跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/16 10:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭雅綺
研究生(外文):Cheng, Ya-Chi
論文名稱:考量交期與模糊環境下之多產品可回收再製造決策
論文名稱(外文):Recoverable Remanufacturing Decisions of Multiple Products with Delivery Date and Fuzzy Environment
指導教授:蘇泰盛蘇泰盛引用關係
指導教授(外文):Su, Tai-Sheng
口試委員:劉振隆黃怡詔
口試委員(外文):Liu, Jenn-LongHuang,Yi-Chao
口試日期:2017-01-03
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:工業管理系所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:69
中文關鍵詞:再製造系統模糊多目標可能性規劃法
外文關鍵詞:remanufacturing systemsFuzzy multi-objective linear programmingpossibilistic linear programming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究考量訂單交期與新料、回收料混合之再製造可回收系統,該系統整合多產品、多供應商、多回收商、多零組件及多部機台且機台與訂單需求具不確定性之生產情境,是一個複雜且具有模糊性的再製造系統。利用模糊多目標線性規劃法,建構一個考量交期與模糊環境之可回收再製造決策模式。模式中同時兼顧總生產成本最小與總損壞個數最少為目標,針對該模式採用模糊多目標之互動式二階段性規劃方法,以求解模糊環境下限制式具不確定性之多目標決策問題。為驗證模式之正確性,本研究以冷凝器及冷氣壓縮機之數值範例進行測試,最後提出具體結論與建議,供實務應用之參考。
  In this work we consider the order delivery, new materials, recycling of recycled materials and a recyclable remanufacturing system. The proposed model evaluates cost-effectiveness while integrating multiple products, multiple suppliers, multiple components and multiple machines for a remanufacturing system. Decision-makers can use the analytical results of this work to improve their understanding of the cost-effectiveness of recyclable remanufacturing planning. However, the remanufacturing production planning problems and related mathematical programming methods are unsuitable to yield an effective solution because of the conflicting nature of multiple objectives and related parameters. In this work, the fuzzy multi-objective linear programming mode with an interactive two-phase possibilistic linear programming approach is employed for solving the remanufacturing production system decision problems with multiple goals in a fuzzy environment. The analytical results presented in this work can help decision-makers to better understand the systematic analysis, potential for cost-effectiveness and the number of losses in a recoverable remanufacturing environment.
摘要 I
Abstract II
謝致 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
 1.1. 研究背景與動機 1
 1.2. 研究目的 2
 1.3. 研究架構與流程 4
第二章 文獻探討 5
 2.1 逆物流與再製造生產策略之相關研究 5
 2.2 考量交期之生產系統相關研究 6
 2.3 模糊多目標規劃之相關研究 7
 2.4 可能性數學規劃之相關研究 9
第三章 模式建立與發展 12
 3.1問題描述 12
 3.2研究假設與限制 13
 3.3符號定義 14
 3.4模糊多目標可能線性規劃模式 17
 3.5求解具不確定性限制式之策略 21
 3.6互動式兩階段求解模糊多目標問題 23
3.6.1第一階段求解最低滿意度 23
3.6.2第二階段加入補償係數求解整體滿意度 28
第四章 數值範例 30
 4.1問題描述 30
 4.2數值相關參數 32
 4.3單一目標函數模式之結果分析 35
 4.4 模糊多目標模式結果分析 37
4.4.1模糊多目標第一階段求滿意度 37
4.4.2第二階段加入補償係數求解整體滿意度 43
 4.4 結果分析與討論 47
 4.5敏感度分析 49
4.5.1 測試1:交期變動對輸出解造成的影響。 49
4.5.2測試2:產品需求量變動對輸出解造成的影響。 53
4.5.3 測試3:處罰成本變動對輸出解造成的影響。 56
 4.6小結 59
第五章 結論與建議 61
 5.1結論 61
 5.2建議 62
參考文獻 63
作者簡介 69

圖目錄
圖1. 1研究流程架構圖 4
圖3. 1可回收零組件再製造生產系統 12
圖3. 2需求量D ̃_i之三角可能性分配 21
圖3. 3 (z_k,f_k (z_k))關係之區段線性圖形 24
圖4. 1冷凝器與冷氣壓縮機之可回收再製造生產系統流程 31
圖4. 2隸屬函數 關係圖 38
圖4. 3隸屬函數 關係圖 39
圖4. 4測試1: 與 目標值與L值變動趨勢 52
圖4. 5測試2: 與 目標值與L值變動趨勢 55
圖4. 6測試3: 與 目標值與L值變動趨勢 58
1. Baykasoglu, A. and Gocken, T., (2010) “Multi-objective aggregate production planning with fuzzy parameters,” Advances in Engineering Software, 41, 1124-1131.
