(3.238.7.202) 您好!臺灣時間:2021/03/01 22:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳志豪
研究生(外文):Chen, Chih-Hao
論文名稱:台灣中部地區降雨量與降雨沖蝕指數時間與空間變化之研究
論文名稱(外文):Temporal and Spatial Variations of Rainfall and Rainfall Erosivity in Central Taiwan
指導教授:李明熹李明熹引用關係
指導教授(外文):Lee, Ming-Hsi
口試委員:曾志民簡士濠
口試委員(外文):TSENG, CHIH-MINGJien, Shih-Hao
口試日期:2017-01-03
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:水土保持系所
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:75
中文關鍵詞:降雨沖蝕指數時間變化空間變化台灣中部
外文關鍵詞:Rainfall erosivity indexTemporal variationSpatial variationCentral Taiwan
相關次數:
  • 被引用被引用:3
  • 點閱點閱:93
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
近年來台灣受極端降雨及全球暖化影響,降雨特性產生改變,對於土壤沖蝕的影響甚鉅。目前台灣多以通用土壤流失公式(Universal Soil Loss Equation, USLE)進行土壤流失量之估算,其中降雨沖蝕指數是表示降雨對土壤沖蝕能力的高低。因此,本研究為了解降雨特性的改變對降雨沖蝕指數之影響,分析單場、月、季及年降雨量與降雨沖蝕指數的關係,探討台灣中部地區降雨量與降雨沖蝕指數時間與空間變化,了解現今或未來降雨變化對土壤沖蝕的影響。
本文蒐集台灣中部地區105個雨量站49,582場的有效降雨事件進行分析,結果顯示單場、月、季及年之降雨量與降雨沖蝕指數的迴歸關係式其判定係數(R2)大致上均大於0.7以上,顯示迴歸式可以解釋資料的變異量相當好。中部地區年降雨沖蝕指數較南部地區(屈峻廣, 2014)低,與東部地區(劉維則, 2014)相近,但仍高於其他熱帶地區國家。月、季、及年之平均降雨量與降雨沖蝕指數之時間變化,月平均降雨沖蝕指數在4~9月及11~12月均有逐年上升的趨勢,1~3月及10月有逐年下降的趨勢;季平均降雨沖蝕指數在夏、秋及冬季有著隨時間增加而上升之趨勢,春季則相反;年平均降雨沖蝕指數於23年(1993~2015年)期間,皆呈現逐年增加之趨勢。月、季、及年之平均降雨量與降雨沖蝕指數之空間變化,受梅雨季節、颱風及豪雨影響,整體上由平地往山區逐漸遞增。另外,本研究之降雨沖蝕指數分析結果與黃俊德(1979)成果進行探討,得知近年來年平均降雨沖蝕指數有增大趨勢,其中北山及龍神橋雨量站差異百分比高達96%及104%,顯示近年中部地區土壤沖蝕問題嚴重。
The Universal Soil Loss Equation (abbreviated as USLE) is presently one of the most widely used models to evaluate soil erosion. Along with the impact by climate change, it is not certain that the rainfall erosivity index can reflect the variations at present and in the future. Rainfall erosivity index (R30) shows the potential ability of the soil loss caused by precipitation and runoff for predicting soil loss from agricultural hillslopes. Wischmeier and Smith (1958) defined R30 as the average of the annual summations of storm EI30 values, excluding storms with a total rainfall depth of less than 12.7 mm. The E portion of this value represents the rainfall energy, and the I30 portion represents the maximum 30-min rainfall intensity during the storm. In this study, central Taiwan was used as the research site. By using 10-min rainfall data of 105 precipitation stations of the period between 2002 and 2015, we conducted regression analysis and temporal-spatial variations to discuss the relationship between monthly, seasonal, and annual precipitation and the rainfall erosivity index of the study area. A geographic information system was employed to plot the average annual precipitation and rainfall erosivity index isogram of central Taiwan.
