跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 14:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阮嬌英
研究生(外文):Kieu Anh Nguyen
論文名稱:氣候變遷對高屏溪流域沖蝕與產砂量之影響
論文名稱(外文):The Influence of Climate Change on Soil Erosion and Sediment Yield in Kaoping River Basin
指導教授:陳金諾
指導教授(外文):Ching-Nuo Chen
口試委員:李錦育詹勳全
口試委員(外文):Chin-Yu LeeHsun-Chuan Chan
口試日期:2017-06-23
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:土壤與水工程國際碩士學位學程
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:103
中文關鍵詞:土壤沖蝕產砂量氣候變遷地文性土壤沖淤模式高屏 溪流域
外文關鍵詞:soil erosionsediment yieldclimate changePhysiographic Soil Erosion-Deposition (PSED) ModelKaoping river basin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在瞭解氣候變遷衝擊下對集水區沖蝕量、產砂量及沖淤分佈之影響,本研究以高屏溪流域為研究對象,並應用所發展之地文性土壤沖淤模式(PSED)模擬演算現況(Baseline1980-1999)及氣候變遷情境A1B-S(2020-2039)不同降雨條件(2、5、10、25、50、100及200年之24小時降雨)下流域內之土壤沖蝕量、產砂量及沖淤分佈,並分析氣候變遷衝擊下對集水區沖蝕量、產砂量及河沖淤分佈之影響。首先以2009年莫拉克(Morakot)颱風進行逕流歷線之模擬演算,以高屏溪三水文站之觀測流量歷線與模式演算結果進行比較,結果顯示,模擬之高屏溪集水區之逕流歷線與現場觀測之流量歷線之洪峰發生時刻相近且歷線形狀大致相符,表示模式可合理模擬降雨逕流。應用各水文站歷年之懸浮載觀測資料建立各水文站流量及輸砂量之關係,以2009年莫拉克(Morakot)颱風及2012年蘇拉颱風2場颱洪事件所模擬之流量與懸浮載輸運率演算結果,所模擬之流量—輸砂量關係,在實測資料範圍內,因此所模擬之懸浮載濃度相當合理,且據此所估算之懸浮載輸運率亦屬合理。進一步分析氣候變遷衝擊下對集水區沖蝕量、產砂量及河沖淤分佈之影響。結果顯示,氣候變遷A1BS情境降雨所造成之沖蝕量及產砂量較大,A1BS情境除了重現期距2年及5年集水區之沖蝕量及產砂量呈現下降1.75~6.75%及3.07~16.49%,其他各重現期距年降雨事件之集水區沖蝕量及產砂量較現況之集水區之沖蝕量及產砂量分別約增加3~24%與10~65%。氣候變遷情境之集水區沖蝕及淤積深度均較現況基期為深,河道沖刷能力及河床淤積高度亦隨著流域高程及坡度的不同,且高屏溪流域淤積較嚴重的位置為河道。因此相關單位必須及早因應因淤積量遽增所導致之災害,並研擬對策。
This study aims to evaluate the impacts of climate change on sediment yield, and soil erosion and deposition distribution at a basin located in southern Taiwan. A numerical model, Physiographic Soil Erosion-Deposition (PSED) Model is verified and applied to simulate the above factors like discharge, suspended sediment transport rate, and sediment yield under baseline (1980 ‑ 1999), and climate change scenario A1B-S (2020 – 2039), for a 24‑hour design rainfall for 7 return periods (2, 5, 10, 25, 50, 100 and 200-year). The model was verified first to simulate with a good result, by using the rainfall and discharge data from typhoon Morakot (2009) in three stations distributed over the basin. Flow hydrographs and sediment graphs were in close agreement for the observed and simulated data under typhoon events (Morakot and Suza) at Kaoping River Basin. Besides that, the depth of erosion and deposition for the basin increase under climate change scenario A1B-S compare with baseline. The level of erosion and deposition depend on return period and distribution follow the elevation and slope steep. The maps could be used by the respective personnel for planning and management purposes in Kaoping River Basin. Finally, soil erosion and sediment yield is reduced by 1.75~6.75% and 3.07~16.49% under A1B-S, 2-year and 5‑year return period, respectively and increased by up to 3~24% and 10~65% for 10-, 25-, 50-, 100- and 200-year return period. So rainfall and sediment yield have benefit relationship under climate change.