2. Bellman, R.E., Zadeh, L.A., (1970) “Decision-making in a fuzzy environment,” Management Science, 17, 141-164.
3. Carter, C.R., Ellram, L.M., (1998) “Reverse Logistics: A review of the literature and framework for future investigation,” Journal of Business Logistics, 19(1), 85-102.
4. Chang, N.B., Wen, C.G., and Chen, Y.L., (1997) “A fuzzy multi-objective programming approach for optimal management of the reservoir watershed,” European Journal of Operational Research, 99, 289-302.
5. Chung, C.J. and Wee, H.M., (2008) “Green-component life-cycle value on design and reverse manufacturing in semi-closed chain,” International Journal of Production Economics, 113, 528-545.
6. Chung, C.J., and Wee, H.M., (2011) “Short life-cycle deteriorating product remanufacturing in a green supply chain inventory control system,” International Journal of Production Economics, 129, 195-203.
7. Douglas N Lambert, George L Freeland, Daniel Jean Stanley, Donald J.P Swift, (1981) “The Hudson Shelf Valley: Its role in shelf sediment transport” Marine Geology, 42, 399-427.

8. Fleischmann, M., Krikke, H.R. Dekker, R. and Flapper, S.P., (2000) “A characterization of Logistics networks for product recovery,” Omega, 28(6), 653-666.
9. Goggin, K., and Browne, J., (2000) “Towards a taxonomy of resource recovery from end-of-life products,” Computers in Industry, 42(2), 171-191.
10. Guide Jr., V.D.R. and Srecastava, R., (1997) “An evaluation of order release strategies in a remanufacturing environment,” Computer Operations Research, 24(1), 37-47.
11. Javadi, B., Saidi-Mehrabad, M., Haji, A., and Mahdavi, R., (2008) “No-wait flow shop scheduling using fuzzy multi-objective linear programming,” Journal of The Franklin Institute, 345, 452-467.
12. Konstantaras, I., Skouri, K., and Jaber M.Y., (2010) “Lot sizing for a recoverable product with inspection and sorting,” Computers & Industrial Engineering, 58, 452-462.
13. Lai, Y. J., and Hwang, C. L., (1992) “A new approach to some possibilistic linear programming problems,” Fuzzy Sets and Systems, 49, 121-133.
14. Leberling, H., (1981) “On finding compromise solutions in multicriteria problems using the fuzzy min-operator,” Fuzzy Sets and Systems, 6(2), 105-118.
15. Liang, T.F., (2006) “Distribution planning decisions using interactive fuzzy multi-objective linear programming,” Fuzzy Sets and Systems, 157, 1303-1316.
16. Liang, T.F., (2007) “Application of interactive possibilistic linear programming to aggregate production planning with multiple imprecise objectives,” Production Planning & Control, 18(7), 548-560.
17. Liang, T.F., (2008) “Fuzzy multi-objective production/distribution planning decisions with multi-product and multi-time period in a supply chain.” Computers & Industrial Engineering, 55, 676-694.
18. Liang, T.F., (2009) “Fuzzy multi-objective project management decisions using two-phase fuzzy goal programming approach,” Computers & Industrial Engineering, 57, 1407-1416.
19. Liang, T.F., (2010) “Applying fuzzy goal programming to project management decisions with multiple goals in uncertain environments,” Expert Systems with Applications, 37, 8499-8507.
20. Liang, T.F., (2011) “Application of fuzzy sets to manufacturing/distribution planning decisions in supply chains,” Information Sciences, 181, 842-854.
21. Liang, T.F., and Cheng, H.W., (2009) “Application of fuzzy sets to manufacturing/distribution planning decisions with multi-product and multi-time period in supply chains,” Expert Systems with Applications, 36, 3367-3377.
22. Luhandjula, M. K., (1982) “Compensatory operators in fuzzy linear programming with multiple objectives,” Fuzzy Sets and Systems, 8(3), 245-252.
23. Ozgen, D., Gulsun, B., (2014) “Combining possibilistic linear programming and fuzzy AHP for solving the multi-objective capacitated multi-facility location problem,” Information Sciences, 268, 185-201.
