跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 07:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃鈺升
研究生(外文):Huang, Yu-Sheng
論文名稱:轉向架結構輕量化設計參數分析之研究
論文名稱(外文):A Parametric Study on the Lightweight Design of a Bogie Frame
指導教授:陳勇全陳勇全引用關係
指導教授(外文):Chen, Yung-Chuan
口試委員:光灼華盧威華陳立文黃馨慧陳勇全
口試委員(外文):Kuang, Jao-HwaLu, Wei-HuaChen, Li-WenHuang, Hsing-HuiChen, Yung-Chuan
口試日期:2017-06-30
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:車輛工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:184
中文關鍵詞:轉向架輕量化拓樸最佳化參數最佳化強度分析疲勞壽命
外文關鍵詞:BogieLightweightTopology OptimizationParametric OptimizationStrength AnalysisFatigue LifeEN-13749
相關次數:
  • 被引用被引用:6
  • 點閱點閱:467
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是建立一軌道車輛轉向架結構輕量化設計分析流程及參數分析之研究,此分析流程是結合拓樸最佳化、參數最佳化以及有限元素分析。本研究是以台鐵電聯車之轉向架做為參考,因此轉向架結構整體之重量目標須低於1440 kg。
文中是以 TOSCA來進行轉向架結構之拓樸最佳化分析,並配合Isight來進行參數最佳化分析。然後,再建立三維彈塑性有限元素模型,來進行轉向架結構之強度及疲勞壽命分析。依照所建立之輕量化分析流程,本研究共提出三種不同轉向架Type-A、Type-B及Type-C,其重量分別為1389.5 kg、1239.8 kg及1316.2 kg。依據EN-13749規定,轉向架強度強度分析結果顯示,Type-A、Type-B以及 Type-C轉向架之最大von-Mises應力均低於材料之降伏應力,滿足強度需求。疲勞壽命分析結果顯示,本研究所提之轉向架,在軌道等級6、5及行駛速度130km/h以下時,其疲勞壽命皆符合歐盟標準法規EN-13749之規定,其疲勞壽命均大於1×107。
In this thesis, a parametric study on the lightweight design analysis process for a railway bogie frame is proposed. The lightweight analysis process combines topology optimization analysis, parametric optimization analysis and finite element model analysis. The bogie of a Taiwan railway electric multiple (EMU) train is used as a reference.Therefore, the designed weight of the bogie frame is set to be less than 1440 kg.
In this research, the optimization software TOSCA and Isight are used for the topology optimization analysis and parametric optimization analysis of the bogie frame, respectively. Three-dimensional elastic-plastic finite element models are proposed for strength and fatigue life analysis of the bogie frame. Three types of bogie are proposed in this study. The weights obtained from the lightweight analysis process