跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 17:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾奕燕
研究生(外文):Tseng, Yi-Yen
論文名稱:探討飼料之中鏈脂肪酸對點帶石斑成長、營養素消化率及脂質代謝之影響
論文名稱(外文):Effects of dietary medium chain fatty acid on growth, nutrient digestibility and lipid metabolism in orange-spotted grouper,Epinephelus coioides
指導教授:林鈺鴻
指導教授(外文):Lin, Yu-Hung
口試委員:蕭錫延謝淑玲
口試委員(外文):Shiau, Shi-YenHsieh, Shu-Ling
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:水產養殖系所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:108
中文關鍵詞:中鏈脂肪酸脂質代謝點帶石斑(Epinephelus coioides)
外文關鍵詞:medium chain fatty acidlipid metabolismEpinephelus coioides
相關次數:
  • 被引用被引用:1
  • 點閱點閱:380
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討飼料之中鏈脂肪酸(medium-chain fatty acid)對點帶石斑(Epinephelus coioides)成長表現、營養素消化率及脂質代謝之影響。實驗一,基礎飼料(SBM)以黃豆粉取代40%魚粉蛋白,椰子油組以基礎飼料並額外添加0.5 (SBC0.5)、1 (SBC1.0)、1.5 (SBC1.5)及2% (SBC2.0)的椰子油,另以全魚粉組(FM)作為對照,飼料油脂為10%,而基礎飼料油脂同對照組,椰子油組之油脂分別為10.5、11、11.5及12%,共六組飼料,每組三重複,每缸放養20尾石斑魚(平均初重為38.04 ± 0.24 g),以循環水系統進行養殖,實驗為期八週。各組之增重率、飼料效率、存活率、腹脂率、肝臟之蘋果酸酵素活性及營養素消化率結果顯示,均不受椰子油影響。脂肪酸分析顯示,肝臟及背肌的脂肪酸組成反應飼料組成,而各組肝臟中則均未檢測出月桂酸(lauric acid, C12:0),背肌之C12:0則隨椰子油添加上升,且椰子油各組之月桂酸消化率均高於90%以上。實驗一由肝臟及背肌C12:0分析顯示,C12:0可於肝臟中代謝,並可蓄積於背肌中,且C12:0消化率均高於90%以上,證實點帶石斑魚可有效利用中鏈脂肪酸。實驗二,以適量油脂組(10F)作為對照,高油脂組(15F)為控制組,椰子油組以高油脂組並以1 (15F1C)、3 (15F3C)、5% (15F5C)之椰子油取代等比例飼料魚油,飼料油脂均為15%,實驗飼料共五組,以循環水系統進行養殖,每組三重複, 每缸放養30尾石斑魚(平均初重為8.53 ± 0.13 g),實驗進行八週。增重率15F3C組顯著高於10F及15F5C兩組,但與其餘各組無顯著差異,肝臟之蘋果酸酶酵素活性顯示,相較其餘各組,以15F1C有較高趨勢,並顯著高於10F組,而脂質代謝相關基因表現亦顯示,肉鹼棕櫚醯基轉移酶(carnitine palmitoyltransferase, CPT1-α)、脂肪酸合成酶(fatty acid synthase, FAS)、脂肪酸去飽和酶(fatty acid desaturase, FAD)、過氧化體增生活化受體(peroxisome proliferator-activated receptor gamma, PPAR-γ)及脂肪酸延長酶(fatty acid elongase, FAE)均以15F1C顯著最高,而神經胜肽(neuropeptide Y, NPY)基因表現量以15F顯著最高,其餘各組無顯著差異。由實驗二結果顯示,於高油脂飼料(15F)添加1%椰子油可促進脂質代謝相關之基因表現量(CPT1-α, FAS, FAD, PPAR-γ, FAE),證實,高油飼料中添加1% 之椰子油可促進點帶石斑魚脂質代謝。
The objective of this study was to investigate the effects of dietary medium chain fatty acid on growth, digestibility and lipid metabolism of juvenile grouper, Epinephelus coioides. Experiment Ι, the basal diet with 40% soybean meal substituting to 40% fishmeal protein was supplemented with coconut oil (rich in lauric acid, C12:0) 0.5 (SBC0.5), 1 (SBC1.0), 1.5 (SBC1.5) and 2% (SBC2.0), resulting 10.5, 11, 11.5 and 12% of total lipid, respectively. All fish meal diet (FM) with 10% lipid was used for comparison. Each diet was fed to triplicate groups of 20 fish (initial weight: 38.04 ± 0.24 g) in a closed recirculating rearing system for 8 weeks. Weight gain, feed efficiency, survival, visceral fat content, hepatic malic enzyme activity and nutrient digestibility were not affected by dietary treatments. Fatty acid profiles of liver and muscle