24. Paksoy, T., Pehlivan, N.Y., (2012) “A fuzzy linear programming model for the optimization of multi-stage supply chain networks with triangular and trapezoidal membership functions,” Journal of the Franklin Institute, 349, 93-109
25. Paksoy, T., Pehlivan, N.Y., Ozceylan, E., (2012) “Application of fuzzy optimization to a supply chain network design: A case study of an edible vegetable oils manufacturer,” Applied Mathematical Modelling, 36, 2762-2776.
26. Peidro, D., Vasant, P., (2011) “Transportation planning with modified S-curve membership functions using an interactive fuzzy multi-objective approach,” Applied Soft Computing, 11, 2656-2663.
27. Pishvaee, M.S., Razmi, J., (2012) “Environmental supply chain network design using multi-objective fuzzy mathematical programming,” Applied Mathematical Modelling, 36, 3433-3446.
28. Poles, R., (2013) “System Dynamics modelling of a production and inventory system for remanufacturing to evaluate system improvement strategies,” International Journal of Production Economics, 144(1), 189-199.
29. Shanker, R., Vrat, P., (1998) “Post design Modeling for Cellular Manufacturing System with Cost Uncertainty,” International Journal of Production Economics, 55, 97-109.
30. Slowinski, R., 1986, “A multicriteria fuzzy linear programming method for water supply system development planning,” Fuzzy Sets and Systems, 19, 217–237.
31. Su, T.S., (2014) “Fuzzy multi-objective recoverable remanufacturing planning decisions involving multiple components and multiple machines,” Computers and Industrial Engineering, 72, 72-83.
32. Tan, R.R., Ballacillo, J.A.B. Aviso, K.B. and Culaba, A. B., (2009) “A fuzzy multiple-objective approach to the optimization of bioenergy system footprints,” Chemical Engineering Research and Design, 87, 1162-1170.
33. Tavakkoli-Moghaddam, R., Javadi, B., Jolai, F. and Ghodratnama, A., (2010) “The use of a fuzzy multi objective linear programming for solving a multi-objective single –machine scheduling problem,” Applied Soft Computing, 10, 919-925.
34. Teng, J.Y., Tzeng, G.H., (1996) “Fuzzy multicriteria ranking of urban transportation investment alternatives,” Transportation Planning and Technology, 20, 15-31.
35. Torabi, S.A. and Hassini, E., (2008) “An interactive possibilistic programming approach for multiple objective supply chain master planning,” Fuzzy Sets and Systems, 159, 193-214.
36. Torabi, S.A. and Hassini, E., (2008) “An interactive possibilistic programming approach for multiple objective supply chain master planning,” Fuzzy Sets and Systems, 159, 193-214.
37. Tuzkaya, R.U.,Özgen, D., Önüt, S., Gülsün, B., and Tuzkaya, G., (2008) “A two-phase possibilistic linear programming methodology for multi-objective supplier evaluation and order allocation problems,” Information Sciences, 178, 485-500.
38. Vahdani, B., Tavakkoli-Moghaddam, R., Jolai, F., (2013) “Reliable design of a logistics network under uncertainty: A fuzzy possibilistic-queuing model,” Applied Mathematical Modelling, 37, 3254-3268.
39. Wang, R. C. and Liang, T. F., (2005) “Applying possibilistic linear programming to aggregate production planning,” International Journal of Production Economics, 98, 328-341.
40. Wang, R.C., Liang T.F., 2004, “Application of fuzzy multi-objective linear programming to aggregate production planning,” Computers & Industrial Engineering, 46, 17–41.
41. Yalcın, G.D., Erginel, N., (2015) “Fuzzy multi-objective programming algorithm for vehicle routing problems with backhauls,” Expert Systems with Applications, 42, 5632-5644.
42. Yang, M.F., Lin, Y., (2013) “Applying fuzzy multi-objective linear programming to project management decisions with the interactive two-phase method,” Computers & Industrial Engineering, 66, 1061-1069.
43. Zadeh, L. A., (1978) “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets and Systems, 1, 3-28.
44. Zadeh, L.A., (1965) “Fuzzy set,” Information and Control, 8, 38-53.
45. Zadeh, L.A., and Bellman, R.E., (1970) “Decision-making in a fuzzy environment,” Management Science, 17, 141-164.
46. Zahiri, B., Tavakkoli-Moghaddam, R., Pishvaee, M.S., (2014) “A robust possibilistic programming approach to multi-period location–allocation of organ transplant centers under uncertainty,” Computers & Industrial Engineering, 74, 139-148.
47. Zimmermann, H.J., (1978) “Fuzzy programming and linear programming with several objective functions,” Fuzzy Sets and Systems, 1, 45-56.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top