(3.237.178.91) 您好!臺灣時間:2021/03/02 23:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳禹任
研究生(外文):Chen, Yu-Jen
論文名稱:離子高分子金屬複合材料平板之微能量收集
論文名稱(外文):Micro-Energy Harvesting System with IPMC Strips
指導教授:苗志銘苗志銘引用關係
指導教授(外文):Miao, Jr-Ming
口試委員:盧威華徐金城
口試委員(外文):Lu, Wei-HuaShyu, Jin-Cherng
口試日期:2017-07-13
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:104
中文關鍵詞:離子金屬聚合物複合材料(IPMC)化學鍍銀壓電懸臂梁微能量收集
外文關鍵詞:Ion-Metal Polymer Composite (IPMC)electroless silver platingpiezoelectric cantilever beamMicro-Energy Harvesting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:54
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
離子金屬聚合物複合材料(Ionic Polymer Metal Composites,IPMC)是一種新型複合材料,藉由鍍層在薄膜表層生長金屬電極層,利用其響應能力可作為擺動彎曲類似人工肌肉的運動及表面晶體震動產生微電荷作為能量收集系統。有別於傳統製程貴金屬鉑(Pt),生產成本高、製程繁瑣,本實驗採成本低廉金屬銀(Ag)化學無電鍍形成Ag-IPMC表面金屬。

本研究利用不同號數砂紙對Nafion進行粗糙,探討其電致動表現及雷射表面加工電致動表現、使彎曲試驗同時能產生更多多角度扭轉現象。其次,利用壓電效應設計懸臂梁結構Ag-IPMC-Energy Harvseting System,藉由震盪實驗探討懸臂梁尺寸及表面粗糙度產生微電壓關係,並透過AD620放大器來實現微電壓放大,相同面積不同粗糙度, 5 1cm2系列
由40 mV升高至1.25 mV,證明了平整可以提高IPMC發電量。
Ionic Polymer Metal Composites (IPMC) is one of new types of composite materials wherein the central part is Nafion membrane and two sides are metal electrode layers. The thin electrodes are grown on the membrane surfaces as form of a film through eletroless plating techniques. By exploiting its ability to respond as an oscillator, it can be utilized to generate as artificial muscle’s movements and surface crystal vibrations to produce micro-charges as a form of energy harvesting system. An obvious difference from the traditional IPMC manufacturing processes which utilizes expensive platinum metal (Pt) to be the electrodes which means high production costs and a cumbersome electrochemical process, this paper utilized another source of lower cost material, silver metal (Ag) and conducted the electroless plating method to form an Ag-IPMC strips.

In this study, Nafion 117 was ground with sandpaper of various grit sizes to explore the different degree of roughness. To be a electrical actuator to generate the micro-power, a laser surface processing was used to pattern the electrodes. Thereby, the electro-actuating performances can be enhanced by producing multi-level twist phenomena during bending tests. Moreover, the cantilever beam structure (Ag-IPMC-Energy Harvesting System) was designed by piezoelectric effect. The micro-voltage relationship between the size and the surface roughness of the cantilever beam is discussed using oscillatory experiments. The AD620 amplifier was used to achieve micro-voltage amplification. An increase in voltage, from 1.25 mV to 40 mV, was observed on same areas of 5 x 1 cm2 series, on decreasing roughness. Hence, the smoothness of the surface highly affects the increase in IPMC
power generation.
