跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 17:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李安玲
研究生(外文):Arrohmatus Syafaqoh Li’aini
論文名稱:應用 Bacillus amyloliquefaciens 防治甘藍黑腐病
論文名稱(外文):Application of Bacillus amyloliquefaciens to control black rot disease on cabbage caused by Xanthomonas campestris pv. campestris
指導教授:林宜賢林宜賢引用關係黃卓治黃卓治引用關係
指導教授(外文):Lin, Yi-HsienHuang, Tzou-Chi
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:生物科技系所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:48
中文關鍵詞:生物防治抑制活性種子處理植物免疫
外文關鍵詞:biological controlinhibitory assayseed treatmentplant immunity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:376
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
十字花科黑腐病 (Black rot disease, BRD) 是由 Xanthomonas campestris pv. campestris (Xcc) 所引起的病害。在全世界被認為是十字花科中最重要的病害。目前許多研究開發了各種方法來控制十字花科黑腐病,包括拮抗微生物之使用。在本研究中,利用土壤分離之 Bacillus amyloliquefaciens PMB04 及 PMB05 菌株來評估其防治甘藍黑腐病能力。首先在平板拮抗活性分析中,PMB04 及 PMB05 菌株皆對於 Xcc 不同菌株均有抑制的效果。進一步將此兩拮抗菌株分別使用預防性處理與清除性處理二種方式進行種子處理來評估其對甘藍黑腐病之防治效果。結果顯示,此兩種拮抗菌株於兩種處理中均對甘藍黑腐病有顯著的抑制效果,其中又以PMB05菌株的處理為佳。然而,在污染有黑腐病菌再處理拮抗菌的清除性處理中,黑腐病菌於幼苗上之族群卻在PMB04菌株的處理中有較好的抑制能力。進一步分析拮抗菌在植物免疫訊號上的影響,結果顯示僅PMB05菌株能夠加強植物免疫反應之訊號。由以上結果推測PMB05菌株對黑腐病之抑制效果可能與其在植物免疫訊號的提升有關。在清除性處理中,更進一步使用PMB05菌株發酵液的200倍稀釋液處理,可完全抑制甘藍黑腐病的發生。綜上所述,本研究所使用之Bacillus amyloliquefaciens PMB04 及 PMB05 菌株利用種子處理並利用不同的作用機制來防治甘藍黑腐病的發生。
Black rot disease (BRD) caused by Xanthomonas campestris pv. campestris (Xcc) is considered the most important disease of crucifers worldwide. This destructive disease causes considerable yield losses up to 50% by premature defoliation. Various strategies have been developed to control BRD on cabbage, including the use of antagonistic microorganisms. In this study, we attend to assay the possibility of applying Bacillus amyloliquefaciens strains, PMB04 and PMB05, to control BRD on cabbage. Firstly, we assay the inhibitory effect of B. amyloliquefaciens strains againsts Xcc strains on nutrient agar plate. The inhibitory assay revealed that both antagonistic strains were able to inhibit the growth of Xcc strains. Moreover, PMB04 exhibited strongerinhibitory effect against two Xcc strains. These two antagonistic strains were further used to evaluate their biocontrol efficacy of BRD by two seed coating strategies, including preventing and scavenging treatment. As a result, both two treatments exhibited that BRD on cabbage was significantly suppressed by two B. amyloliquefaciens strains. Above all, PMB05 showed stronger suppression than PMB04 in both two seed coating strategies. On the contrary, the population of Xcc in plants was strongly reduced by PMB04 rather than PMB05. Our previous studies showed that B. amyloliquefaciens PMB05 was able to intensify plant immune system for further enhancing disease resistance of crops. To gain more insight on this response, we observed the deposition of callose to evaluate the activation of PAMP-triggered immunity. Correspondingly, callose deposition on the leaf of cabbage was strongly intensified by the cells of PMB05 upon the inoculation of Xcc62 or Xcc64. In addition, the growth of cabbage was not improved by the application of B. amyloliquefaciens. To optimize the biocontrol efficacy of BRD by PMB05, the fermentation liquid of PMB05 was further applied. Results exhibited that disease incidence and disease severity were completely suppressed. In conclusion, BRD could be controlled by B. amyloliquefaciens strain PMB04 due to the antagonistic effect. Most importantly, plant immune response intensified by B. amyloliquefaciens strain PMB05 and its fermentation liquid provides strong efficacy against BRD. The strong biocontrol efficacy might be due to the intensification of plant immunity by PMB05. We concluded that the application of these two B. amyliliquefaciens strains to control BRD on cabbage would be promising in the future.
Table of Contents
摘要 .................................................................................................................... I
Abstract ........................................................................................................... III
Acknowledgment ............................................................................................. V
Table of Contents ............................................................................................ VI
List of Figure ................................................................................................... IX
List of Table ..................................................................................................... XI
1. Introduction ................................................................................................... 1
2. Literature Review .......................................................................................... 3
2.1 Black rot disease on cabbage ............................................................... 3
2.2 Beneficial microorganism as biological control agent ........................ 4
2.3 Bacillus spp. as biocontrol agents ....................................................... 4
2.4 Plant systemic resistance induced by Bacillus spp. ............................ 6
2.5 Plant growth promoting rhizobacteria ................................................. 7
3. Material and Methods.................................................................................... 9
3.1 Bacterial strains and fermentation liquid ............................................ 9
3.2 Media and buffer ................................................................................. 9
3.2.1 Nutrient broth and nutrient agar media .................................... 9