generally reflected the composition of the diet. No lauric acid was determined in liver in all dietary treatments. Muscle lauric acid increased with increment of dietary coconut oil levels. The digestibility of C12:0 appears high (>90 %) in all coconut oil supplemented treatments. The results suggest that grouper can utilize medium-chain fatty acid well. Experiment Π, fish oil was replaced by coconut oil at 1 (15F1C), 3 (15F3C), and 5% (15F5C) in the basal diet (15F) containing 15% lipid. The diet with 10% lipid (10F) was also included for comparison. Five experimental diets were each fed to triplicate groups of 30 juvenile groupers (initial weight: 8.53 ± 0.13 g) in a recirculating rearing system for 8 weeks. Weight gain was higher in fish fed 15F3C than 15F5C and the 10F diet, but no significant differences with others diets. Fish fed the 15F1C diet had higher hepatic malic enzyme activity than fish fed the 10F diet. Hepatic carnitine palmitoyltransferase (CPT-1), fatty acid synthase (FAS), fatty acid desaturase (FAD), fatty acid elongase (FAE) and peroxisome proliferator-activated receptor gamma (PPAR-γ) gene expressions were all the highest in fish fed the 15F1C diet. Fish fed the 15F diet was observed up-regulated neuropeptide (NPY) gene expression compared with other dietary treatments. The results suggest that 1% coconut oil supplemented in high lipid diet (15%) has beneficial effects on lipid metabolism in grouper.
中文摘要 I
英文摘要 ......... III
謝誌 V
目錄 VI
表目錄 VIII
圖目錄 X

第一章、文獻回顧
1.1石斑魚的養殖背景 1
1.2解決飼料中魚粉的問題 2
1.3脂肪酸 3
1.4飼料中的油脂 8
1.5中鏈脂肪酸-月桂酸 10
1.6脂質代謝之相關基因 12

第二章、探討飼料中添加富含中鏈脂肪酸之椰子油餵飼點帶石斑對其成長、脂質吸收及代謝之影響(實驗一)
2.1摘要 16
2.2前言 17
2.3材料與方法 18
2.4結果 33
2.5討論 53

第三章、探討高油脂飼料中添加中鏈脂肪酸對點帶石斑魚脂質代謝與相關基因表現之影響(實驗二)
3.1摘要......................................................................................................60
3.2前言......................................................................................................61
3.3材料與方法 62
3.4結果......................................................................................................74
3.5討論......................................................................................................88
第四章、總結論 95
參考文獻 96
附錄一、脂肪酸標準品之圖譜 106
作者簡介 108
姜樹興,2014。動物營養學原理。華香園出版社,台北市,第四章,150-151頁
Andrews, Z.B., Liu, Z.W., Walllingford, N., Erion, D.M., Borok, E., Friedman, J.M., Tschöp, M.H., Shanabrough, M., Cline, G., Shulman, G.I., Coppola, A., Gao, X.B., Horvath, T.L., Diano, S., 2008. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature 454, 846-851.
Antolović, N., Kožul, V., Antolović, M., Bolotin, J., 2012. Effects of partial replacement of fish meal by soybean meal on growth of juvenile saddled bream (Sparidae). Turkish J. Fish. Aquat. Sci. 12, 247-252.
