Journal of Performance of Constructed Facilities, 04016079.

13.吳嘉偉,薛強,張瑜晏,2010,「SAP2000非線性動態歷時分析模擬預測實尺寸鋼結構建築物崩塌實驗」,中興工程季刊,第108期,第15-22頁。

14.宋裕祺,蘇進國,劉光晏,蔡益超,2004,「以結構性能為基準之建築結構耐震能力評估」,台灣省土木技師公會-專題演講,台北,第1-29頁。

15.蔡孟豪,黃翠薔,2010,「內部磚牆對RC建築物喪失底層柱之彈塑性反應影響評估」,中華民國建築學會,第72期,第25-41頁。

16.Rezvani, F. H., Yousefi, A. M. and H. R. Ronagh, 2015, “Effect of span length on progressive collapse behaviour of steel moment resisting frames,” Structures, Vol.3, pp.81-89.

17.Moldovan, T.S., Bredean, L. and Ioani, A.M., 2012, “Earthquake and Progressive Collapse Resistance based on the Evolution of Romanian Seismic Design Codes,” 15th World Conference on Earthquake Engineering (15WCEE), Lisbon, Portugal, September 24-28.

18.Marchis, A. G., Moldovan, T. S. and A. M. Ioani, 2013, “The Influencr of The Seismic Design on The Progressive Collapse Resistance of Mid-Rise RC Framed Structures.” Acta Technica Napocensis, Civil Engineering and Architecture, Vol. 56, No. 2.

19.薛守义,2005,弹塑性力学,中国建材工业出版社,北京,第229-244頁

20.FEMA 356, 2000, “Prestandard and Commentary for the Seismic Rehabilitation of Buildings,” Federal Emergency Management Agency.

21.Tsai, M.H., 2010, “An analytical methodology for the dynamic amplification factor in progressive collapse evaluation of building structures.” Mechanics Research Communications, Volume 37, pp.61–66.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