跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 02:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭玫均
研究生(外文):Kuo, Mei-Chun
論文名稱:可回收再製造規劃之供應鏈決策模式
論文名稱(外文):Recoverable Remanufacturing Programming for a Supply Chain Decision Model
指導教授:蘇泰盛蘇泰盛引用關係
指導教授(外文):Su, Tai-Sheng
口試委員:劉振隆黃怡詔
口試委員(外文):Liu, Jenn-LongHuang,Yi-Chao
口試日期:2017-01-03
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:工業管理系所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:86
中文關鍵詞:供應鏈決策互動式二階段方法三角可能性分配模糊多目標線性規劃法
外文關鍵詞:Supply chainInteractive two-phase methodTriangular possibility distributionFuzzy multi-objective linear programming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對供應鏈決策模式進行探討,供應鏈體系中包括採購、製造及配送階段,且考量多料源、多供應商、多零組件、多機台及多個物流中心,模式中納入新零組件與回收零組件可混合投入再製造,各物流中心之需求量具不確定性,是以三角可能性分配的型態來表示。本研究應用模糊多目標線性規劃法與可能性規劃法,建構可回收再製造規劃之供應鏈決策模式,模式中同時考量總成本與前置時間最小化為目標,且需求量具不確定性,並考慮採購、再製造及配送階段之限制。本研究利用互動式二階段方法針對該模式提出求解程序,再以一數值範例進行模擬測試,以驗證模式之正確性。接著針對重要參數進行敏感度分析,最後提出具體結論與建議,作為採購、投料及配送決策時之參考。
關鍵字:供應鏈決策、互動式二階段方法、三角可能性分配、模糊多目標線性規劃法
This work discusses a model for supply chain decision-making. The supply chain system includes the following stages: the procurement phase, manufacturing phase and distribution phase. This procedure considers multi-suppliers, multi-components, multi-machines and a multi-logistics center in a reverse logistics system. This reverse logistics is used for new and recoverable materials to mix into the remanufacturing system. In fact, this reverse logistics’ demand is under uncertainty; as the related parameters are imprecise in nature, a triangular possibility distribution is used. The proposed model aims to simultaneously minimize total cost and total lead time. In addition, this work proposes a problem-solving procedure with interactive two-phase possibility linear programming. Furthermore, we propose an electric heater case to test the models. The results presented in this work can help managers make more exact decisions.
Keywords: Supply chain, Interactive two-phase method, Triangular possibility distribution, Fuzzy multi-objective linear programming
摘要 I
Abstract II
謝誌 III
目錄 IV
圖索引 VII
表索引 VIII
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3研究架構與流程 3
第二章 文獻探討 6
2.1供應鏈相關研究之文獻 6
2.2逆物流與再製造相關研究之文獻 7
2.3模糊多目標規劃法相關研究之文獻 8
2.4可能性數學規劃法相關研究之文獻 10
第三章 模式建構 14
3.1問題描述 14
3.2研究假設與限制 17
3.3符號定義 18
3.4建構模糊多目標數學規劃模式 22
3.5模式求解步驟 27
3.6求解具不確定性限制式之策略 30
3.6.1三角可能性分配 30
3.6.2應用三角可能性分配求解具不確定性限制式 30
3.7互動式二階段求解模糊多目標問題 32
3.7.1第一階段求解最低滿意度 32
3.7.2第二階段加入補償係數求解整體滿意度 36
第四章 數值範例 38
4.1案例描述 38
4.2案例之相關參數設定 40
4.3案例之求解步驟 46
4.4結果分析與討論 64
4.5模糊多目標可能線性規劃模式之敏感度分析 66
4.6小結 76
第五章 結論與建議 78
5.1結論 78
5.2建議 79
參考文獻 80
作者簡介 86
1.施榕彩,考慮數量折扣與逆物流之供應鏈管理模式,碩士論文,國立台北科技大學經營管理系碩士班,2011。
2.Alfonso-Lizarazoa, E. H., Montoya-Torresa, J. R. and Gutiérrez-Francoa, E., Modeling reverse logistics process in the agro-industrial sector: The case of the palm oil supply chain, Applied Mathematical Modelling, 37(23), 2013, 9652–9664.