AOAC (Association of Official Analytical Chemists), 1995. Official Methods of Analysis, 16th edn. AOAC, Arlington, VA, USA.
Arunima, S., Rajamohan, T., 2014. Influence of virgin coconut oil-enriched diet on the transcriptional regulation of fatty acid synthesis and oxidation in rats – a comparative study. Br. J. Nutr. 111, 1782-1790.
Bach, A.C., Babayan, V.K., 1982. Medium-chain triglycerides: an update. Am. J. Clin. Nutr. 36, 950-962.
Ballestrazzi, R., Rainis, S., Maxia, M., 2006. The replacement of fish oil with refined coconut oil in the diet of large rainbow trout (Oncorhynchus mykiss). Ital. J. Anim. Sci. 5, 155-164.
Catacutan, M.R., Coloso, R.M., 1995. Effect of dietary protein to energy ratios on growth, survival, and body composition of juvenile Asian seabass (Lates calcarifer). Aquaculture 131, 125-133.
Chou, H.Y., Lin, Y.H., Shiau, S.Y., 2008. Nutrition, immunology and health management of groupers. In: Grouper Aquaculture, Liao, I.C., and Leaño, E.M. (Eds.), Asian Fisheries Society, Manila, Philippines, World Aquaculture Society, Louisiana, USA, The Fisheries Society of Taiwan, Keelung, Taiwan, and National Taiwan Ocean University, Keelung, Taiwan. pp. 189-205.
Clarke, S.D., Jump, D.B., 1993. Regulation of hepatic gene expression by dietary fats: a unique role for polyunsaturated fatty acids. In: nutrition and gene expression. Berdanier, C.D., Hargrove, J.L. (Eds.), Boca raton, Florida: CRC press. pp. 227-245.
Clarke, S.D., 2001. Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. Br. J. Nutr. 83, 59-66.
Copeman, L.A., Parrish, C.C., Brown, J.A., Harel, M., 2002. Effects of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): a live food enrichment experiment. Aquaculture 210, 285-304.
Craig, S.R., Gatlin, D.M., 1995. Coconut oil and beef tallow, but not tricaprylin, can replace menhaden oil in the diet of red drum (Sciaenops ocellatus) without adversely affecting growth or fatty acid composition. J. Nutr. 125, 3041-3048.
Davis, D.A., Lazo, J.P., Arnold, C.R., 1999. Response of juvenile red drum (Sciaenops ocellatus) to practical diets supplemented with medium chain triglycerides. Fish Physiol. Biochem. 21, 235-247.
Dayrit, F.M., 2014. Lauric acid is a medium-chain fatty acid, coconut oil is a medium-chain triglyceride. Philipp. J. Sci. 143, 157-166.
Delporte, C., 2013. Structure and physiological actions of ghrelin. Scientifica. 25 pp.
Denstadli, V., Bakke, A.M., Berge, G.M., Krogdahl, Ǻ., Hillestad, M., Holm, H., Ruyter, B., 2011. Medium-chain and long-chain fatty acids have different postabsorptive fates in Atlantic salmon. J. Nutr. 141, 1618-1625.
Dhar, A.K., Michelle, M.R., Pain, A., Klimpel, K.R., 2002. The lipopolysaccharide and β-1, 3-glucan binding protein gene is upregulated in white spot virus-infected shrimp. J. Virol. 76, 7140-7149.
El-Sayed, A.F.M., 1999. Alternative dietary protein sources for farmed tilapia, Oreochromis spp. Aquaculture 179, 149-168.
Eusebio, P.S., Coloso, R.M., Mamauag, R.E.P., 2004. Apparent digestibility of selected ingredients in diets for juvenile grouper, Epinephelus coioides. Aquacult. Res. 35, 1261-1269.
FAO (Food Agriculture Organization) Yearbooks of FishStatJ, 2015. Food Agriculture Organization of the United Nations, Rome.