Table of Contents
Abstract i
Acknowledgements iii
Table of Contents v
List of Tables vii
List of Figures viii
CHAPTER 1 INTRODUCTION 1
1.1 General 1
1.2 Statement of the problem 2
1.3 Objective of Study 4
1.4 Structure of the thesis 4
CHAPTER 2 LITERATURE REVIEW 6
2.1 Climate change 6
2.2 Sources of sediment 7
2.2.1 Soil erosion 7
2.2.2 Sediment yield 10
2.2.3 Review of climate change effect on soil erosion, deposition and sediment yield 12
2.2.4 Previous application of Physiographic Soil Erosion-Deposition model 14
CHAPTER 3 MATERIALS AND METHODS 17
3.1 Description of the Study Area 17
3.2 Data collection and Preparation 20
3.2.1 Digital Elevation Model (DEM) Data 20
3.2.2 Soil types 21
3.2.2 Land use/land cover data 22
3.2.3 River discharge and suspended sediment load 24
3.2.4 Rainfall and temperature data 25
3.3 Methods 27
3.3.1 Introduction 27
3.3.2 Physiographic Soil Erosion-Deposition model (PSED) 28
3.3.3 Simulation process of the PSED model 34
CHAPTER 4 RESULTS AND DISCUSSION 37
4.1 Model Verification 37
4.1.1 Comparisons between simulation and measured discharge hydrographs 38
4.1.2 Comparisons between simulated and measured suspended sediment transport rates 41
4.2 The simulation of flow discharge for Kaoping River Basin 50
4.3 Soil erosion and sediment yield under climate change 58
4.4 Soil erosion and Deposition distribution 59
4.2.1 Soil erosion distribution 59
4.2.2 Deposition distribution 65
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 73
5.1 Conclusions 73
5.2 Recommendations 74
References 75
Appendix A. Kaohsiung average rainfall 82
Appendix B. Kaohsiung average temperature 84
Bio-sketch of Author 86
References
Abdullahi, S. (2015). Addressing climate change and environmental challengies for sustainable development in katsina state – nigeria. Proceedings of Academics World 9th International Conference, Kuala Lumpur, Malaysia.
Asselman, N.E., Middelkoop, H., and Van Dijk, P.M. (2003). The impact of changes in climate and land use on soil erosion, transport and deposition of suspended sediment in the river rhine. Hydrological Processes, 17(16), 3225-3244.
Azari, M., Moradi, H.R., Saghafian, B., and Faramarzi, M. (2016). Climate change impacts on streamflow and sediment yield in the north of iran. Hydrological Sciences Journal, 61(1), 123-133.
Beasley, D., Huggins, L., and Monke, A. (1980). Answers: A model for watershed planning. Trans. ASAE, 23(4), 938-944.
Bhattarai, R., and Dutta, D. (2007). Estimation of soil erosion and sediment yield using gis at catchment scale. Water Resources Management, 21(10), 1635-1647.
Bokan, L.T. (2015). Simulation of sediment yield using swat model: A case of kulekhani watershed. NTNU.
Brazier, R.E., Beven, K.J., Freer, J., and Rowan, J.S. (2000). Equifinality and uncertainty in physically based soil erosion models: Application of the glue methodology to wepp–the water erosion prediction project–for sites in the uk and USA. Earth Surface Processes and Landforms, 25(8), 825-845.
Chang, C.H., Harrison, J.F., and Huang, Y.C. (2015). Modeling typhoon‐induced alterations on river sediment transport and turbidity based on dynamic landslide inventories: Gaoping river basin, taiwan. Water, 7(12), 6910-6930.
Chen, C.N., Yeh, C.H., Tsai, C.H., C.T. (2002). The simulation of discharge and suspended sediment concentration hydrographs in river basin. Paper presented at the Proceeding of the 5th Taiwan-Japan Joint Seminar on Natural Hazards Mitigation, Tainan, Taiwan
Chen, C.-N., Tsai, C.-H., and Tsai, C.-T. (2006). Simulation of sediment yield from watershed by physiographic soil erosion–deposition model. Journal of Hydrology, 327(3), 293-303.
Chen, C.-N., Tsai, C.-H., and Tsai, C.-T. (2011). Simulation of runoff and suspended sediment transport rate in a basin with multiple watersheds. Water Resources Management, 25(3), 793-816.
Chen, C., Tsai, C., and Tsai, C. (2004). A study of gis linked the physiographic soil erosion–deposition model for watershed. J. Chinese Institute Civil Hydraul. Eng, 16(3), 379-391.
Ching-Hsien, W., Ching-Nuo, C., Chih-Heng, T., and Chang-Tai, T. (2012). Estimating sediment deposition volume in a reservoir using the physiographic soil erosion-deposition model. International Journal of Sediment Research, 27(3), 362-377.