3.Ayvaz, B., Bolat, B. and Aydın, N., Stochastic reverse logistics network design for waste of electrical and electronic equipment, Resources, Conservation and Recycling, 104, 2015, 391–404.
4.Azadeh, A., Raoofi, Z. and Zarrin, M., A multi-objective fuzzy linear programming model for optimization of natural gas supply chain through a greenhouse gas reduction approach, Journal of Natural Gas Science and Engineering, 26, 2015, 702–710.
5.Bellman, R. E. and Zadeh, L. A., Decision-making in a fuzzy environment, Management Science, 17, 1970, 141–164.
6.Buckley, J. J., Possibilistic linear programming with triangular fuzzy numbers, Fuzzy Sets and Systems, 26, 1988 ,135-138.
7.Cohen, M., Replace, rebuild or remanufacture, Equipment Management, 1988, 16(1), 22–26.
8.Christopher, M., Logistics & Supply Chain Management, Financial Times, 1992.
9.DeGroote, S. E. and Marx, T. G., The impact of IT on supply chain agility and firm performance: An empirical investigation, International Journal of Information Management, 33(6), 2013, 909–916.
10.Fleischmann, M., Krikke, H. R., Dekker, R. and Flapper, S. P., A characterization of logistics networks for product recovery, Omega, 28(6), 2000, 653–666.
11.Guarnieria, P., Silvab, L. C. and Levinoc, N. A., Analysis of electronic waste reverse logistics decisions using strategic options development analysis methodology: A Brazilian case, Journal of Cleaner Production, 133, 2016, 1105–1117.
12.Hannan, E. L., Linear programming with multiple fuzzy goals, Fuzzy Sets and Systems, 6(3), 1981, 235–248.
13.Ho, Y. F., Chang, C. C., Wei, C. C. and Wang, H. L., Multi-objective programming model for energy conservation and renewable energy structure of a low carbon campus, Energy and Buildings, 80, 2014, 461–468.
14.Jayaraman, V., Patterson, R. A. and Rolland, E., The design of reverse distribution networks: Models and solution procedures, European journal of Operational Research, 150, 2003, 128–149.
15.Kannan, G., Sasikumar, P. and Devika, K., A genetic algorithm approach for solving a closed loop supply chain model: A case of battery recycling, Applied Mathematical Modelling, 34, 2010, 655–670.
16.Keramati, A., Javadi, B., Shakouri H. and Shirkouhi, S. N., Supplier selection and order allocation problem using a two-phase fuzzy multi-objective linear programming, Applied Mathematical Modelling, 37(22), 2013, 9308–9323.
17.Luttwak E., A dictionary of modern war, N.Y.: Harper Row, 1971.
18.Lai, Y. J. and Hwang, C. L., A new approach to some possibilistic linear programming problems, Fuzzy Sets and Systems, 49(2), 1992, 121–133.
19.Liang, T. F., Distribution planning decisions using interactive fuzzy multi-objective linear programming, Fuzzy Sets and Systems, 157, 2006, 1303–1316.
20.Liang, T. F., Application of fuzzy sets to manufacturing/distribution planning decisions in supply chains, Information Sciences, 181, 2011, 842–854.
21.Nasab, N. M., Amin-Naseri, M. R., Designing an integrated model for a multi-period, multi-echelon and multi-product petroleum supply chain, Energy, 114, 2016, 708–733.
22.Oliver, R. K. and Webber, M. D., Supply-chain management: logistics catches up with strategy, Logistics: The strategic issues, 1982, 63-75.
23.Özgen, D., Önüt, S., Gülsün, B., Tuzkaya, R. U. and Tuzkaya, G., A two-phase possibilistic linear programming methodology for multi-objective supplier evaluation and order allocation problems, Information Sciences, 178, 2008, 485–500.
24.O’Donnell, B., Goodchild, A., Cooper, J., Ozawa., The relative contribution of transportation to supply chain greenhouse gas emissions: A case study of American wheat, Transportation Research Part D 14, 2009, 487–492.
25.Ozgen, D., Gulsun, B., Combining possibilistic linear programming and fuzzy AHP for solving the multi-objective capacitated multi-facility location problem, Information Sciences, 268, 2014, 185-201.
26.Peidro, D., Mula, J., Poler, R. and Verdegay, J. L., Fuzzy optimization for supply chain planning under supply, demand and process uncertainties, Fuzzy Sets and Systems, 160, 2009, 2640–2657.
