(18.210.12.229) 您好!臺灣時間:2021/03/03 16:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林麗慧
研究生(外文):Lin, Li-Huei
論文名稱:開發對羥苯甲酸甲酯之紙基檢測試片
論文名稱(外文):Developing a paper-based device for the detection of Methyl Paraben
指導教授:劉展冏劉展冏引用關係傅龍明
指導教授(外文):Liu, Chan-ChiungFu, Lung-Ming
口試委員:林哲信王耀男
口試委員(外文):Lin, Che-HsinWang, Yao-Nan
口試日期:2016-07-01
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:61
中文關鍵詞:對羥苯甲酸甲酯紙基流體檢測試片半定量Fenton反應
外文關鍵詞:Methyl p-hydroxy benzoate (methyl paraben)Paper-based microfludic devicesemi-quantitativeFenton reaction
相關次數:
  • 被引用被引用:2
  • 點閱點閱:59
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用簡單、快速之方法來製作紙基流體檢測試片。在傳統的比色法中,反應試紙可以直接拿來與色階表作比對,因為樣本濃度的不同使得檢測試片在經過一連串的化學反應下,呈現的顏色強度會有所不同;然而檢測片上產生的顏色變化會隨著時間而衰變,因而須在特定的某段時間內,將檢測片與色階表作比對而得知樣本濃度值。對羥苯甲酸甲酯(Methyl p-hydroxybenzoate, Methyl Paraben)廣泛地被運用來當作食品、化妝品及藥品中的防腐劑,且對黴菌、酵母菌及細菌具有良好的抑菌效果。但此化合物恐引發接觸性皮膚炎和藥物過敏,也有報告指出其會促進乳癌的發生。為了更有效率的檢測對羥苯甲酸甲酯,而開發紙基檢測試片。實驗方法主要利用Fenton反應產生的氫氧自由基來氧化對羥苯甲酸甲酯成為苯酚的型態,接著與Fe2+進行錯合,而產生黃綠色之錯化物。分光光度法中反應五至十分鐘後,可達到最高的吸光值,對羥苯甲酸甲酯標準品在200-1000 ppm的濃度下得廻歸方程式為y = 0.0007x – 0.1429,R2=0.9918,偵測極限可達200 ppm。而在紙基分析法中使用WhatmanTM濾紙作為實驗工具,反應四至五分鐘後具有最深之顏色,並以拍攝照片的方式記錄色階,再利用Vision Assistant 軟體讀取紅色(R)、綠色(G)、藍色(B)值,因反應後產物為黃綠色,依據光學原理選用R+G之數值進行分析。對羥苯甲酸甲酯標準品在1000-5000 ppm的濃度下得到廻歸方程式為y (R+G) = -0.031 x + 451.3,R2=0.996,紙基檢測片偵測極限約為1000 ppm。將開發之紙基檢測片應用於真實化妝品中,並與認證實驗室依衛福部公告之方法所得相比較,約可達85 %相符合度,因此此新方法具有潛力以應用於化妝品中防腐劑之檢測。由於在化妝品的限量規範中,最多可添加量為1%(10000 ppm),且市售化妝品中含量約為1000~5000 ppm,因此利用此簡易檢測裝置可快速得知樣本中對羥苯甲酸甲酯的濃度,且不需花費高成本及使用昂貴的儀器,即可達到半定量的效果。
This thesis aims to fabricate a paper-based microfludic device with simplicity and fast speed. In conventional colormetric method, test strip would be compared with laves table after sequential color developments through chemical reactions. Color on test strip would change over time, which necessitate the comparison with laves table within predefined time frame, in order to quantify the contents by color development. Methyl p-hydroxybenzoate, commonly known as Methyl Paraben, has been widely used in foods, cosmetics, and pharmaceuticals, because its fine inhibitory effect on molds, yeasts, and bacterial. However, this compound could cause contact dermatitis and drug allergy, also reported as associated with breast cancer.