Figueiredo-Silva, A.C., Kaushik, S., Terrier, F., Schrama, J.W., Médale, F., Geurden, I., 2012. Link between lipid metabolism and voluntary food intake in rainbow trout fed coconut oil rich in medium-chain TAG. Br. J. Nutr. 107, 1714-1725.
Folch, J., Lees, M., Sloane-Stanley, G.H., 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-509.
Fontagné, S., Pruszynski, T., Corraze, G., Bergot, P., 1999. Effect of coconut oil and tricaprylin vs. triolein on survival, growth and fatty acid composition of common carp (Cyprinus carpio L.) larvae. Aquaculture 179, 241-251.
Fontagné, S., Corraze, G., Bergot, P., 2000. Response of common carp (Cyprinus carpio) larvae to different dietary levels and forms of supply of medium-chain fatty acids. Aquat. Living Resour. 13, 429-437.
Francis, G., Makkar, H.P.S., Becker, K., 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199, 197-227.
Freeman, B.A., Crapo, J.D., 1982. Biology of disease: free radicals and tissue injury. Lab. Invest. 47, 412-426.
Frøyland, L., Madsen, L., Eckhoff, K.M., Lie, Ø., Berge, R.K., 1998. Carnitine palmitoyltransferase I, carnitine palmitoyltransferase II, and acyl-CoA oxidase activities in Atlantic salmon (Salmo salar). Lipids 33, 923-930.
Furukawa, A., Tsukahara, H., 1966. On the acid digestion method for the determination of chromic oxide as an index substance in the study of digestibility of fish feed. Bull. Jpn. Soc. Sci. Fish. 32, 502-506.
Gao, Y.J., Tian, L.X., Yang, H.J., Liang, G.Y., Yue, Y.R., Liu, Y.J., 2012. The influence of ghrelin and des-ghrelin on feed intake, growth performance and hypothalamic NPY mRNA expression of grouper Epinephelus coioides. Aquaculture 364-365, 19-24.
German, D.P., Horn, M.H., 2006. Gut length and mass in herbivorous and carnivorous prickle back fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Mar. Biol. 148, 1123-1134.
Goto, T., Ui, T., Une, M., Kuramoto, T., Kihira, K., Hoshita, T., 1996. Bile salt composition and distribution of the D-cysteinolic acid conjugated bile salts in fish. Fish. Sci. 62, 606-609.
Gropper, S.S., Smith, J.L., Groff, J.L., 2013. Advanced Nutrition and Human Metabolism, 5e. Cengage learning Asia Pte Ltd., Taipei, 609 pp.
Hashim, S.A., Tantibhedyangkul, P., 1987. Medium chain triglyceride in early life: Effects on growth of adipose tissue. Lipids 22, 429-434.
Hassan, S., Altaff, K., Satyanarayana, T., 2009. Use of soybean meal supplemented with cell bound phytase for replacement of fish meal in the diet of Juvenile milkfish, Chanos chanos. Pak. J. Nutr. 8, 341-344.
Hemre, G.I., Deng, D.F., 2015. Carbohydrates. In: Dietary Nutrients, Additives, and Fish Health, Lee, C.S., Lim, C., Gatlin III, D.M., Webster, C.D. (Eds.), Wiley Blackwell, Hoboken, New Jersey, pp. 95-106.
Hillestad, M, Johnsen, F., 1994. High-energy/low-protein diets for Atlantic salmon: effects on growth, nutrient retention and slaughter quality. Aquaculture 124, 109-116.
Houston, A.H., 1997. Review: are the classical hematological variables acceptable indicators of fish health? T. Am. Fish Soc. 126, 879-894.
Hosseini , S.A., Khajepour, F., 2013. Effect of partial replacement of dietary fish meal with soybean meal on some hematological and serum biochemical parameters of juvenile beluga, Huso huso. Iran. J. Fish. Sci. 12, 348-356.
Hsu, R.Y., Lardy, H.A., 1969. Malic enzyme. In: Lowenstein, J.M. (Ed.), Method in Enzymology, XIII. Academic Press, New York, San Francisco, London, pp. 230-235.