The result shows that the regression formulas between precipitation and rainfall erosivity index based on 49,583 effective rainfall events from 2002 to 2015 have highly correlations. The values of average monthly precipitation and rainfall erosivity index approached to 85% of the year from May to October. The maximum of average monthly rainfall and rainfall erosivity index were 455 mm in August and 6,243 MJ-mm/ha-hr in July, respectively. The average seasonal precipitation and rainfall erosivity index concentrated on summer and autumn. The average annual precipitation and rainfall erosivity index ranged between 756 to 4,552 mm and 5,679 to 82,445 MJ-mm/ha-hr-yr, respectively. In comparison with other tropical countries, the study area is a severe soil-loss region of the world. The temporal and spatial variations of precipitation and rainfall erosivity index are also analysis in this study. The results show that the temporal variations of annual precipitation and rainfall erosivity have been trending up from 1993 to 2015. The spatial variations of precipitation and rainfall erosivity index are increasing from plain to mountain area.
摘要 I
ABSTRACT II
謝誌 III
目錄 VI
表目錄 VIII
圖目錄 IX
符號說明 X
第一章 緒論 1
1.1 前言 1
1.2 本文組織架構 3
第二章 文獻回顧 4
2.1 通用土壤流失公式之發展 4
2.2 降雨量與降雨沖蝕指數相關之研究 5
2.3 降雨量與降雨沖蝕指數時間變化之研究 10
2.4 降雨量與降雨沖蝕指數空間變化之研究 11
第三章 研究區域與方法 19
3.1 研究區域 19
3.1.1 地理位置 19
3.1.2 地形地勢 20
3.1.3 地質條件 24
3.2 水文資料分析 25
3.2.1 氣溫 25
3.2.2 相對濕度 26
3.2.3 雨量資料蒐集 27
3.3 研究流程及方法 32
3.3.1 研究流程 32
3.3.2 降雨沖蝕指數之計算 33
3.3.3 降雨量與降雨沖蝕指數關係之建立 35
3.3.4 降雨量與降雨沖蝕指數時間變化 35
3.3.5 降雨量與降雨沖蝕指數空間變化 36
第四章 結果與討論 37
4.1 有效降雨事件特性分析結果 37
4.2 降雨量與降雨沖蝕指數關係之建立 42
4.2.1 單場之降雨量(Pj)與降雨沖蝕指數(Rj)關係之建立 42
4.2.2 月之降雨量(Pm)與降雨沖蝕指數(Rm)關係之建立 44
4.2.3 季之降雨量(PS)與降雨沖蝕指數(RS)關係之建立 46
4.2.4 年之降雨量(Py)與降雨沖蝕指數(Ry)關係之建立 49
4.2.5 單場、月、季、年降雨量與降雨沖蝕指數關係總結 53
4.3 降雨量與降雨沖蝕指數時間變化分析 54
4.3.1 月平均之降雨量(Pm*)與降雨沖蝕指數(Rm*)時間變化分析 54
4.3.2 季平均之降雨量(PS*)與降雨沖蝕指數(RS*)時間變化分析 57
4.3.3 年平均之降雨量(Py*)與降雨沖蝕指數(Ry*)時間變化分析 58
4.4 降雨量與降雨沖蝕指數空間變化分析 59
4.4.1 月平均之降雨量(Pm*)與降雨沖蝕指數(Rm*)空間變化分析 59
4.4.2 季平均之降雨量(PS*)與降雨沖蝕指數(RS*)空間變化分析 62
4.4.3 年平均之降雨量(Py*)與降雨沖蝕指數(Ry*)空間變化分析 65
第五章 結論與建議 68
5.1 結論 68
5.2 建議 70
參考文獻 71
作者簡介 75
1.吳至剛、楊道昌、游保杉,2000,「氣候變遷對高屏溪流域水資源衝擊探討」,第十一屆水利工研討會,81-83頁,台北市。
2.吳嘉俊、盧光輝、林俐玲,1996,土壤流失量估算手冊,行政院農業委員會,第5-39頁。
3.屈峻廣,2014,「台灣南部地區降雨量與降雨沖蝕指數時間與空間之變化」。
4.范正成、楊智翔、劉哲欣,2009,「台北地區降雨沖蝕指數推估公式之建立及歷年變化趨勢分析」,中華水土保持學報,第40卷,第2期,第113-121頁。
5.張譽譯,2013,降雨沖蝕指數時間與空間變化之研究-以高屏溪集水區為例,碩士論文,國立屏東科技大學,水土保持系,屏東。
6.章文波、付金生,2003,「不同類型雨量資料估算降雨侵蝕力」,資源科學,第25卷,第1期,第35-41頁。
7.章文波、謝雲、劉寶元,2003,「中國降雨侵蝕力空間變化特徵」,山地學報,第21卷,第1期,第33-40頁。