27.Pishvaee, M. S. and Torabi, S. A., A possibilistic programming approach for closed-loop supply chain network design under uncertainty, Fuzzy Sets and Systems, 161, 2010, 2668–2683.
28.Paksoy, T. and Pehlivan, N. Y., A fuzzy linear programming model for the optimization of multi-stage supply chain networks with triangular and trapezoidal membership functions, SciVerse ScienceDirect, 349, 2012, 93–109.
29.Paksoy, T., Pehlivan, N. Y. and Ozceylan, E., Application of fuzzy optimization to a supply chain network design: A case study of an edible vegetable oils manufacturer, Applied Mathematical Modelling, 36, 2012, 2762–2776.
30.Pedram, A., Yusoff, N. B., Udoncy, O. E., Mahat, A. B. Pedram, P. and Babalola, A., Integrated forward and reverse supply chain: A tire case study, Waste Management, 2016.
31.Richter K. and Weber J., The reverse Wagner/Whitin model with variable manufacturing and remanufacturing cost, International Journal Production Economics, 71, 2001, 447-456.
32.Reza T. M., Javadi, B., Jolai, F. and Ghodratnama, A., The use of a fuzzy multi-objective linear programming for solving a multi-objective single-machine scheduling problem, Applied Soft Computing, 10, 2010, 919–925.
33.Roghaniana, E. and Pazhoheshfar, P., An optimization model for reverse logistics network under stochastic environment by using genetic algorithm, Journal of Manufacturing Systems 33, 2014, 348–356.
34.Stock, J. R., Illinos:Reverse Logistics, Council of logistics management, 1992.
35.Speier, C., Whipple, J. M., Closs, D. J. and Voss, M. D., Global supply chain design considerations: Mitigating product safety and security risks, Journal of Operations Management, 29(7–8), 2011, 721–736.
36.Shaw, K., Shankar, R., Yadav, S. S. and Thakur, L. S., Supplier selection using fuzzy AHP and fuzzy multi-objective linear programming for developing low carbon supply chain, Expert Systems with Applications, 39, 2012, 8182–8192.
37.Sadghiani, N. S., Torabi, S.A. and Sahebjamnia, N., Retail supply chain network design under operational and disruption risks, Transportation Research, 75, 2015, 95–114.
38.Simic, V., A multi-stage interval-stochastic programming model for planning end-of-life vehicles allocation, Journal of Cleaner Production, 115, 2016, 366–381.
39.Tang, J., Wang, D. and Fung, R. Y. K., Formulation of general possibilistic linear programming problems for complex industrial systems, Fuzzy Sets and Systems, 119, 2001, 41–48.
40.Torabi, S. A. and Hassini, E., An interactive possibilistic programming approach for multiple objective supply chain master planning, Fuzzy Sets and Systems, 159, 2008, 193–214.
41.Tseng, S. C. and Hung, S. W., A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management, Journal of Environmental Management, 133, 2014, 315–322.
42.Van der Laan, E., Dekker, R. and Salomon, M., Product remanufacturing and disposal: A numerical comparison of alternative control strategies, International Journal of Production Economics, 45, 1996, 489–498.
43.Van der Laan, E. and Salomon, M., Production planning and inventory control with remanufacturing and disposal, European Journal of Operation Research, 102, 1997, 264–278.
44.Van der Laan, E. A., Teunter, R. H., Simple heuristics for push and pull remanufacturing policies, European Journal of Operational Research, 175, 2006, 1084–1102.
45.Vahdani, B., Tavakkoli-Moghaddam, R. and Jolai, F., Reliable design of a logistics network under uncertainty: A fuzzy possibilistic-queuing model, Applied Mathematical Modelling, 37, 2013, 3254–3268.
46.Yang, M. F. and Lin, Y., Applying fuzzy multi-objective linear programming to project management decisions with the interactive two-phase method, Computers & Industrial Engineering, 66, 2013, 1061–1069.
47.Zadeh, L. A., Fuzzy set, Information and Control, 8, 1965, 38–53.
48.Zadeh, L. A., Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 1, 1978, 3–28.
49.Zimmermann, H. J., Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems, 1, 1978, 45–56.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top