VII
3.2.2 Selective medium of Bacillus amyloliquefaciens and Xanthomonas campestris pv. campestris ................................ 9
3.2.3 Carboxymethylcellulose sodium ......................................... 10
3.2.4 Phosphate buffer .................................................................... 10
3.3 In vitro inhibitory assay of B. amyloliquefaciens against X. campestris pv. campestris ................................................................................... 10
3.4 Biocontrol efficacy of B. amyloliquefaciens to control black rot disease on cabbage ......................................................................................... 11
3.4.1 Preventing strategy of B. amyloliquefaciens on cabbage ...... 11
3.4.2 Scavenging strategy of B. amyloliquefaciens on cabbage ..... 12
3.5 B. amyloliquefaciens and X. campestris pv. campestris population assay from plants ............................................................................... 13
3.6 Callose deposition ............................................................................. 14
3.7 The effect of B. amyloliquefaciens application on the plant growth 14
3.8 Biocontrol efficacy of fermentation liquid of B. amyloliquefaciens strain PMB05 to control BRD on cabbage ....................................... 15
4. Results ......................................................................................................... 16
4.1 In vitro inhibitory assay of Bacillus amyloliquefaciens against Xanthomonas campestris pv. campestris .......................................... 16
4.2 Biocontrol efficacy of B. amyloliquefaciens to control black rot disease on cabbage ......................................................................................... 16
4.2.1 Preventing strategy of B. amyloliquefaciens on cabbage ...... 16

VIII
4.2.2 Scavenging strategy of B. amyloliquefaciens on cabbage ..... 17
4.3 Population of B. amyloliquefaciens in the seedling of cabbage ........ 17
4.4 Population of X. campestris pv. campestris in the seedling of cabbage ........................................................................................................... 17
4.5 Callose deposition on cabbage leaf ................................................... 17
4.6 The effect of application of B. amyloliquefaciens on the plant growth ........................................................................................................... 18
4.7 Biocontrol efficacy of B. amyloliquefaciens strain PMB05 fermentation liquid to control BRD on cabbage ............................... 18
5. Discussion ................................................................................................... 19
6. Conclusion ................................................................................................... 25
7. References ................................................................................................... 26
8. Figure and Table .......................................................................................... 34
Biosketch of Author ........................................................................................ 48
7. References
Ajilogba, C. F., O. O. Babalola, and F. Ahmad. 2013. Antagonistic effects of Bacillus species in biocontrol of tomato Fusarium wilt. Ethno-Medicine Journal 7(3): 205-216.
Baroroh, I. 2012. Utilization of bacteriophage as a biocontrol agent of black rot disease on cabbage. Master Thesis. Department of Agrotechnology. Faculty of Agriculture, University of Sebelas Maret. Surakarta, Indonesia.
Belete, E., A. Ayalew, and S. Ahmed. 2015. Antagonistic Effect of native Bacillus isolates against black root rot of faba bean. African Crop Science Journal 23(3): 249-259.
Beneduzi, A., A. Ambrosini, and L. M. P. Passaglia. 2012. Plant growthpromoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetics and Molecular Biology 35(4): 1044-1051.
Chang, J. J. 2016. Bacillus amyloliquefaciens primes PAMP-triggered immunity to control bacterial fruit blotch of watermelon. Master Thesis. Department of Plant Medicine, National Pingtung University of Science and Technology. Taiwan.
Chen, X., Y. Zhang, X. Fu, Y. Li, and Q. Wang. 2016. Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biology and Technology 115: 113121.
Chidamba, L. 2011. Characterisation of Xanthomonas campestris pv. campestris isolates from south africa using genomic DNA fingerprinting and pathogenicity tests. Dissertation. School of Environmental Science and Development. North-West University,

