(18.210.12.229) 您好!臺灣時間:2021/02/26 08:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:余俊達
研究生(外文):Yu, Jiun-Da
論文名稱:酵母菌發酵生產超氧歧化酶活性之探討
論文名稱(外文):Study of SOD activity production using yeast fermentation
指導教授:謝寶全謝寶全引用關係
指導教授(外文):Hsieh, Pao-Chuan
口試委員:陳錦樹郭嘉信
口試委員(外文):Chen, Jin-ShuGuo, Jia-Xin
口試日期:2017-01-19
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:105
中文關鍵詞:自由基超氧歧化酶酵母菌固態發酵
外文關鍵詞:Free radicalsSuperoxide dismutase (SOD)YeastSolid-state fermentation (SSF)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
不良的飲食習慣、惡劣的生活環境以及壓力,皆可能引發人體產生大量的自由基,而超氧歧化酶 (superoxide dismutase,SOD) 可幫助人體清除過多的自由基,來預防疾病及老化。常見的SOD類型可分為兩種,存在於粒線體膜空間以及真核細胞中的Cu-Zn-SOD,還有粒線體基質及細菌中的Mn-SOD。目前市面上的SOD大多自牛紅血球分離而得的 Cu-Zn-SOD ,或者利用細菌發酵產生的 Mn-SOD。根據過去研究指出,酵母菌中具有Cu-Zn-SOD 與 Mn-SOD之酵素,但活性不高,故本研究欲篩選具高SOD活性之酵母菌進行發酵,並探討能否利用固態發酵提升SOD活性產量。首先,從自然界中篩選酵母菌,並測試其對酒精和雙氧水的耐受性、DPPH自由基清除能力,以及SOD活性產生的穩定性進行菌株確認。而菌株之鑑定結果為Meyerozyma guilliermondii,接著進行菌株產生SOD活性之最適化探討,其液態發酵最佳條件為在3% (w/v)葡萄糖、0.5% (w/v)大豆蛋白,調整起始pH值為9,接種3% (v/v)之酵母菌於35℃、150 rpm,培養96小時後能產生最高活性71.0 U/mL,並接種至固態基質中探討菌株產生SOD活性之最適固態發酵條件,其固態發酵最佳條件為以碎麥做為固態基質,添加3% (w/w)葡萄糖、25 μmol/L ZnSO4˙7H2O、接種15% (v/w)發酵液,並調整其最終水分含量為70% (v/w),置於35℃通氣培養96小時後能產生最高活性161.9 U/gds (g-dry solid)。
Unhealthy diet, poor living environment and stress will trigger production of large amounts of free radicals in body. Superoxide dismutase (SOD) can help to get rid of the extra free radicals in human body and thereby to prevent diseases and aging. There are common by two types of SOD. One is called Cu-Zn-SOD. It presents in intermembrane space (IMS) of mitochondria and eukaryotes. The other one is called Mn-SOD which is in the mitochondrial matrix and bacteria. Most SOD sold in the current market’s is either Cu-Zn-SOD isolated from bovine red blood cells, or Mn-SOD, produced from bacteria fermentation. According to past studies, yeast can produce both Cu-Zn-SOD and Mn-SOD. However, the activity was low. In current study, we want to isolate a yeast with high SOD activity and to see if solid-state fermentation (SSF) can enhance SOD production. Yeasts were isolated from natural sources and tested their tolerance of alcohol and hydrogen peroxide, DPPH free radical scavenging ability and stability produced by SOD activity. After this we can confirm the yeast. The strain was identified as Meyerozyma guilliermondii. The optimum conditions for liquid-state fermentation(LSF) were 3%(w/v) glucose, 0.5%(w/v) soy protein and incubated with 3%(v/v) inoculum ratio of yeast at initial pH=9, 35℃, 150 rpm. The highest SOD activity was 71.0 U/mL after 96 hours and then inoculated into the solid substrate to explore the optimum conditions for the production of SOD activity in SSF. The optimum conditions for SSF were used broken wheat as solid substrate, added 3%(w/w) glucose, 25 μmol/L ZnSO4˙7H2O and inoculated with 15%(v/w) LSF at initial pH=9, 35℃, 70%(v/w) final moisture content. After 96 hours aerobic incubation can produce the highest SOD activity was 161.9 U/gds.