Husvéth, F., Manilla, H.A., Gaál, T., Vajdovich, P., Balogh, N., Wágner, L., Lóth, I., Németh, K., 2000. Effects of saturated and unsaturated fats with vitamin E supplementation on the antioxidant status of broiler chicken tissues. Acta Vet. Hung. 48, 69-79.
Jiang, Z.M., Zhang, S.Y., Wang, X.R., Yang, N.F., Yu Zhu, M.D., Douglas Wilmore, M.D., 1993. A comparison of medium-chain and long-chain triglycerides in surgical patients. Ann. Surg. 217, 175-184.
Kennedy, J.P., 1991. Structured lipids: fats of the future. Food Technol. 45, 76-83.
Kerner, J., Hoppel, C., 2000. Fatty acid import into mitochondria. Biochim. Biophys. Acta 1486, 1-17.
Kumar, V., Sinha, A.K., Makkar, H.P.S., De Boeck, G., Becker, K., 2011. Phytate and phytase in fish nutrition. J. Anim. Physiol. An. Nutr. 96, 335-364.
Lavau, M.M., Hashim, S.A., 1978. Effect of medium chain triglyceride on hipogenesis and body fat in the rat. J. Nutr. 108, 613-620.
Legendre, M., Kerdchuen, N., Corraze, G., Bergot, P., 1995. Larval rearing of an African catfish Heterobranchus longifilis (Teleostei, Clariidae): effect of dietary lipids on growth, survival and fatty acid composition of fry. Aquat. Living Resour. 8, 355-363.
Librán-Pé rez, M., Ló pez-Patiño, M.A., Míguez, J.M., Soengas, J.L., 2013. Oleic acid and octanoic acid sensing capacity in rainbow trout Oncorhynchus mykiss is direct in hypothalamus and brockmann bodies. Plos One 8, e59507.
Lilleeng, E., Penn, M.H., Haugland, O., Xu, C., Bakke, A.M., Krogdahl, Ǻ., Lansverk, T., Froystad-Saugen, M.K., 2009. Decreased expression of TGF-β, GILT and T-cell markers in the early stages of soybean enteropathy in Atlantic salmon (Salmo salar L.). Fish Shellfish Immunol. 27, 65-72.
Lin, Y.H., Shiau, S.Y., 2003. Dietary lipid requirement of grouper, Epinephelus malabaricus, and effects on immune responses. Aquaculture 255, 243-250.
Lin, Y.H., Shiau, S.Y., 2007. Effects of dietary blend of fish oil with corn oil on growth and non-specific immune responses of grouper, Epinephelus malabaricus. Aquac. Nutr. 13, 137-144.
Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25, 402-408.
Lloyd, C., 2002. Metabolic Pathways. CellML biology. math. data. knowledge. Available: www.cellml.org/database/Metabolic Pathways. asp. (July 2002).
Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275.
Luo, Z., Liu, Y.J., Mai, K.S., Tian, L.X., Liu, D.H., Tan, X.Y., Lin, H.Z., 2005. Effect of dietary lipid level on growth performance, feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous diets in floating netcages. Aquacult. Int. 13, 257-269.
Marion-Letellier, R., Savoye, G., Ghosh, S., 2015. Fatty acids, eicosanoids and PPAR gamma. Eur. J. Pharmacol. doi:10.1016/j.ejphar.2015.11.004.
Mourente, G., Bell, J.G., Tocher, D.R., 2007. Does dietary tocopherol level affect fatty acid metabolism in fish? Fish Physiol. Biochem. 33, 269-280.
Mustafa, M.G., Nakagawa, H., Ohya, S., Shimizu, T., Horikawa, Y., Yamamoto, S.I., 1991. Effects of various level of dietary medium chain triglycerides on growth and lipid reservation in ayu. Nippon Suisan Gakk. 57, 2327-2331.
Nakagawa, H., Kimura, T., 1993. Optimum ratio of medium chain triglycerides to pollack liver oil in diets on lipid accumulation of ayu, Plecoglossus altivelis (Pisces). In: Fish Nutrition in Practice. Kaushik, S.J., Luquet, P. (Eds.), Les Colloques, No. 61, INRA, Paris, pp. 237-245.