27
Potchefstroom Campus. South Africa.
Couillerot, O., C. Prigent-Combaret, J. Caballero-Mellado, and Y. MoenneLoccoz. 2009. Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Letters in Applied Microbiology: 505-512.
Danielsson, J. 2008. Bacillus-based biocontrol on brassica. Dissertation. Swedish University of Agricultural Sciences. Uppsala, Sweden.
Ellinger, D., M. Naumann, C. Falter, C. Zwikowics, T. Jamrow, C. Manisseri, S. C. Somerville, and C. A. Voigt. 2013. Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiology 161: 1433-1444.
Flors, V., J. Ton, G. Jakab, and B. Mauchi-Mani. 2005. Abscisic acid and callose: team players in defence against pathogens?. Journal of Phytopathology 153: 377–383.
Gabor, B., J. Kao, D. Krause. 2013. Crucifer disease guide. Seminis Vegetable Seeds Incorporations, Plant Health Department and Seed Health Departments. Woodland, California.
Ghazalibiglar, H., J. G. Hampton, E. Z. de Jong, and A. Holyoake. 2016. Is induced systemic resistance the mechanism for control of black rot in Brassica oleracea by a Paenibacillus sp.?. Biological Control 92: 195201.
Haggag, W. M. and H. A. L. A. Mohamed. 2007. Biotechnological aspects of microorganisms used in plant biological control. World Journal of Agricultural Sciences 3(6): 771-776.

28
Hallmann, J., A. Quadt-Hallmann, W. F. Mahaffee, and J. W. Kloepper. 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology 43: 895-914.
Hanudin and B. Marwoto. 2012. Prospect of the use of antagonistic microbes as biological control agents of major diseases on ornamental plants and vegetables crops. Journal of Indonesian Agency for Agricultural Research and Development 31(1): 8-13.
Issazadeh, K., S. K. Rad, S. Zarrabi, and M. R. Rahimibashar. 2012. Antagonism of Bacillus species against Xanthomonas campestris pv. campestris and Pectobacterium carotovorum subsp. carotovorum. African Journal of Microbiology Research 6(7): 1615-1620.
Jackson, M. A. 1997. Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents. Journal of Industrial Microbiology and Biotechnology 19: 180-187.
Kachroo, A., Z. He, R. Patkar, Q. Zhu, J. Zhong, D. Li, P. Ronald, C. Lamb, and B. B. Chattoo. 2003. Induction of H2O2 in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens. Transgenic Research 12: 577-586.
Kamilova, F., S. Validov, T. Azarova, I. Mulders, and B. Lugtenberg. 2005. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environmental Microbiology 7(11), 1809-1817.
Kitamura, S., M. Watanabe, and M. Nakayama. 1981. Process for producing coated seed. United State Patent 4250660.
Koh, E. J., L. Zhou, D. S. Williams, J. Park, N. Ding, Y. P. Duan, and B. H. Kang. 2012. Callose deposition in the phloem plasmodesmata and