中文摘要 I
Abstract III
目錄 V
圖目錄 X
表目錄 XIII
壹、前言 1
貳、文獻回顧 2
一、自由基 2
(一) 自由基之介紹 2
(二) 活性氧化物質(reactive oxygen species, ROS) 2
(三) 活性氧化物質來源 4
(四)自由基對人體的傷害 4
二、超氧歧化酶(Superoxide dismutase; SOD) 9
(一) 超氧歧化酶之介紹 9
(二) 超氧歧化酶之分類 10
1. 銅鋅型超氧歧化酶(Cu/Zn-SOD) 12
2. 錳型超氧歧化酶 14
3. 鐵型超氧歧化酶 16
三、酵母菌 18
(一) 酵母菌的定義 18
(二) 酵母菌之分類 18
(三) 分離菌株Meyerozyma(Pichia) guilliermondii之簡述 19
(四) 酵母菌株的SOD 20
四、超氧歧化酶之發酵生產 24
(一) 液態發酵生產SOD 24
(二) 固態發酵生產SOD 24
五、固態發酵 26
(一) 固態發酵的介紹 26
(二) 固態發酵的應用 26
(三) 固態發酵的優缺點 29
参、材料方法 30
一、實驗材料 30
(一)實驗菌株 30
1. 酵母菌 30
(二)培養基 30
(三)分析藥品之配製 31
(四) 藥品與材料 32
(五)儀器與設備 32
二、實驗流程 33
(一)菌種篩選 33
(二)挑選高生產SOD活性之酵母 34
(三)固態發酵 35
三、實驗流程 36
(一)菌株篩選 36
1. 酵母菌株之分離純化與保存 36
2. 酵母菌株之保存 36
(二)超氧歧化酶之酵母菌株篩選 37
1. 超氧歧化酶活性測定 37
2. 酵母菌之酒精抑制實驗 38
3. 酵母菌之雙氧水抑制實驗 38
4.酵母菌生產SOD活性之穩定性 38
5. DPPH 自由基清除能力測定 38
(三) 酵母菌在YM中生長曲線 39
(四) 液態培養基產生SOD活性之最適化探討 39
1. 最適氮源之探討 39
2. 最適氮源濃度之探討 39
3. 最適碳源之探討 40
4. 最適碳源濃度之探討 40
5. 最適無機鹽類之探討 40
6. 最適無機鹽類濃度之探討 40
7. 最適培養基起始pH值之探討 41
8. 最適培養之震盪速率探討 41
9. 最適接種量之探討 41
10. 最適培養之溫度探討 41
11. 在不同培養時間下對菌株生長之影響 41
12. 不同金屬離子對菌株產生SOD之影響 42
13. 利用5L發酵槽之擴大培養 42
(五) 固態培養產生SOD活性之最適化探討 43
1.最適固態發酵基質之探討 43
2.最適固態發酵基質混合比例之探討 43
3.最適水分含量對固態發酵生產SOD之影響 43
4.不同培養溫度對固態發酵生產SOD之影響 43
5.於固態基質中額外添加碳氮源對菌株生產SOD活性之影響 44
6.額外添加特定金屬鹽類對菌株生產SOD活性增加之影響 44
7.額外添加不同濃度金屬鹽類對菌株生產SOD活性增加之影響 44
8.不同接種量對菌株在固態發酵中生產SOD活性增加之影響 44
9.固態發酵條件下菌株之生長曲線探討 45
肆、結果與討論 46
一、酵母菌之分離與篩選 46
二、酵母菌初步篩選 46
(一) 酵母菌發酵 46
(二) 酵母菌對酒精抑制實驗 46
(三) 酵母菌對雙氧水抑制實驗 47
(四) 酵母菌生產SOD活性之穩定性 47
(五) DPPH 自由基清除能力 48
(六) 28S rRNA菌株鑑定 48
三、M. guilliermondii NPUST Y23在YM中生長曲線 48
四、液態培養基產生SOD活性之最適化探討 60
(一) 不同氮源對M. guilliermondii NPUST Y23生產SOD活性之 影響 60
(二) 最適氮源濃度對M. guilliermondii NPUST Y23生產SOD活 性之影響 60
(三) 不同碳源對M. guilliermondii NPUST Y23生產SOD活性之 影響 63
(四) 最適碳源濃度對M. guilliermondii NPUST Y23生產SOD活 性之影響 63
(五) 不同無機鹽類對M. guilliermondii NPUST Y23生產SOD活 性之影響 66
(六) 最適NaCl濃度對M. guilliermondii NPUST Y23生產SOD活 性之影響 66
(七) 培養基不同pH值對M. guilliermondii NPUST Y23生產SOD 活性之影響 69
(八) 不同震盪速率對M. guilliermondii NPUST Y23生產SOD活 性之影響 69
(九) 不同接種量對M. guilliermondii NPUST Y23生產SOD活性 之影響 69
(十) 不同培養溫度對M. guilliermondii NPUST Y23生產SOD活 性之影響 73
(十一) M. guilliermondii NPUST Y23於最適培養基中之生長曲線 73
(十二) 添加金屬離子對產生SOD活性之影響 74
(十三) 利用5L發酵槽之擴大培養 74
五、利用固態培養產生SOD活性之最適化探討 79
(一) 最適固態發酵基質之探討 79
(二) 最適固態發酵基質混合比例對M. guilliermondii NPUST Y23 在固態發酵中產生SOD活性之影響 79
(三) 在基質中之最適水分含量對M. guilliermondii NPUST Y23在 固態發酵中產生SOD活性之影響 83
(四) 不同培養溫度對M. guilliermondii NPUST Y23在固態發酵中 產生SOD活性之影響 83
(五) 於固態基質中額外添加碳氮源對M. guilliermondii NPUST Y23在固態發酵中產生SOD活性之影響 83
(六) 額外添加特定金屬鹽類對M. guilliermondii NPUST Y23在固 態發酵中產生SOD活性之影響 87
(七) 額外添加不同濃度金屬鹽類對M. guilliermondii NPUST Y23 在固態發酵中產生SOD活性之影響 87
(八) 不同接種量對M. guilliermondii NPUST Y23在固態發酵中產 生SOD活性之影響 90
(九) 最適固態發酵條件下對M. guilliermondii NPUST Y23之生長 曲線 90
伍、結論 93
陸、參考文獻 94
作者簡介 105
孔凡旗, Antioxidant manufacturing method. In Google Patents: 2015.