Nakamura, M.T., Yudell, B.E., Loor, J.J., 2014. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res. 53, 124-144.
National Research Council (NRC), 2011. Nutrient Requirement of Fish and Shrimp. National Academic Press, Washington, D.C.
Nordrum, S., Krogdahl, Ǻ., Røsjø, C., Olli, J.J., Holm, H., 2000. Effects of methionine, cysteine and medium chain triglycerides on nutrient digestibility, absorption of amino acids along the intestinal tract and nutrient retention in Atlantic salmon (Salmo salar L.) under pair-feeding regime. Aquaculture 186, 341-360.
Nordrum, S., Olli, J.J., Røsjø, C., Holm, H., Krogdahl, Å., 2003. Effects of graded levels of medium chain triglycerides and cysteine on growth, digestive processes and nutrient utilization in sea water reared Atlantic salmon (Salmo salar, L.) under ad libitum feeding regime. Aquacult. Nutr. 9, 263–274.
Norway, B., 1977. Fatty acid compositions of fish fats. Comparisons based on eight fatty acids. Fisk. Dir. Skr., Ser. Ernoering. 1, 105-116.
Nosaka, N., Kasai, M., Nakamura, M., Takahashi, I., Itakura, M., Takeuchi, H., Aoyama, T., Tsuji, H., Okazaki, M., Kondo, K., 2002. Effects of dietary medium-chain triacylglycerols on serum lipoproteins and biochemical parameters in healthy men. Biosci. Biotechnol. Biochem. 66, 1713-1718.
Obach, A., Quentel, C., Laurencin, F.B., 1993. Effects of alpha-tocopherol and dietary oxidized fish oil on the immune response of sea bass Dicentrarchus labrax. Dis. Aquat. Org. 15, 175-185.
Ooyama, K., Kojima, K., Aoyama, T., Takeuchi, H., 2009. Decrease of food Intake in rats after ingestion of medium-chain triacylglycerol. J. Nutr. Sci. Vitaminol. 55, 423-427.
Olsen, R.E., Ringø, E., 1997. Lipid digestibility in fish: A review. Rec. Res. Dev. Lipids Res. 1, 199-265.
Ostaszewska, T., Dabrowski, K., Palacios, M.E., Olejniczak, M., Wieczorek, M., 2005. Growth and morphological changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) and pacu (Piaractus mesopotamicus) due to casein replacement with soybean proteins. Aquaculture 245, 273-286.
Papamandjaris, A.A., MacDougall, D.E., Jones, P.J.H., 1998. Medium chain fatty acid metabolism and energy expenditure: obesity treatment implications. Life Sci. 62, 1203-1215.
Peres, H., Oliva-Teles, A., 1999. Effect of dietary lipid level on growth performance and feed utilization by European sea bass juveniles (Dicentrarchus labrax). Aquaculture 179, 325-334.
Pike, I.H., Jackson, A., 2010. Fish oil: Production and use now and in the future. Lipid Technol. 22, 59-61.
Poulsen, L.I., Siersbæk, M., Mandrup, S., 2012. PPARs: Fatty acid sensors controlling metabolism. Semin. Cell Dev. Biol. 23, 631-639.
Røsjø, C., Nordrum, S., Olli, J.J., Krogdahl, Ǻ., Ruyter, B., Holm, H., 2000. Lipid digestibility and metabolism in Atlantic salmon (Salmo salar) fed medium-chaintriglycerides. Aquaculture 190, 65-76.
Roy, T., Mondal, S., Ray, A.K., 2009. Phytase-producing bacteria in the digestive tracts of some freshwater fish. Aquacult. Res. 40, 344-353.
Roy, H.J., 2013. Health effects of coconut oil. Pennington Biomedical Research Center. Pub No. 94.