for Type-A, Type-B and Type-C bogie are 1389.5 kg, 1239.8 kg and 1316.2 kg, respectively. According to European standard EN-13749, the corresponding maximum von-Mises stresses obtained from the proposed finite element model for the three types of bogie are lower than the yielding stress of the material used in bogie frame. The results also show that the fatigue life of the proposed bogies are larger than 1×107 for train running at track class 6, 5 with train speed below 130 km/h and subjected to the load cases according with European standard EN-13749. The results obtained from the fatigue analysis show that the proposed bogie frame can satisfy the required specifications of EN-13749.
目 錄
摘 要 I
ABSTRACT II
謝 誌 IV
目 錄 V
表 目 錄 X
圖 目 錄 XIII
符 號 索 引 XX
第1章 緒論 1
1.1前言 1
1.2文獻回顧 6
1.2.1結構強度之相關研究 6
1.2.2疲勞壽命評估之相關研究 7
1.2.3最佳化設計之相關研究 8
1.3研究目的 10
1.4組織與章節 11
第2章 研究方法 12
2.1轉向架負載計算公式 14
2.1.1過負載 14
2.1.2 營運負載 19
2.1.3 特殊負載 23
2.1.4乘客與行李有效載重 23
2.2軌道不平整度函數 25
2.2.1軌道空間不平整度頻譜密度 25
2.2.2時域垂向不平整度功率頻譜密度 26
2.2.3軌道垂向不平整度之時域函數 26
2.3疲勞壽命理論 28
2.3.1應力-壽命法理論 28
2.3.2 MINER線性疲勞累積損傷理論 31
2.3.3 雨流循環計數法 32
2.4最佳化設計理論 34
2.4.1拓樸最佳化設計理論 35
2.4.2參數最佳化設計理論 36
第3章 轉向架結構拓樸最佳化分析 38
3.1轉向架結構空間規劃 40
3.2 拓撲最佳化分析 43
3.3初步概念設計 48
3.4概念設計細部修改 48
3.5最終概念設計 53
第4章 轉向架參數最佳化分析 56
4.1TYPE-A轉向架強度及模態有限元素分析 58
4.1.1材料參數 58
4.1.2邊界條件 58
4.1.3收斂分析 61
4.1.4分析結果 61
4.2參考轉向架模態分析 64
4.2.1幾何模型 64
4.2.2有限元素模型 64
4.2.3模態分析結果 64
4.3設計參數訂定 67
4.4參數最佳化分析 67
4.5初步概念設計 70
4.5.1限制函數:強度 70
4.5.2限制函數:剛性 70
4.6最終概念設計 70
第5章 轉向架結構有限元素分析 75
5.1幾何模型 75
5.2有限元素模型 81
5.3材料參數 86
5.4邊界條件 88
5.4.1模態分析 88
5.4.2過負載強度分析 88
5.4.3營運負載強度分析 99
5.4.4特殊負載強度分析 109
5.4.5疲勞壽命分析 112
5.5軌道輸入函數 116
5.6收斂分析 121
5.7轉向架結構模態分析結果 121
5.8轉向架結構強度分析結果 128
5.8.1過負載強度分析 128
5.8.2營運負載強度分析 134
5.8.3特殊負載強度分析 142
5.9轉向架結構疲勞壽命分析結果 146
5.9.1參考轉向架疲勞壽命分析結果 150
5.9.2 Type-A轉向架疲勞壽命分析結果 158
5.9.3 Type-B轉向架疲勞壽命分析結果 158
5.9.4 Type-C轉向架疲勞壽命分析結果 158
5.9.5 不同軌道等級與行駛速度對轉向架疲勞壽命之影響 168
第6章 結論與未來展望 175
參考文獻 177
作者簡介 184
1. http://zh.wikipedia.org/zh-tw/, Accessed 16 March 2015.