王歲樓, 活性乾酵母SOD搖瓶發酵條件. Industrial Microbiology 2000, 30, 4.

田志仁; 汪碧涵, Four species of Pichia yeasts new to taiwan. TAIWANIA 2002, 47, 186-193.

吳彩平. 以固態發酵製備樟芝米及其品質與抗氧化性質. 中興大學, 2006.

杜姿瑩, 酵母在食品工業之應用. 食品工業發展研究所, 1990; p 6.

周建琴, 酵母SOD高產菌的選育及發酵條件的研究. Journal of Anhui Agri.Sci 2008, 36(31):13494-13495, 13554.

宮莉, 酵母SOD高產菌的選育及發酵條件. Journal of Changchun University of Techonology 2006, 27(3), 204-207.

海春旭, 自由基醫學(第一版). 第四軍醫大學出版社, 2006.

莊荃與, 利用固態醱酵法生產超氧歧化酶之研究. 國立屏東科技大學碩士論文, 2006.

鄭榮梁, 自由基生物醫學(初版). 藝軒, 2013.

Summary of species characteristics A2 - Kurtzman, Cletus P. In The Yeasts (Fourth Edition), Fell, J. W., Ed. Elsevier: Amsterdam, 1998; pp 915-947.

Adom, K. K.; Liu, R. H., Antioxidant activity of grains. Journal of agricultural and food chemistry 2002, 50, 6182-7.

Anisha, G. S.; Rojan, P. J.; Nicemol, J.; Niladevi, K. N.; Prema, P., Production and characterization of partially purified thermostable α-galactosidases from Streptomyces griseoloalbus for food industrial applications. Food Chemistry 2008, 111, 631-635.

Aryuman, P.; Lertsiri, S.; Visessanguan, W.; Niamsiri, N.; Bhumiratana, A.; Assavanig, A., Glutaminase-producing Meyerozyma (Pichia) guilliermondii isolated from Thai soy sauce fermentation. International journal of food microbiology 2015, 192, 7-12.

Bannister, J. V.; Bannister, W. H.; Rotilio, G., Aspects of the structure, function, and applications of superoxide dismutase. CRC critical reviews in biochemistry 1987, 22, 111-80.

Benz, C. C.; Yau, C., Ageing, oxidative stress and cancer: paradigms in parallax. Nat Rev Cancer 2008, 8, 875-9.

Beyer, W. F., Jr.; Fridovich, I., In vivo competition between iron and manganese for occupancy of the active site region of the manganese-superoxide dismutase of Escherichia coli. The Journal of biological chemistry 1991, 266, 303-8.