In order to detect methyl paraben contents, the principles of Fenton reaction were applied. Hydroxyl radical via Fenton mechanism would oxidize methyl paraben into phenol configuration, further complexed with Fe2+ to yield yellow-green coordination compound. Maximum absorbance was obtained after reaction of 5-10 minute in spectrophometric method, regression equation as y = 0.0007x – 0.1429, R2=0.9918, was acquired with standard solutions in 200-1000 ppm of methyl paraben. The limit of detection (LOD) by spectrophometric method was determined as 200 ppm. Paper-based device was designed utilizing WhatmanTM filter paper, and color developed via 4-5 minute of reaction on paper. Color laves were photographed and analyzed with Vision Assistant software. R (red), G (green), and B (blue) values were recorded, and R+G value was chosen to represent the color on paper-based device in accordance with principles of optics. Regression equation as y (R+G) = -0.031 x + 451.3, R2=0.996, was acquired with standard solutions in 1000-5000 ppm of methyl paraben. The limit of detection (LOD) by paper-based device was determined as 1000 ppm.
The device was applied to commercial cosmetics with approximately 85% of pertinence, in comparison with the results carried out by accredited laboratory via standard method (by TFDA), which indicates the application potential of this paper-based device for cosmetics. The maximum allowable addition of methyl paraben in cosmetics has been set at 1% (10000 ppm), and was commonly found between 1000 to 5000 ppm, which highlights the applicability of this simple detection device. Semi-quantitative results could be drawn without high cost nor sophisticated instruments.
目錄
中文摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 X
表目錄 XII
第1章 前言 1
第2章 文獻回顧 2
2.1微流體設備 2
2.1.1紙基分析設備 2
2.1.2微流體紙基分析設備製造技術 3
2.1.3紙基設備的應用 6
2.2對羥苯甲酸酯類 7
2.2.1對羥基苯甲酸甲酯之應用 7
2.2.2對羥苯甲酸酯之抑菌能力 11
2.2.3國內外化妝品之對羥苯甲酸酯限量標準 12
2.2.4衛生福利部公告對羥苯甲酸甲酯之檢測方法 12
2.3 Fenton反應 17
2.4 Fenton反應之影響因子 21
2.4.1 pH值 21
2.4.2 H2O2添加量 21
2.4.3鐵離子濃度影響 21
2.5 Fenton反應之應用 22
第3章 材料與方法 23
3.1研究目的 23
3.2實驗材料 23
3.2.1 藥品 23
3.2.2 材料與儀器 25
3.2.3檢液及反應試劑製備 25
3.3分光光度法 26
3.3.1實驗原理 26
3.3.2檢測實驗步驟 26
3.3.3全波長掃描 26
3.3.4時間穩定性試驗 26
3.3.5對羥苯甲酸甲酯之檢量線(分光光度法) 27
3.3.6干擾性試驗 27
3.4紙基測定法 27
3.4.1紙基設計 27
3.4.2實驗步驟 27
3.4.3最佳反應時間 27
3.4.4氯化鈉最佳塗覆濃度 28
3.4.5對羥苯甲酸甲酯之檢量線(紙基測定法) 28
3.5真實樣品之檢測 28
3.5.1高效能液相層析分析法(衛福部公告字號1021950692) 28
3.5.2分光光度法及紙基測定法 29
3.5.3真實樣品回添試驗 30
第4章 結果與討論 33
4.1分光光度法 33
4.1.1全波長掃描 33
4.1.2 對羥苯甲酸甲酯之檢量線(分光光度法) 33
4.1.3時間穩定性 33
4.1.4干擾性試驗 34
4.2紙基測定法 40
4.2.1對羥苯甲酸甲酯之檢量線(紙基測定法) 40
4.2.2最佳反應時間 40
4.2.3氯化鈉最佳塗覆濃度 40
4.3實際樣品檢測結果 47
4.3.1分光光度法與HPLC之結果比較 47
4.3.2紙基分析法與HPLC之結果比較 47
4.3.3對羥苯甲酸甲酯與各種分析方法之比較 47
第5章 結論 52
第6章 參考文獻 53
作者簡介 61
王明光。2001。環境土壤化學。五南圖書出版公司。
方如、于懷東、伍林、鄒國林。2005。芳環羥基化螢光法檢測類Fenton反應產生的羥氧自由基。武漢大學學報 51: 501-505。
朱艷青、揚元法、王莎、陳敏、徐明濤、趙亮亮。2009。Fe(OH)3催化苯酚羥基化反應。石油化工 38: 739-743.