2. 常岐德,2005,捷運報導,台北市政府捷運工程局,台北市。

3. Isao, O. and Kanji ,W., 1998 “How Bogies Work,” Japan Railway, 18 December, pp.1-4.

4. 楊耀東,2008,「多列車煞車情況下軌道疲勞軌道疲勞裂縫初始之壽命預估」,碩士論文,國立屏東科技大學,車輛工程系,屏東。

5. 林守忠,2015,「轉向架結構輕量化設計之研究」,碩士論文,國立屏
東科技大學,車輛工程系,屏東。

6. Nest, J. D., 2015, “ALSTOM Bogie Catalogue,” Railway vehicles and signalling, France.

7. EN-13749, 2011, “Railway Applications-Wheelsets and Bogies-Method of Specifying the Structural Requirements of Bogie Frames”.

8. UIC615-4, 2009, “Motive Power Units-Bogies and Running Gear-Bogie Frame Structure Strength Tests”.

9. EN-15663, 2009, “Railway Applications Definition of Vehicle Reference Masses”.

10. Kim, J. S., 2006, “Fatigue Assessment of Tilting Bogie Frame for Korean Tilting Train: Analysis and Static Tests,” Engineering Failure Analysis, Vol. 13, pp. 1326-1337.

11. Zhang, S. H., Li, Y. C.,and Sun, J. S., 2009,“Strength Calculation and Analysis on the Bogie Frame of Metro Trains based on FEM,” Mechanical and Electrical Engineering College,Shaanxi University of Science and Technology, Vol. 9, pp. 45-50.
12. 楊爽,2009,「CRH3型高速動車組轉向架抗疲勞能力研究」,碩士論文,車輛工程系,大連交通大學,大連。
13. 羅彥云,2014,「80 km/h速度等級B型地鐵轉向架的研究」,碩士論文,機械工程系,西南交通大學,四川。
14. Lu, Y. H., Feng, Z., Chen, T. L., Zeng, J. and Wu, P. B., 2014, “Finite Element analysis of Multi-axial Fatigue Strength for Railway Vehicle Bogie Frame,” Journal of Beijing Jiaotong University, Vol. 38, No.4.
15. Zhang, S. H., Li, Y. C. and Sun, J. S., 2009,“Strength Calculation and Analysis on the Bogie Frame of Metro Trains based on FEM,” Mechanical and Electrical Engineering College,Shaanxi University of Science and Technology, Vol. 9, pp. 45-50.
16. Zhang, K. H., Li, Q. and Yang, G. X., 2013,“Analysis of the Strength and Fatigue of Metro Bogie Frame,” School of Mechanical Electronic and Control Engineering, Beijing Jiaotong University , Vol. 9, pp. 79-85.
17. Kim, J. S. and Yoon, H.J., 2011, “Structural Behaviors of a GFRP Composite Bogie Frame for Urban Subway Trains Under Critical Load Conditions,” Procedia Engineering, Vol. 10, pp. 2375-2380.
18. Wohler, A. 1871, Uber die Festigkeitversuche mit Eisen and Stahl,” Zeischrift fur Bauwesen, 98 Vol. VIII, X, XIII, XVI, and XX, 1860/70, Englishaccount of this work is in Engineering, Vol. 11.
19. Gerber, H., 1874, “Bestimmung der Zulassigen Spannungen inEisenknostructionen,” Zeitschrift, des Bayerischen Architecjten undIngenieurvereins, Vol. 6, pp. 101-110.
20. Goodman, J., 1889, Mechanics Applied to Engineering, London, Longmans, Green.
21. Palmgren, A., 1924, “Duability of Ball Bearingal,” Journal of ZVDI, Vol. 68, No. 14, pp. 339-341.
22. Miner, M. A., 1945, “Cumulative Damage in Fatigue,” Journal of Applied Mechanics, Vol. 67, pp. A159-A164.
23. Han, J.W., Kim, J.D. and Song, S.Y., 2013, “Fatigue Strength Evaluation of a Bogie Frame for Urban Maglev Train with Fatigue Test on Full-scale testing,” Engineering Failure Analysis, Vol. 31, pp.412-420.
24. Beak, S.H., Cho, S. S. and Joo, W. S., 2008, “Fatigue Life Prediction Based on the Rainflow Cycle Counting Method for the End Beam of a Freight Car Bogie,” International Journal of Automotive Technology, Vol. 9, No. 1, pp. 95-101.
25. Ozsoya, M., Pehlivanb, K. M. Firata, Ozsoya, N. and Ucara V., 2015, “Structural Strength and Fatigue Life Calculation of Y32 Bogie Frame by Finite Element Method,” Special issue of the International Conference on Computational and Experimental Science and Engineering, Vol. 128.

26. Zehsaz, M., Tahami, F. V., Asl1, A. Z. and Ahmadian, F., 2011, “Effect of Increasing Speed on Stress of Biaxial Bogie Frames,” Engineering, Vol. 3, pp. 276-284.