Chow, V.T., Maidment, D.R., and Mays, L.W. (1988). Applied hydrology.
Das, A., Chung, C.H., and You, C.F. (2012). Disproportionately high rates of sulfide oxidation from mountainous river basins of taiwan orogeny: Sulfur isotope evidence. Geophysical Research Letters, 39(12).
De Roo, A. (1996). Soil erosion assessment using gis Geographical information systems in hydrology (pp. 339-356): Springer.
De Vente, J., Poesen, J., Arabkhedri, M., and Verstraeten, G. (2007). The sediment delivery problem revisited. Progress in Physical Geography, 31(2), 155-178.
Gosain, A., Rao, S., and Basuray, D. (2006). Climate change impact assessment on hydrology of indian river basins. Current Science, 90(3), 346-353.
Hsu, P.-C., Chen, C.-N., and Tsai, C.-T. (2010). Impact of rainfall characteristics on suspended sediment transport and sediment yield in laonong river, taiwan. Paper presented at the International Symposium in Pacific Rim, Taipei, Taiwan, pp169-179.
Hu, S., Lu, J., Wu, I., and Chen, T. (1995). Interrill erosion rates of high clay soils in lien-hua-chi area. Bull. Taiwan Forestry Res. Inst, 10(1), 33-40.
Inman, D.L., and Jenkins, S.A. (1985). The nile littoral cell and man’s impact on the coastal zone of the southeastern mediterranean Coastal Engineering 1984 (pp. 1600-1617).
IPCC. (2014). The physical science basis: Tertiary Cambridge, United Kingdom and New York, NY, USA.
Itakura, T., and Kishi, T. (1980). Open channel flow with suspended sediments. Journal of the Hydraulics Division, 106(8), 1325-1343.
Jain, M.K., Kothyari, U.C., and Raju, K.G. (2005). Gis based distributed model for soil erosion and rate of sediment outflow from catchments. Journal of Hydraulic Engineering, 131(9), 755-769.
Jan, C.-D., Hsu, Y.-C., Gwang, J.-S., and Huang, W.-S. (2011). Debris flows and landslides caused by typhoon Morakot in taiwan.
Knisel, W.G. (1980). Creams: A field scale model for chemicals, runoff, and erosion from agricultural management systems [USA]. United States. Dept. of Agriculture. Conservation research report (USA).
Komar, P.D. (1988). Sediment transport by floods. Flood Geomorphology. John Wiley & Sons New York. 1988. p 97-111. 12 fig, 1 tab, 43 ref. Planetary Geology Program of the NASA Grant NSG-71718.
Lin, C.-P., Chen, C.-N., Wang, Y.-M., Tsai, C.-H., and Tsai, C.-T. (2014). Spatial distribution of soil erosion and suspended sediment transport rate for chou-shui river basin. Journal of Earth System Science, 123(7), 1517-1539.
Ma, M. (1995). The rainfall characteristics and erosivity in central and northern areas of taiwan. Master Thesis, Department of Civil Engineering, National Chung Hsing University.
Misra, R., and Rose, C. (1990). Annual for use of program guest, division of australian environmental studies report. Griffith University, Brisbane.
Morgan, R., Quinton, J., Smith, R., Govers, G., Poesen, J., Auerswald, K., and Styczen, M. (1998). The european soil erosion model (eurosem): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23(6), 527-544.
Mukundan, R., Pradhanang, S.M., Schneiderman, E.M., Pierson, D.C., Anandhi, A., Zion, M.S., and Steenhuis, T.S. (2013). Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a new york city water supply watershed, USA. Geomorphology, 183, 110-119.
Murakami, S., Hayashi, S., Kameyama, S., and Watanabe, M. (2001). Fundamental study on modelling of sediment routing through forest and agricultural area in watershed. Proceedings Of Hydraulic Engineering, 45, 799-804.
Mutchler, C.K., and Young, R.A. (1975). Soil detachment by raindrops. Present Prospective Technology for Predicting Sediment Yields and Sources, 114-117.
Nearing, M., Foster, G., Lane, L., and Finkner, S. (1989). A process-based soil erosion model for usda-water erosion prediction project technology. Trans. ASAE, 32(5), 1587-1593.
Nguyen, K.A., Ching-Nuo Chen, and Tfwala, S.S. (2016). Soil erosion and deposition distribution at kaoping river basin under climate change. Paper presented at the 12th International Conference on Hydroscience & Engineering - Hydro-Science & Engineering for Environmental Resilience, Tainan, Taiwan.