陳咨丰、詹錦豐。2014。市售化妝品中防腐劑及抗菌劑的調查分析。弘光科技大學化妝品科技研究所碩士論文。
曾何華、曾永明、劉亮、劉玉燕、趙秀峰。2015。光催化非均相Fenton反應-間接螢光光度法測定大氣微粒物中鄰苯二甲酸酯類含量。理化檢驗 51: 1149-1153。
張秋萍、盧明俊、陳重男。1993。Fenton 技術在有害廢棄物處理上之應用。工業污染防治46: 107-122。
Barton LL, Hemming BC. 1993. Iron Chelation in Plants and Soil Microorganisms. The Quarterly Review of Biology 69: 406-412.
Bektasoglu B, Esin CS, Ozyurek M, Guclu K, Apak R. 2006. Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method. Biochemical and Biophysical Research Communications 345(3): 1194-1200.
Blanco CC, Carretero AS, Gutierrez AF, Ceba MR. 2000. Micellar-enhanced synchronous-derivative fluorescence determination of derivatized folic-acid in pharmaceutical preparations. Journal of Pharmaceutical and Biomedical Analysis 134: 107-111.
Boehm EE, Maddox DN. 1972. Recent applications for preservatives of pharmaceuticals. Manufacturing Chemists Aerosol News 43: 21-23.
Boonleang J, Tanthana C. 2010. Simultaneous stability-indicating HPLC method for the determination of cisapride, methyl paraben and propyl paraben in oral suspension. Songklanakarin Journal of Science and Tecnology 32(4): 379-385.
Cabaleiro N, Calle I, Bendicho C, Lavilla I. 2014. An overview of sample preparation for the determination of parabens in cosmetics. Trends in Analytical Chemistry 57: 34-46.
Cai L, Xu C, Lin S, Luo J, Wu M, Yang F. 2014. A simple paper-based sensor fabricated by selective wet etching of silanized filter paper using a paper mask. Biomicrofluidics 8(5): 056504.
Carrilho E, Phillips ST, Vella SJ, Martinez A W, Whitesides GM. 2009. Paper Microzone Plates. Analytical Chemistry 81: 5990-5998.
Chen PH, Watts RJ. 2000. Determination of Rates of Hydroxyl Radical Generation in Mineral-catalyzed Fenton-like Oxidation. Journal of the Chinese Institute of Environmental Engineering 10: 201-208.
Du L, Ma L, Qiao Y, Lu Y, Xiao D. 2016. Determination of phthalate esters in teas and tea infusions by gas chromatography–mass spectrometry. Food Chemistry 197: 1200-1206.
Dungchai W, Chailapakul O, Henry CS. 2011. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136: 77-82.
Dorota B, Jolanta G, WojciechW. 2014. Parabens. From environmental studies to human health. Environment International 67: 27-42.
Ebrahiem EE, Mohammednoor NA, Ahmed RM. 2013. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arabian Journal of Chemistry 3: 73-80.
Edward FW, Wallace RB. 1934. The Absorption Spectra of Ferric Compounds. I. The Ferric Chloride—Phenol Reaction. Journal of the American Chemical Society 56(5): 1037-1042.
Enric B, Juan CC, Juan C. 2000. Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Research 34: 2253-2262.
Feierman DE, Winston GW, Cederbaum AI. 1985. Ethanol oxidation by hydroxyl radicals: role of iron chelates, superoxide, and hydrogen peroxide. Clinical and Experimental Research 9(2): 95-102.