摘要 I
Abstract II
目錄 IV
圖目錄 VIII
表目錄 XV
第壹章 緒論 1
1-1前言 1
1-2智能材料 3
1-3 Ionic Polymer Metal Composites(IPMC) 5
1-4壓電材料 8
1-5能量收集系統 9
第貳章 文獻回顧 11
2-1歷史回顧 11
2-1-1 IPMC歷史 11
2-1-2 EnergyHarvesting歷史 13
2-2特性回顧 17
2-2-1 IPMC特性 17
2-2-2 IPMC傳感器特性 20
2-3離子交換膜 22
2-3-1離子交換膜 22
2-3-2全氟磺酸離子聚合物 25
2-3-3無氟離子聚合物 27
2-3-4新型無氟離子聚合物 29
2-4離子交換原理 29
2-5離子交換能力 31
2-5-1離子交換的再生 32
2-5-2離子交換對不同離子的吸附能力及交換順序 32
2-6 IPMC表面電極 33
2-7金屬電極阻抗 34
2-7-1表面阻抗 34

2-7-2間層阻抗 34
2-8 IPMC致動原理 35
2-8-1水合離子的遷移、離子靜電作用力 35
2-8-2庫倫力作用 37
2-6 AD620工作原理 38
第參章 製程實驗 40
3-1 Ag-IPMC製程實驗 40
3-1-1實驗流程圖 41
3-1-2實驗步驟 42
3-2儀器與藥品 43
3-2-1儀器 43
3-2-2藥品 44
3-3銀鏡反應 44
3-4雷射加工 47
3-4-1表面雷射加工 47
3-4-2雷射測距儀 48
3-5微結構 49
3-5-1原子力顯微鏡 49
3-5-2FE-SEM掃描式顯微鏡 50
3-6四點探針 51
3-7能量收集 53
3-7-1AD620 53
3-7-2轉換電路 54
3-7-3壓電材料震動收集的最佳化 55
3-8壓電效應模型 60
3-8-1壓電懸臂梁模型 61
3-8-2壓電傳感器 61
第肆章 結果與討論 63
4-1 Ag-IPMC阻抗 63
4-1-1C6H12O6分子篩效應 63
4-1-2表面阻抗/間層阻抗 67
4-2致動力表現 70
4-2-1 IPMC末端位移量與電壓、頻率關係 71
4-2-2雷射加工圖案化致動力表現 73
4-3機械能轉換電能 74
4-3-1基本波型輸出 75
4-3-2全橋式波型整流 83
4-3-3原子力顯微鏡分析 94
4-3-4 FE-SEM掃描式顯微鏡分析 103
第伍章 結論 107
5-1結論 107
5-2未來展望 108
參考文獻 109
作者簡介 104
[1] Bar-Cohen, Yoseph,2002, “Electro-active polymers: current
capabilities and challenges,” Polymer, Vol.43, pp.797-802.
[2] Shahinpoor, M., Kim, K. J. ,2001, “Design, development, and testing of a multifingered heart compression/assist device equipped with IPMC artificial muscles,” In SPIE's 8th Annual International Symposium on Smart Structures and Materials , pp.411-420.
[3] 李宣緯,鄭如忠,2012,「有記憶的高分子」,科學發展,第476期,第13-15頁。
Wang, Y., Sun, C., Zhou, E., Su, J, 2004, “ Deformation mechanisms of electrostrictive graft elastomer,” Smart materials and
structures, Vol.13, No.6, pp.1407
[4] Yuan, J., Huang, Y., Chen, W., & Pan, E, 2017, “Interaction energy
of interface dislocation loops in piezoelectric bi-crystals, ” Theoretical and Applied Mechanics Letters, Vol. 7, pp. 76-80.
[5] Bar-Cohen, Y., 2012, “Biomimetic muscles and actuators using electroactive polymers (EAP),” Encyclopedia of Nanotechnology, pp.
285-290, Springer Netherlands.
[6] Lee, J. W., Yoo, Y. T., 2011, Preparation and performance of IPMC actuators with electrospun Nafion®–MWNT composite electrodes. Sensors and Actuators B: Chemical, 159, 103-111.
[7] Kim, S. J., Pugal, D., Wong, J., Kim, K. J., Yim, W., 2014, “A bio-inspired multi degree of freedom actuator based on a novel cylindrical ionic polymer–metal composite material,” Robotics and
Autonomous Systems, Vol.62, pp.53-60.
[8] Curie, J., Curie, P, 1880, “Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées,” Comptes rendus, Vol.91, pp.294-295.
[9] 吳朗,1994,電子陶瓷-壓電,全欣圖書資訊,台北。
[10] 胡敏強,2005,超聲波電機原理與設計,科學出版社,北京,第25-32頁。
[11] González, J. L., Rubio, A., Francesc, MOLL., 2002, “Human powered piezoelectric batteries to supply power to wearable electronic devices,” International journal of the Society of Materials
Engineering for Resources, Vol.10, pp.34-40.
[12] Adolf, D., Ludwig, D., 1967,METALLIZING PLASTIC SURFACES, U.S. Patent No. 3,332,860.
[13] Diebold, A., Doerr, L., Marquardt, S., Raichle, L., 1971, METALLIZING PLASTIC SURFACES,U.S. Patent No. 3,576,662.
[14] Levme, C. A. , Prevost, A. L., 1968, “Metal Plating Permselective Membranes,” Use of Cationic Perrnselective Membranes in Anodizing, pp.1-6.
[15] 陳益臻,2004, 離子高分子金屬複合材料制動器之電壓與位移關
係之研究 ,碩士論文,國立交通大學,機械工程研究所,新竹
[16] Kymissis, J., Kendall, C., Paradiso, J., Gershenfeld, N., 1998, “Parasitic power harvesting in shoes,” In Wearable Computers Second International Symposium , pp. 132-139.
[17] Liu, L., Pippel, E., Scholz, R., Gösele, U., 2009, “Nanoporous Pt− Co alloy nanowires: fabrication, characterization, and electrocatalytic
properties, ” Nano letters, Vol. 9,No. 12, pp. 4352-4358.