29
inhibition of phloem transport in citrus leaves infected with “Candidatus Liberibacter asiaticus”. Protoplasma 249: 687-697.
Lee, J. P., S. W. Lee, C. S. Kim, J. H. Son, J. H. Song, K. Y. Lee, H. J. Kim, S. J. Jung, B. J. Moon. 2006. Evaluation of formulation of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biological Control 37: 329-337.
León, I. P. and M. Montesano. 2013. Activation of defense mechanisms against pathogens in mosses and flowering plants. International Journal of Molecular Sciences 14: 3178-3200.
Li, J., R. A. Burton, A. J. Harvey, M. Hrmova, A. Z. Wardak, B. A. Stone, and G. B. Fincher. 2003. Biochemical evidence linking a putative callose synthase gene with (1→3)-β-D-glucan biosynthesis in barley. Plant Molecular Biology 53: 213–225.
Liu, K., C. Garret, H. Fadamiro, and J. W. Kloepper. 2016. Induction of systemic resistance in chinese cabbage against black rot by plant growthpromoting rhizobacteria. Biological Control 99: 8-13.
Luna, E., V. Pastor, J. Robert, V. Flors, B. Mauch-Mani, and J. Ton. 2011. Callose deposition: a multifaceted plant defense response. Molecular Plant-Microbe Interactions 24(2): 183–193.
Meenu, G., A. Vikram, and N. Bharat. 2013. Black rot - a devastating disease of crucifers: a review. Agricultural Reviews 34(4): 269-278.
Miliute, I., O. Buzaite, D. Baniulis, and V. Stanys. 2015. Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste-Agriculture 102(4): 465-478.

30
Mishra, S. and N. K. Arora. 2012. Management of black rot in cabbage by rhizospheric Pseudomonas species and analysis of 2,4diacetylphloroglucinol by qRT PCR. Biological Control 61: 32-39.
Monteiro, L., R. L. R. Mariano, and A. M. Souto-Maior. 2005. Antagonism of Bacillus spp. against Xanthomonas campestris pv. campestris. Brazilian Archives of Biology and Technology 48(1): 23-29.
Munthali, M. C. 2014. Application of Bacillus sp. DR43 to control tomato bacterial wilt caused by Ralstonia solanacearum. Master Thesis. Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology. Taiwan.
Murthi, R. S., Lisnawita, and S. Oemry. 2015. Potensi bakteri endofit dalam meningkatkan pertumbuhan tanaman tembakau yang terinfeksi nematoda puru akar (Meloidogyne spp.). Jurnal Agroekoteknologi 4(1): 1881-1889.
Nihorimbere , V., M. Ongena, M. Smargiassi, and P. Thonart. 2011. Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnology, Agronomy, Social, and Environment Journal 15(2): 327-337.
O’Callaghan, M. 2016. Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied Microbiology and Biotechnology 100: 5729-5746.
O’Callaghan, M., J. Swaminathan, J. Lottmann, D. A. Wright, and T. A. Jackson. 2006. Seed coating with biocontrol strain Pseudomonas fluorescens F113. New Zealand Plant Protection 59: 80-85.
Papavizas, G. C., M. T. Dunn, J. A. Lewis, and J. Beagle-Ristaino. 1984. Liquid fermentation technology for experimental production of biocontrol fungi. Techniques 74(10): 1171-1175.