8.陳晉琪、楊育瑄、黃文舜、李亮廷、詹錢登,2008,「土石流發生頻率與降雨特性關係之研究」,第十七屆水利工程研討會,台中,論文編號:L4,第1-5頁。
9.黃俊德,1979,「台灣降雨沖蝕指數之研究」,中華水土保持學報,第10卷,第1期,第127-144頁。
10.楊文仁,范正成,張于漢,2007,「台灣北部地區最大三十分鐘降雨強度之分析及預測」,農業工程學報,第51卷,第3期,第48-57頁。
11.楊斯堯、詹錢登、黃文舜、曾國訓,2010,「運用時雨量推估降雨沖蝕指數」,中華水土保持學報,第41卷,第3期,第189-199頁。
12.劉付程,阮亞念,馮麗仙,劉鑫,魏鑫,2012,「基於ArcGIS的連雲港港區海陸一體化三維地形建模」,淮海工學院學報(自然科學版),第21卷,第1期,第55-58頁。
13.劉維則,2014,「台灣東部地區降雨量與降雨沖蝕指數時間與空間之變化」。
14.鄭裕仁,2010,以 GIS 空間分析克利金法研析苗栗中港溪遊憩潛力與環境景觀之關聯,碩士論文,中華大學,營建管理研究所,新竹。
15.盧光輝,1999,「降雨沖蝕指數之修訂」,中華水土保持學報,第30卷,第2期,第87-94頁。
16.盧昭堯、蘇志強、吳藝昀,2005,「台灣地區年等降雨沖蝕指數圖之修訂」,中華水土保持學報,第36卷,第2期,第159-172頁。
17.Angulo-Martínez, M., and Beguería, S., 2009, “Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain),” Journal of Hydrology, Vol. 379, pp. 111-121.
18.Angulo-Martínez, M., López-Vicente, M., Vicente-Serrano, S. M., and Beguería, S., 2009, “Mapping rainfall erosivity at a regional scale: A comparison of interpolation methods in the Ebro Basin (NE Spain),” Hydrology and Earth System Sciences, Vol. 13, pp. 1907-1920.
19.Bonilla, C. A., and Vidal, K. L., 2011, “Rainfall erosivity in Central Chile,” Journal of Hydrology, Vol. 410, pp. 126-133.
20.Browning, G. M., Parish, G. L., and Glass, J., 1947, “A method for determining the use and limitation of rotation and conservation practices in the control of soil erosion in lowa,” Journal of the American Society of Agronomy, Vol. 39, pp. 65-73.
21.Capolongo, D., Diodato, N., Mannaerts, C. M., Piccarreta, M., and Strobl, R. O., 2008, “Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (Southern Italy),” Journal of Hydrology, Vol. 356, pp. 119-130.
22.Diodato, N., and Bellocchi, G., 2010, “MedREM, a rainfall erosivity model for the Mediterranean region,” Journal of Hydrology, Vol. 387, pp. 119-127.
23.Fiener, P., Neuhaus, P., and Botschek, J., 2013, “Long-term trends in rainfall erosivity - analysis of high resolution precipitation time series (1937-2007) from Western Germany,” Agricultural and Forest Meteorology, Vol. 171-172, pp. 115-123.
24.Hoyos, N., Waylen, P. R., and Jaramillo, A., 2005, “Seasonal and spatial patterns of erosivity in a tropical watershed of the Colombian Andes,” Journal of Hydrology, Vol. 314, pp. 177-191.
25.Hutchinson, M. F., and Dowling, T. I., 1991, “A continental hydrological assessment of a new grid - based digital elevation model of Australia,” Hydrological Processes, Vol. 5, pp. 45-58.
26.IPCC, 2013, Working group I report: The Physical Science Basis, 5th Assessment Report. Intergovernmental Panel on Climate Change.