Gallard H, De LJ. 2000. Kinetic Modeling of Fe(III)/H2O2 Oxidation Reactions in Dilute Aqueous Solution Using Atrazine as a Model Organic Compound. Water Research 34: 3107-3116.
Georgi A, Schierz A, Trommler U, Horwitz CP, Collins TJ, Kopinke FD. 2007. Humic Acid Modified Fenton Reagent for Enhancement of the Working pH Range. Applied Catalysis B: Environment 72: 26-36.
Gerbers R, Foellscher W, Chen H, Anagnostopoulos C, Faghri M. 2014. A new paper-based platform technology for point-of-care diagnostics. Lab on a Chip 14: 4042-4049.
Gong MM, Zhang P, Mac BD, Sinton D. 2014. Nanoporous membranes enable concentration and transport in fully wet paper-based assays. Analytical Chemistry 86: 8090-8097.
Guido S, Lisa S, Riccardo A, Vito S, Mario M. 2000. Electrochemical oxidation of organic pollutants at low electrolyte concentrations. Electrochimica Acta 46: 373-380.
Hara M, Fujinaga M, Kuboi T. 2004. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42(7):657-62.
Hawkins KR, Weigl BH. 2010. Microfluidic diagnostics for low-resource settings. The International Society for Optical Engineering 12: 84-98.
Hossain S, Ozimok C, Sicard C, Aguirre S, Ali M, Li Y, Brennan J. 2012. Multiplexed paper test strip for quantitative bacterial detection. Analytical and Bioanalytical Chemistry 403: 1567-1576.
International Symposium on Computer Architecture (ISCA). 2014. Iscaguard® Preservatives for Personal Care. http://www.iscauk.com/downloads/Iscaguard_Preservatives_for_Personal_Care.pdf
Jie H, Wang SQ, Lin W, Fei L, Belinda PM, Tian JL, Feng X. 2014. Advances in paper-based point-of-care diagnostics. Biosensors and Bioelectronics 54: 585-597.
Joaquin RD, Maria JM, Patricia P, Teresa G, Jose AP, Eduardo MC. 2014. Fenton advanced oxidation of emerging pollutants: parabens. International Journal of Environmental Engineering 5: 89-98.
Jokerst JC, Adkins JA, Bisha B, Mentele MM, Goodridge LD, Henry CS. 2012. Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Angewandte Chemie 84: 2900-2907.
Krishnachaitanya K, Israel DS, Gowrisankar D. 2011. RP-HPLC method for the estimation of levocitrizine and its preservatives in oral solutions. International Journal of Pharma Research & Development 3(1): 28-31.
Li CZ, Vandenberg K, Prabhulkar S, Zhu X, Schneper L, Methee K, Rosser CJ, Almeide E. 2008. Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosensors and Bioelectronics 26: 4342-4348.
Li H, Han D, Pauletti GM, Steckl AJ. 2014. Blood coagulation screening using a paper-based microfluidic lateral flow device. Lab on a Chip 14: 4035-4041.
Li X, Ballerini DR, Shen W. 2012. A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics 6: 1301-1313.
Lu Y, Shi W, Qin J, Lin B. 2010. Fabrication and Characterization of Paper-Based Microfluidics Prepared in Nitrocellulose Membrane by Wax Printing. Analytical Chemistry 82: 326-335.
Maddox DN. 1982. The role of p-hydroxybenzoates in modern cosmetics. Cosmetics and Toiletries 97: 85-88.
Martinez AW, Phillips ST, Butte MJ, Whitesides GM. 2007. Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Angewandte Chemie 46: 1318-1320.
Martinez AW, Phillips ST, Nie Z, Cheng CM, Carrilho E, Wiley BJ, Whitesides GM. 2010. Programmable diagnostic devices made from paper and tape. Lab on a Chip 10: 2499-2504.