Sahlmann, C., Sutherland, B.J., Kortner, T.M., Koop, B.F., Krogdahl, Ǻ., Bakke, A.M., 2013. Early response of gene expression in the distal intestine of Atlantic salmon (Salmo salar L.) during the development of soybean meal induced enteritis. Fish Shellfish Immunol. 34, 599-609.
Sargent, J., Bell, G., McEvoy, L., Tocher, D., Estevez, A., 1999. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177, 191-199.
Sargent, J.R., Tocher, D.R., Bell, J.G., 2002. In: Fish Nutrition. 3th edition, Halver, J.E., Hardy, R. (Eds.), Academic Press, San Diego, pp. 202-203.
Segner, H., Braunbeck, T., 1988. Hepatocellular adaptation to extreme nutritional conditions in ide, Leuciscus idus melanotus L. Cyprinidae. A morphofunctional analysis. Fish Physiol. Biochem. 5, 79-97.
Shiau, S.Y., Lin, Y.H., 2001. Carbohydrate utilization and its protein-sparing effect in diets for grouper (Epinephelus malabaricus). Anim. Sci. 73, 299-304
Smith, D.M., Williams, I.H., Williams, K.C., Barclay, M.C., Venables, W.N., 2005. Oxidation of medium-chain and long-chain fatty acids by polka dot grouper Cromileptes altivelis. Aquacult. Nutr. 11, 41-48.
Stickney, R.R., Andrews, J.W., 1972. Effects of dietary lipids on growth, food conversion, lipid and fatty acid composition of channel catfish. J. Nutr. 102, 249-258.
Stowell, S.L., Gatlin, D.M., 1992. Effects of dietary pantethine and lipid levels on growth and body composition of channel catfish, Ictalurus punctatus. Aquaculture 108, 177-188.
Takagi, S., Murata, H., Goto, T., Ichiki, T., Endo, M., Hatate, H., Yoshida, T., Sakai, T.,Yamashita, H., Ukawa, M., 2006. Efficacy of taurine supplementation for preventing green liver syndrome and improving growth performance in yearling red sea bream Pagrus major fed low-fishmeal diet. Fish. Sci. 72, 1191-1199.
Takeuchi, T., Satoh, S., Watanabe, T., 1983. Dietary lipids suitable for the practical feed of tilapia nilotica. Bull. Jpn. Soc. Sci. Fish. 49, 1361-1365.
Tang, Z., Sun, C., Yan, A., Wu, S., Qin, C., Zhang, Y., Li, W., 2013. Genes involved in fatty acid metabolism: Molecular characterization and hypothalamic mRNA response to energy status and neuropeptide Y treatment in the orange-spotted grouper Epinephelus coioides. Mol. Cell Endocrinol. 376, 114-124.
Tocher, D.R., 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 11, 107-184.
Tocher, D.R., Bendiksen, E.A., Campbell, P.J., Bell, J.G., 2008. The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture 28, 21-34.
Torres, N., Villalvazo, T.I., Tovar, A.R., 2006. Regulation of lipid metabolism by soy protein and its implication in diseases mediated by lipid disorders. J. Nutr. Biochem. 17, 365-373.
Tupper, M., Sheriff, N., 2008. Capture-based aquaculture of groupers. In Lovatelliand, A. Holthus, P.F. (Eds.), Capture-based aquaculture. Global overview. FAO Fisheries Technical Paper. No. 508. Rome, FAO. pp. 217-229.
Uchiyama, M., Mihara, M., 1978. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 86, 271-278.
Uran, P.A., Goncalves, A.A., Taverne-Thiele, J.J., Schrama, J.W., Verreth, J.A.J., Rombout, J.H.W.M., 2008. Soybean meal induces intestinal inflammation in common carp (Cyprinuscarpio L.). Fish Shellfish Immunol. 25, 751-760.
van den Ingh, T.S.G.A.M., Krogdahl, Å., Olli, J.J., Hendriks, H.G.C.J.M., Koninkx, J.G.J.F., 1991. Effects of soybean-containing diets on the proximal and distal intestine in Atlantic salmon (Salmo salar): a morphological study. Aquaculture 94, 297-305.