27.Lee, J. H., and Heo, J. H., 2011, “Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea,” Journal of Hydrology, Vol. 409, pp. 30-48.
28.Liu, L., and Rossini, A. J., 1996, “Use of kriging models to predict 12-hour mean ozone concentrations in metropolitan Toronto - a pilot study,” Environment International, Vol. 22, No. 6, pp.677-692.
29.Meusburger, K., Steel, A., Panagos, P., Montanarella, L., and Alewell, C., 2011, “Spatial and temporal variability of rainfall erosivity factor for Switzerland,” Hydrology and Earth System Sciences Discussions, Vol. 8, pp. 8291-8314.
30.Mikhailova, E. A., Bryant, R. B., Shwager, S. J., and Smith, S. D., 1997, “Predicting rainfall erosivity in Honduras,” Soil Science Society of America Journal, Vol. 61, pp. 273-279.
31.Mikoš, M., Jošt, D., and Petrovšek, G., 2006, “Rainfall and runoff erosivity in the alpine climate of North Slovenia: A comparison of different estimation methods,” Hydrological Sciences Journal, Vol. 51, pp. 115-126.
32.Musgrave, G. W., 1947, “The quantitative evaluation of factors in water erosion, a first approximation,” Journal of soil and water Conservation, Vol. 2, No. 3, pp. 133-138.
33.Nel, W., Reynhardt, D. A., and Sumner, P. D., 2010, “Effect of altitude on erosive characteristics of concurrent rainfall events in the northern KwaZulu-Natal Drakensberg,” Water SA, Vol. 36, No. 4, pp. 509-512.
34.Obi, M. E., and Salako, F. K., 1995, “Rainfall parameters influencing erosivity in southeastern Nigeria, ” Catena, Vol. 24, pp. 275-287.
35.Oliveira, P. T. S., Wendland, E., and Nearing, M. A., 2012, “Rainfall erosivity in Brazil: A review,” Catena, Vol. 100, pp. 139-147.
36.Pardo-Igúzquiza, E., 1998, “Comparison of geostatistical methods for estimating the areal average climatological rainfall mean using data on precipitation and topography,” International Journal of Climatology, Vol. 18, pp. 1031-1047.
37.Renard, K. G., and Freimund, J. R., 1994, “Using monthly precipitation data to estimate the R-factor in the revised USLE,” Journal of Hydrology, Vol. 157, pp. 287-306.
38.Salako, F. K., 2010, “Development of isoerodent maps for Nigeria from daily rainfall amount,” Geoderma, Vol. 156, pp. 372-378.
39.Shamshad, A., Azhari, M. N., Isa, M. H., Wan Hussin,W. M. A., and Parida, B. P., 2008, “Development of an appropriate procedure for estimation of RUSLE EI30 index and preparation of erosivity maps for Pulau Penang in Peninsular Malaysia,” Catena, Vol. 72, pp. 423-432.
40.Silva, A. M., Wiecheteck, M., and Zuercher, B. W., 2011, “Spatial assessment of indices for characterizing the erosive force of rainfall in El Salvador Republic,” Environmental Engineering Science, Vol. 28, pp. 309-316.
41.Smith, D. D., 1941, “Interpretation of soil conservation data for field use,” Agricultural Engineering, Vol. 22, pp. 173-175.
42.Wischmeier, W. H., and Smith D. D., 1978, “Predicting Rainfall Erosion Losses - A Guide to Conservation Planning,” U.S. Department of Agriculture, Agricultural Handbook, No. 537, pp. 58.
43.Wischmeier, W. H., and Smith, D. D., 1958, “Rainfall energy and its relationship to soil loss,” American Geophysical Union, Transactions, Vol. 39, pp. 285-291.
44.Yu, B., 1998, “Rainfall erosivity and its estimation for Australia's tropics,” Australian Journal of Soil Research, Vol. 36, pp. 143-165.
45.Zingg, R. W., 1940, “Degree and length of land slope as it affects soil loss in runoff, ” Agricultural Engineering, Vol. 21, pp. 59-64.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文
 
系統版面圖檔 系統版面圖檔