[18] Ottman, G. K., Hofmann, H. F., Bhatt, A. C., Lesieutre, G. A., 2002, “Adaptive piezoelectric energy harvesting circuit for wireless remote power supply,” IEEE Transactions on power electronics, pp. 669-676.
[19] Lesieutre, G. A., Ottman, G. K., Hofmann, H. F., 2004, “Damping as a result of piezoelectric energy harvesting,” Journal of Sound and
Vibration, Vol. 269, pp. 991-1001.
[20] Lefeuvre, E., Audigier, D., Richard, C., Guyomar, D., 2007, “Buck-boost converter for sensorless power optimization of piezoelectric energy harvester,” IEEE Transactions on Power Electronics, Vol. 22, pp. 2018-2025.
[21] 張建智,2008, 獵能系統之升壓型電荷泵轉換電路設計與實現,碩士論文,國立交通大學,電機與控制工程研究所,新竹
[22] Shahinpoor M., 1992, “Conceptual Design, Kinematics and Dynamics of Swimming Robotic Structures Using Ionic Polymeric Gel Muscles,” Smart Material and Structure, Vol. 1 , pp. 91-94.
[23] Sadeghipour, K., Salomon, R., and Neogi, S., 1992, “Development of A Novel Electrochemically Active Membrane and 'Smart' Material Based Vibration Sensor/Damper,” Smart Materials and Structures,
Vol. 1, No. 2, pp. 172-176.
[24] Oguro, K., Kawami, Y., Takenaka, H., 1992, “Bending of An Ion-conducting Polymer Film-electrode Composite by An Electric Stimulus at Low Voltage,” Journal of Micromachine Society, Vol 5,
pp. 27-30.
[25] Xu, S., Liu, B., and Lina, H., 2009, “A Small Remote Operated Robotic Fish Actuated by IPMC,” IEEE International Conference in
Robotics and Biomimetics, pp. 1152-1156.
[26] Kaneda, Y., Kamamichi, N., Yamakita, M., Asaka, K., and Luo, Z. W., 2003, “Control of Linear Artificial Muscle Actuator Using IPMC,” SICE 2003 Annual Conference, Vol. 2, pp. 1650-1655.
[27] Otero, T. F., Cortes, M. T., 2003, “Artificial Muscle: Movement and Position Control,” Chem Commun (Camb), Vol. 3, pp. 284-285.
[28] Kim, B., Ryu, J., Jeong, Y., Tak, Y., and Park, J., 2003, “A Capillary Based 8-Legged Walking Micro Robot Using Cast IPMC Actuators,” IEEE International Conference on Robotics and Automation, Vol. 3,
pp. 2940-2945.
[29] Kim, B., Kim, B. M., Ryu, J., Oh, I., Lee, S., Cha, S., and Park, J., 2003, “Analysis of Mechanical Characteristics of the Ionic Polymer Metal Composite (IPMC) Actuator Using Cast Ion-Exchange Film,”
Proceedings of SPIE, Vol. 5051, pp. 486-495.
[30] Lee, J. W., & Yoo, Y. T., 2011, “Preparation and performance of IPMC actuators with electrospun Nafion®–MWNT composite electrodes,” Sensors and Actuators B: Chemical, Vol. 159, pp. 103-111.
[31] Sadeghipour, K., Salomon, R., Neogi, S., 1992, “Development of a novel electrochemically active membrane and'smart'material based vibration sensor/damper,” Smart Materials and Structures, Vol. 1, pp. 172.
[32] Bonomo, C., Fortuna, L., Giannone, P., & Graziani, S., 2005, “A method to characterize the deformation of an IPMC sensing membrane,” Sensors and Actuators A: Physical, Vol. 123, pp. 146-154.
[33] Punning, A., Kruusmaa, M., Aabloo, A., 2007, “Surface resistance experiments with IPMC sensors and actuators,” Sensors and
Actuators A: Physical, Vol.133, pp. 200-209.
[34] Richardson, R. C., Levesley, M. C., Brown, M. D., Hawkes, J. A., Watterson, K., & Walker, P. G., 2003, “Control of ionic polymer metal composites,” IEEE/ASME transactions on
mechatronics, Vol. 8, pp. 245-253.
[35] Chen, Z., Shen, Y., Xi, N., & Tan, X., 2007, “Integrated sensing for ionic polymer–metal composite actuators using PVDF thin
films,” Smart Materials and Structures, Vol. 16, pp. 262.
[36] Shan, Y., & Leang, K. K., 2009, “Frequency-weighted feedforward control for dynamic compensation in ionic polymer–metal composite actuators,” Smart materials and structures, Vol. 18, pp.
125016.