Mentele MM, Cunningham J, Koehler K, Volckens J, Henry CS. 2012. Microfluidic paper-based analytical device for particulate metals. Angewandte Chemie 84: 4474-4480.
Neidig CP, Burrell H. 1944. The esters of p-hydroxybenzoic acids as preservatives. Drug and Cosmetic Industry 54(4): 481-489.
Nilghaz A, Wicaksono DH, Gustiono D, Abdul M, Supriyanto E, Kadir MR. 2012. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab on a Chip 12: 209-218.
Olkkonen J, Lehtinen K, Erho T. 2010. Flexographically Printed Fluidic Structures in Paper. Analytical Chemistry 82: 10246-10250.
Reinholt SJ, Sonnenfeldt A, Naik A, Frey MW, Baeumner AJ. 2014. Developing new materials for paper-based diagnostics using electrospun nanofibers Multiplex Platforms in Diagnostics and Bioanalytics. Analytical and Bioanalytical Chemistry 406: 3297-3304.
Roberto LS, Massimo M, Paolo R. 2012. Oxygen radical scavenging capacity of phenolic and non-phenolic compounds in red and white wines. Central European Journal of Biology 7(1): 146-158.
Sagone AJ, Greenwald J, Kraut EH, Bianchine J, Singh D. 1983. Glucose: a role as a free radical scavenger in biological systems. Journal of Laboratory and Clinical Medicine 101(1): 97-104.
Sones CL, Katis IN, He PJW, Mills B, Namiq MF, Shardlow P, Ibsena M, Easona RW. 2014. Laser-induced photo-polymerisation for creation of paper-based fluidic devices. Lab on a Chip 14: 4567-4574.
Soni MG, Carabin IG, Burdock GA. 2005. Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food and Chemical Toxicology 43: 985-1015.
Sun JY, Cheng CM, Liao YC. 2015. Screen printed paper-based diagnostic devices with polymeric Inks. Analytical Sciences 31: 145-151.
Tsai TT, Shen SW, Cheng CM, Chen CF. 2013. Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles. Science and Technology of Advanced Materials 14: 4-14.
Vella SJ, Beattie P, Cademartiri R, Laromaine A, Martinez AW, Phillips ST, Mirica KA, Whitesides GM. 2012. Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Angewandte Chemie 84: 2883-2891.
Vladimir C, Jarmo A, Vladimir B. 2015. Integer-based accurate conversion between RGB and HSV color spaces. Computers & Electrical Engineering 46: 328-337.
Wang P, Ge L, Ge S, Yu J, Yan M, Huang J. 2014. A paper-based photoelectrochemical immunoassay for low-cost and multiplexed point-of-care testing. Chemical Communications 49: 3294-3296.
Wang W, Wu WY, Wang W, Zhu JJ. 2010. Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration. Journal of Chromatography 1217: 3896-3899.
Watts RJ, Quen NH, Amy L. 2003. Effect of Contaminant Hydrophobicity on Hydrogen Peroxide Dosage Requirements in the Fenton-like Treatment of Soil. Journal of Hazardous Materials 102: 277-289.
William DK, Kaitlyn AP, Chuqiao R, Maxime AS. 2014. Speciation of Ferric Phenoxide Intermediates during the Reduction of Iron(III)−μ-Oxo Dimers by Hydroquinone. Inorganic Chemistry 53(21): 1507-1516.
Yanyan X, Jin S, Zhiyang L. 2016. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosensors and Bioelectronics 77: 774-789.
Yetisen A K, Akram MS, Lowe CR. 2013. Paper-based microfluidic point-of-care diagnostic devices. Lab on a Chip 13: 2210-2251.
Yu WW, White IM. 2010. Inkjet Printed Surface Enhanced Raman Spectroscopy Array on Cellulose Paper. Analytical Chemistry 82: 9626-9630.
Zhang X, Li J, Chen C, Lou B, Zhang L, Wang E. 2014. A self-powered microfluidic origami electrochemiluminescence biosensing platform. Chemical Communications 49: 3866-3868.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