Venold, F.F., Penn, M.H., Krogdahl, Ǻ., Overturf, K., 2012. Severity of soybean meal induced distal intestinal inflammation, enterocyte proliferation rate, and fatty acid binding protein (Fabp2) level differ between strains of rainbow trout (Oncorhynchus mykiss). Aquaculture 364-365, 281-292.
Wakil, S.J., Abu-Elheiga, L.A., 2009. Fatty acid metabolism: target for metabolic syndrome. J. Lipid Res. 50, 138-143.
Wang, J., Wang, X., Li, J., Chen, Y., Yang, W., Zhang, L., 2015. Effects of Dietary coconut oil as a medium-chain fatty acid source on performance, carcass composition and serum lipids in male broilers. Asian Australas J. Anim. Sci. 28, 223-230.
Wardlaw, G.M., Hampl, J.S., DiSilvestro, R.A., 2006. Lipids. In: Perspectives in Nutrition, 6/e. McGraw-Hill, Taipei, 191 pp.
Williams, I., Williams, K.C., smith, D.M., Jones, M., 2006. Polka-dot grouper, Cromileptes altivelis, can utilize dietary fat efficiently. Aquacult. Nutr. 12, 379-387.
Wu, F.C., Ting, Y.Y., Chen, H.Y., 2002. Docosahexaenoic acid is superior to eicosapentaenoic acid as the essential fatty acid for growth of grouper, Epinephelus malabaricus. J. Nutr. 132, 72-79.
Yamamoto, T., Suzuki, N., Furuita, H., Sugita, T., Tanaka, N., Goto, T., 2007. Supplemental effect of bile salts to soybean meal-based diet on growth and feed utilization of rainbow trout Oncorhynchus mykiss. Fish. Sci. 73, 123-131.
Zhang, J.X., Guo, L.Y., Feng, L., Jiang, W.D., Kuang, S.Y., Liu, Y., Hu, K., Jiang, J., Li, S.H., Tang, L., Zhou, X.Q., 2013. Soybean β-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish. Plos One 8, e58115.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 探討含高量黃豆粉飼料中添加膽固醇及膽酸對龍膽石斑成長、營養素消化率及膽固醇代謝之影響
2. 探討含高量黃豆粉飼料添加有機酸對龍膽石斑成長及營養素消化率之影響
3. 探討富含DHA之裂殖壺藻粉取代飼料中魚油對點帶石斑稚魚成長表現、脂肪酸組成及免疫反應之影響
4. 飼料中添加鳳梨酵素對吳郭魚成長表現及生化指標之影響
5. 飼料中添加亞麻籽粉與大豆油取代魚油對點帶石斑(Epinephelus coioides)成長、脂肪酸組成之影響
6. 飼料含植酸對吳郭魚稚魚有機態和無機態銅利用性之影響
7. 探討圓眼燕魚之最適蛋白質需求量及其對黃豆粉之利用性
8. 探討飼料中添加富含花生四烯酸之高山被孢黴真菌粉對點帶石斑魚稚魚成長、免疫反應及脂肪酸組成之影響
9. 評估黄芩(Scutellaria baicalensis)熱水萃取物抗海鱺(Rachycentron canadum)發光菌(Photobacterium damselae subsp. piscicida)與寄生蟲(Piscicola geometra)之作用
10. 光纖雷射-鹼熱表面處理對純鈦與Ti-6Al-4V表面性質影響之研究
11. 柳枝工及木梢沈床工法與節能減碳及成效之探討-以卑南溪新興堤防為例
12. 飼養溫度對金目鱸(Lates calcarifer)幼魚成長表現、攝食量及體組成之影響
13. 餵食率對條紋鯰魚成長表現及急性溫度緊迫生理反應之影響
14. 探討中鏈脂肪酸透過調控肝臟細胞自噬延緩二型糖尿病與非酒精性脂肪肝之分子機制
15. 屏東客庄可可文化產業發展之探究—以內埔、萬巒為例