27. Kassner, M., 2011, “Fatigue Strength Analysis of a Welded Railway Vehicle Structure by Different Methods,” International Journal of Fatigue, Vol. 34, pp. 103-111.
28. 胡方陽,2011,「基於譜載荷地鐵動力轉向架結構疲勞強度研究」,碩士論文,交通運輸工程系,西南交通大學,四川。
29. Dang, W. M., Liu, W. T., Cui, H. T. and Feng, S. J., 2013, “Structural Analysis of the Metro Bogie Frame at the Designed Maximum Speed of 140 km/hr,” Beijing Subway Rolling Stock Equipment Co., Vol. 3, pp. 63-67.
30. 劉曉雪、楊睿璋、佟維,2012,「基於動態應力計算之轉向架疲勞壽命分析」,大連交通大學交通運輸工程學系(所), Vol. 460,No.6,pp. 28-31。
31. Liu, S. J., 2010, “Structural Strength Analysis and Research on Metro Vehicle Bogie Frame of B Style,” Beijing Jiaotong University, Beijing.
32. Michell, A. G. M., 1904, “The Limits of Economy of Materialin Framed Structures,” Philosoph Magzine, Series. 8, pp. 589-597.
33. 李會超,2014,「基於Isight的機械零件結構優化設計方法」,碩士論文,桂林理工大學,機械工程系,桂林。
34. Bendse, M. P. and Kikuchi, N., 1988,“Generating Optimal Topologies in Structural Design Using a Homogenization Method,” Computer Methods in Applied Mechanics and Engineering, Vol. 71,pp.197-224.
35. 劉洪印,2015,「ZMA120型地鐵轉向架構架強度分析及結構優化設計」,蘭州交通大學,機械製造及其自動化,蘭州。
36. Hung, X. L., Sun, L. P., Luo, M. and Y, L., 2013, ” Structural Topological Optimization Research for Railway Wagon Bolster,” Vol. 34, No. 2, pp. 1-6.
37. Zhuo, C. P. and Chang, J. X., 2010,“Topology Optimization Design of Bogie Frame based on Element Birth and Death,” Vol. 27, No. 5, pp. 267-274.
38. 李定遠,2015,「面向輕量化的高速動車組構架結構優化研究」,西南交通大學,機械製造及其自動化,四川。
39. Ding, J. J. and Li, F., 2010, “Numerical Simulation of One Side Rail Irregularities,” Vol. 10, No. 1, pp. 29-34.
40. Raimundo, D. and Rui, C., 2013, “Improving railway track maintenance using power spectral density(PSD),” University of Porto, Portugal
41. Shan, T. T., Lou, M. L. and Jia, B. Y., 2012, “Preiminarily Exploring a Problem of Track Vertical Profile Irregularity of Shanghai Metro Line1,” State Key Laboratory for Disaster Reduction in Civil Engineering , Tongji University, Vol. 31, No. 12, pp. 53-58.
42. Chen, G. and Zhai, W., 1999, “Numerical Simulation of the Stochastic Process of Railway Track Irregularities,” No. 2, pp. 138-141.
43. 許峰玠,2016,「五人座電動車車體結構設計與實作」,碩士論文,國立屏東科技大學,車輛工程系,屏東。
44. Joseph, E. S. and Mischke, C. R., 2002, “Mechanical Engineering Design,” MCGraw-Hill , pp. 416-417.
45. Flavio, A. C. and Ernani, S. P., 2001, “Fatigue Damage on Vehicle's Body Shell: A Correlation between Durability and Torsion Tests, ”SAE Technical Paper, No. 2001-01-1100.
46. 廖祐陞,2016,「球閥結構輕量化設計之研究」,碩士論文,國立屏東科技大學,車輛工程系,屏東。
47. 劉惟信,1996,機械最佳化設計,全華出版社,臺北市。
48. 洪清泉,趙康與張攀,2012,OptiStruct&HyperStudy理論基礎與工程應用,機械工業出版社,北京。
49. Sobieski, J., 2007, “MDO Can Help Resolve the Designer of Dilemma,” Aerospace America, pp. 32-35, 63.
50. 中國鋼鐵股份有限公司,2012,鋼板產品,產品手冊。
51. http://www.vulcan.com.tw/page_qulity_c.htm, Accessed 20 March 2015
52. 王總守,2002,「高運量電聯車轉向架特別技術規範之研究」,博士論文,國立台灣科技大學,機械工程系,台北。
53. 蔣群華,2010,「160 km/h快捷貨車轉向架焊接構架強度和模態研究」,西南交通大學,車輛工程,四川。
54. 王維華,2015,「CRH3動車組拖車轉向架構架振動模態分析與強度分析的對比研究」,蘭州交通大學,車輛工程,蘭州。
55. Leblebici, A. S., and Turkay, S. 2016, “Track Modelling and Control of a Railway Vehicle,” IFAC-PapersOnLine, Vol. 49, No. 21, pp. 274-281.
56. Chen, G. and Zhai, W., 1999, “Numerical Simulation of the Stochastic Process of Railway Track Irregularities,” No. 2, pp. 138-141.
57. 中華民國高雄市政府捷運工程局,1999,高雄都會區大眾捷運系統工程民間參與捷運顧問(第一部份)-機電系統設計準則及規範,高雄。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