Onstad, C. (1984). Sediment yield modelling. Erosion and Sediment Yield: Some Methods of Measurement and Modelling. Geo Books, Regency House Norwich(England). 1984. p 71-89, 40.
Paringit, E.C., and Nadaoka, K. (2003). Sediment yield modelling for small agricultural catchments: Land‐cover parameterization based on remote sensing data analysis. Hydrological Processes, 17(9), 1845-1866.
Phan, D., Wu, C., and Hsieh, S. (2011). Impact of climate change and deforestation on stream discharge and sediment yield in phu luong watershed, viet nam. Journal of Environmental Science and Engineering, 5(8).
Pi-Chih, H., Ching-Nuo, C., and Chang-Tai, T. (2011). Real-time prediction of the peak suspended sediment concentration and sediment yield of the lao-nung river during storms. International Journal of Sediment Research, 26(2), 163-180.
Renard, K.G., Foster, G.R., Weesies, G., McCool, D., and Yoder, D. (1997). Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (rusle) (Vol. 703): US Government Printing Office Washington, DC.
Ricker, M.C., Odhiambo, B.K., and Church, J.M. (2008). Spatial analysis of soil erosion and sediment fluxes: A paired watershed study of two rappahannock river tributaries, stafford county, virginia. Environmental Management, 41(5), 766-778.
Rose, C., Williams, J., Sander, G., and Barry, D. (1983). A mathematical model of soil erosion and deposition processes: I. Theory for a plane land element. Soil Science Society of America Journal, 47(5), 991-995.
S.Tfwala, S., Chen, C.-N., and Wang, Y.-M. (2015). Analysis of climate change impact on runoff and sediment yield in central taiwan.
Sharma, K., Menenti, M., Huygen, J., and Vich, A. (1996). Modeling spatial sediment delivery in an arid region using thematic mapper data and gis. Transactions of the ASAE, 39(2), 551-557.
Sharma, P., Gupta, S., and Foster, G. (1995). Raindrop-induced soil detachment and sediment transport from interrill areas. Soil Science Society of America Journal, 59(3), 727-734.
Shimizu, Y., Yamaguchi, H., and Itakura, T. (1990). Three-dimensional computation of flow and bed deformation. Journal of Hydraulic Engineering, 116(9), 1090-1108.
Sun, H., Cornish, P., and Daniell, T. (2002). Contour‐based digital elevation modeling of watershed erosion and sedimentation: Erosion and sedimentation estimation tool (eroset). Water Resources Research, 38(11).
Tfwala, S.S., Wang, Y.-M., and Lin, Y.-C. (2013). Prediction of missing flow records using multilayer perceptron and coactive neurofuzzy inference system. The Scientific World Journal, 2013.
Thodsen, H., Hasholt, B., and Kjærsgaard, J.H. (2008). The influence of climate change on suspended sediment transport in danish rivers. Hydrological Processes, 22(6), 764-774.
Tim, U. (1995). Emerging technologies for hydrologic and water quality modeling research. Journal Paper No. J.
Tsai, C.T., Tsai, and C.H. (1997). A study on the application of discharge formula for trapezoidal broad-crested weirs. Taiwan Water Conservancy.
White, S. (2005). Sediment yield prediction and modeling. Encyclopedia of hydrological sciences. Hydrological Processes.19, 3053-3057(2005).
Williams, J. (1975). Sediment routing for agricultural watersheds. JAWRA Journal of the American Water Resources Association, 11(5), 965-974.
Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses-a guide to conservation planning.
Wongsa, S., Nakui, T., Iwai, M., and Shimizu, Y. (2002). Runoff and sediment transport modeling for mountain river. Paper presented at the Proceeding of international conference on fluvial hydraulic, Belgium.
Yang, C. (2000). Study on construction of a physiographic inundation forecasting system. PhD, Department of Hydraulics and Ocean Engineering, National Cheng-Kung University, Tainan, Taiwan.
Yang, C.P., Yu, Y.T., and Kao, C.M. (2012). Impact of Climate Change on Kaoping River Water Quality. Paper presented at the Applied Mechanics and Materials.
Young, R., Onstad, C., Bosch, D., and Anderson, W. (1989). Agnps: A nonpoint-source pollution model for evaluating agricultural watersheds. Journal Of Soil And Water Conservation, 44(2), 168-173.
Yuan, Z., Cai, Q., and Chu, Y. (2007). A gis-based distributed soil erosion model: A case study of typical watershed, sichuan basin.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