[37] Kanno, R., Tadokoro, S., Takamori, T., Hattori, M., Oguro, K., 1996, “Linear approximate dynamic model of ICPF (ionic conducting polymer gel film) actuator. In Robotics and Automation,” 1996 IEEE International Conference on Proceedings, Vol. 1, pp. 219-225
[38] 王意,2010, Nafion 薄膜/金属 複合材料的制備及其電致動性能
研究 ,碩士論文,天津大學,材料科學與工程學院,天津。
[39] Ericson, H., Svanberg, C., Brodin, A., Grillone, A. M., Panero, S., Scrosati, B., Jacobsson, P., 2000, “Poly (methyl methacrylate)-based protonic gel electrolytes: a spectroscopic study,” Electrochimica acta, Vol. 45, pp. 1409-1414.
[40] 丁虹,李福錦,1995,「聚乙烯醇衍生的聚離子複合物研究III.乙烯-乙烯醇共聚物的化學修飾及其複合物」,高分子學報,第
641-645頁,北京。
[41] Dérand, H., Wesslén, B., Mellander, B. E., 1998, “Ionic conductivity and dielectric propertiesof poly (ethylene oxide) graft copolymersend-capped with sulfonic acid,” Electrochimica acta, Vol. 43, pp. 1525-1531.
[42] Phillips, A. K., Moore, R. B., 2005, “Ionic actuators based on novel sulfonated ethylene vinyl alcohol copolymer
membranes,” Polymer, Vol. 46, pp. 7788-7802.
[43] Gierke, T. D., Munn, G. E., Wilson, F., 1981, “The morphology in nafion perfluorinated membrane products, as determined by wide‐and
small‐angle x‐ray studies,” Journal of Polymer Science: Polymer
Physics Edition, Vol. 19, pp. 1687-1704.
[44] Hsu, W. Y., Gierke, T. D., 1983, “Ion transport and clustering in Nafion perfluorinated membranes,” Journal of Membrane
Science, Vol. 13, pp. 307-326.
[45] 鄧友全,2006,離子液體-性質,製備與應用,中國石化出版
社,北京。
[46] De Gennes, P. G., Okumura, K., Shahinpoor, M., Kim, K. J., 2000, “Mechanoelectric effects in ionic gels,” Europhysics Letters, Vol. 50, pp. 513.
[47] Bonomo, C., Fortuna, L., Giannone, P., Graziani, S., 2005, “A method to characterize the deformation of an IPMC sensing membrane,” Sensors and Actuators A: Physical, Vol. 123, pp. 146-154.
[48] Nemat-Nasser, S., Li, J. Y., 2000, “Electromechanical response of ionic polymer-metal composites,” Journal of Applied Physics, Vol. 87, pp. 3321-3331.
[49] 李東峰,2012,離子高分子金屬複合式材料之銀電極製程優化,碩士論文,國立屏東科技大學,材料工程研究所,屏東。
[50] Shannon, R. T., 1976, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta crystallographica section A: crystal physics, diffraction, theoretical
and general crystallography, Vol. 32, pp. 751-767.
[51] Shahinpoor, M., & Kim, K. J., 2001, “Ionic polymer-metal composites: I. Fundamentals,” Smart materials and structures, Vol. 10, pp. 819.
[52] Ottman, G. K., Hofmann, H. F., Lesieutre, G. A., 2003, “Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode,” IEEE Transactions on Power Electronics, Vol. 18, pp. 696-703.
[53] 閏世偉,2007,壓電發電裝置實驗設計與應用研究,碩士論文,
吉林大學,機械科學工學院,吉林。
[54] Riddle, R. O., Jung, Y., Kim, S. M., Song, S., “Stolpman, B., Kim, K. J., & Leang, K. K., 2010, Sectored-electrode IPMC actuator for bending and twisting motion,” SPIE Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring, Vol. 7642,
pp.764221.
[55] Dogruer, D., Tiwari, R., & Kim, K., 2007 “Ionic polymer metal composites as energy harvesters,” In The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring , pp. 65241C-65241C.
[56] Safari, M., Naji, L., Baker, R. T., & Taromi, F. A., 2015, “The enhancement effect of lithium ions on actuation performance of ionic liquid-based IPMC soft actuators,” Polymer, Vol. 76, pp.140-149.
[57] Kim, K. J., Pugal, D., & Leang, K. K., 2011, “A twistable ionic polymer-metal composite artificial muscle for marine applications,” Marine Technology Society Journal, Vol. 45, pp. 83-98.
[58] Jeon, J. H., Yeom, S. W., & Oh, I. K., 2008, “Fabrication and actuation of ionic polymer metal composites patterned by combining electroplating with electroless plating,” Composites Part A: Applied
Science and Manufacturing, Vol. 39, pp. 588-596.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