31
Perez-Rosales, E., L. Alcaraz-Meléndez, M. E. Puente, R. Vázquez-Juárez, E. Quiroz-Guzmán, T. Zenteno-Savín, and E. Morales-Bojórquez. 2017. Isolation and characterization of endophytic bacteria associated with roots of jojoba (Simmondsia chinensis (Link) Schneid). Current Science 112(2): 396-401.
Pertot, I., C. Alabouvette, E. H. Esteve, and S. Franca. 2016. Mini paper - the use of microbial biocontrol agents against soil-borne diseases. Focus Group, EIP-Agri. European Commission.
Piromyou, P. 2010. Effects of plant growth promoting rhizobacteria (PGPR) inoculum on indigenous microbial community structure under cropping system. Master Thesis. Degree of Master of Science in Biotechnology. Suranaree University of Technology. Thailand.
Prashar, P., N. Kapoor, and S. Sachdeva. 2013. Isolation and Characterization of Bacillus sp with In-vitro Antagonistic Activity against Fusarium oxysporum from Rhizosphere of Tomato. Journal of Agricultural Science and Technology 15: 1501-1512.
Preecha, C., M. J. Sadowsky, and S. Prathuangwong. 2010. Lipopeptide surfactin produced by Bacillus amyloliquefaciens KPS46 is required for biocontrol efficacy against Xanthomonas axonopodis pv. glycines. Kasetsart Journal (Natural Science) 44: 84-99.
Purnawati, A., I. R. Sastrahidayat, A. L. Abadi, and T. Hadiastono. 2014. Endophytic bacteria as biocontrol agents of tomato bacterial wilt disease. Journal of Tropical Life Science 4(1): 33-36.
Radford, J. E., M. Vesk, and R. L. Overall. 1998. Callose deposition at plasmodesmata. Protoplasma 201: 30-37.
Rostami, S., M. Maleki and D. Shahriari. 2013. The use of Bacillus Amyloliquefaciens to control of Sclerotinia stem rot (Sclerotinia

32
sclerotiorum) of cucumber. International Journal of Farming and Allied Sciences 2(22): 965-970.
Saharan, B. S. and V. Nehra. 2011. Plant growth promoting rhizobacteria: a critical review. Life Sciences and Medicine Research 2011(21): 1-30.
Sastrosiswojo, S., T. S. Uhan, and R. Sutarya. 2005. Application of integrated pest management technology on cabbage. Indonesian Vegetable Research Institute. Center for Horticultural Research and Development. Indonesian Agency for Agricultural Research and Development. Bandung, Indonesia.
Sivasakthi, S., G. Usharani, and P. Saranraj. 2014. Biocontrol potentially of plant growth promoting bacteria (PGPR) - Pseudomonas fluorescens and Bacillus subtilis: a review. African Journal of Agricultural Research 9(16): 1265-1277.
Singh, D., D. K. Yadav, G. Chaudary, V. S. Rana, and R. K. Sharma. 2016. Potential of Bacillus amyloliquefaciens for biocontrol of bacterial wilt of tomato incited by Ralstonia solanacearum. Journal of Plant Pathology and Microbiology 7(1): 1-6.
Sunkar, S and C. V. Nachiyar. 2013. Isolation and characterization of an endophytic bacterium from Brassica oleracea with potential enzyme and antibacterial activity. Asian Journal of Pharmaceutical and Clinical Research 6(2): 183-187.
Wu, Y. M. 2016. Study of Bacillus spp. on the control of strawberry anthracnose and possible mechanisms involved. Master Thesis. Department of Plant Medicine, National Pingtung University of Science and Technology. Taiwan.
Wu, B., X. Wang, L. Yang, H. Yang, H. Zeng, Y. Qiu, C. Wang, J. Yu, J. Li, D. Xu, Z. He, and S. Chen. 2016. Effect of Bacillus amyloliquefaciens

33
ZM9 on bacterial wilt and rhizosphere microbial communities of tobacco. Applied Soil Ecology 103: 1-12.
Wulff, E. G., C. M. Mguni, C. N. Mortensen, C. L. Keswani, and J. Hockenhull. 2002. Biological control of black rot (Xanthomonas campestris pv. campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe. European Journal of Plant Pathology 108: 317-325.
Yoshida, S., S. Hiradate, T. Tsukamoto, K. Hatakeda, and A. Shirata. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91(2): 181-187.
Zavaliev, R., S. Ueki, B. L. Epel, and V. Citovsky. 2011. Biology of callose (β1,3-glucan) turnover at plasmodesmata. Protoplasma 248: 117-130.
Zhang, J. and Zhou, J. M. 2010. Plant immunity triggered by microbial molecular signatures. Molecular Plant: 1-11.
Živković, S., S. Stojanović, Ž. Ivanović, V. Gavrilović, T. Popović, and J. Balaž. 2010. Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Archives of Biological Sciences 62(3): 611-623.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top