Canettieri, E. V.; Almeida e Silva, J. B.; Felipe, M. G., Application of factorial design to the study of xylitol production from eucalyptus hemicellulosic hydrolysate. Applied biochemistry and biotechnology 2001, 94, 159-68.

Carvalho, W.; Silva, S. S.; Converti, A.; Vitolo, M., Metabolic behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Biotechnology and bioengineering 2002, 79, 165-9.

Ceriello, A., Acute hyperglycaemia and oxidative stress generation. Diabetic medicine : a journal of the British Diabetic Association 1997, 14 Suppl 3, S45-9.

Chan, S. H.; Tai, M. H.; Li, C. Y.; Chan, J. Y., Reduction in molecular synthesis or enzyme activity of superoxide dismutases and catalase contributes to oxidative stress and neurogenic hypertension in spontaneously hypertensive rats. Free radical biology & medicine 2006, 40, 2028-39.

Church, D. F.; Pryor, W. A., Free-radical chemistry of cigarette smoke and its toxicological implications. Environmental health perspectives 1985, 64, 111-26.

Donnelly, J. K.; McLellan, K. M.; Walker, J. L.; Robinson, D. S., Superoxide dismutases in foods. A review. Food Chemistry 1989, 33, 243-270.

Đorđević, T. M.; Šiler-Marinković, S. S.; Dimitrijević-Branković, S. I., Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chemistry 2010, 119, 957-963.

El Mistiri, M.; Verdecchia, A.; Rashid, I.; El Sahli, N.; El Mangush, M.; Federico, M., Cancer incidence in eastern Libya: the first report from the Benghazi Cancer Registry, 2003. Int J Cancer 2007, 120, 392-7.

Forman, H. J.; Fridovich, I., On the stability of bovine superoxide dismutase. The effects of metals. The Journal of biological chemistry 1973, 248, 2645-9.

Fridovich, I., Superoxide dismutases. Advances in enzymology and related areas of molecular biology 1986, 58, 61-97.

Geller, B. L.; Winge, D. R., A method for distinguishing Cu,Zn- and Mn-containing superoxide dismutases. Analytical biochemistry 1983, 128, 86-92.

Gill, S. S.; Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry : PPB / Societe francaise de physiologie vegetale 2010, 48, 909-30.

Gligic, L.; Radulovic, Z.; Zavisic, G., Superoxide dismutase biosynthesis by two thermophilic bacteria. Enzyme and microbial technology 2000, 27, 789-792.

Greene, D. A.; Sima, A. A.; Stevens, M. J.; Feldman, E. L.; Lattimer, S. A., Complications: neuropathy, pathogenetic considerations. Diabetes care 1992, 15, 1902-25.

Gu, X.; Neric, N. J.; Crabb, J. S.; Crabb, J. W.; Bhattacharya, S. K.; Rayborn, M. E.; Hollyfield, J. G.; Bonilha, V. L., Age-related changes in the retinal pigment epithelium (RPE). PLoS One 2012, 7, e38673.

Hölker, U.; Lenz, J., Solid-state fermentation — are there any biotechnological advantages? Current Opinion in Microbiology 2005, 8, 301-306.

Hagen, U., Biochemical aspects of radiation biology. Experientia 1989, 45, 7-12.

Halliwell, B., The role of oxygen radicals in human disease, with particular reference to the vascular system. Haemostasis 1993, 23 Suppl 1, 118-26.

Harman, D., The biologic clock: the mitochondria? Journal of the American Geriatrics Society 1972, 20, 145-7.

Hernandez-Saavedra, N. Y.; Ochoa, J. L., Copper-zinc superoxide dismutase from the marine yeast Debaryomyces hansenii. Yeast (Chichester, England) 1999, 15, 657-68.

Jang, Y. C.; Van Remmen, H., The mitochondrial theory of aging: insight from transgenic and knockout mouse models. Experimental gerontology 2009, 44, 256-60.

Jin, Z. Q.; Chen, X., A simple reproducible model of free radical-injured isolated heart induced by 1,1-diphenyl-2-picryl-hydrazyl (DPPH). Journal of pharmacological and toxicological methods 1998, 39, 63-70.

Kashyap, P.; Sabu, A.; Pandey, A.; Szakacs, G.; Soccol, C. R., Extra-cellular L-glutaminase production by Zygosaccharomyces rouxii under solid-state fermentation. Process Biochemistry 2002, 38, 307-312.

Keele, B. B., Jr.; McCord, J. M.; Fridovich, I., Superoxide dismutase from Escherichia coli B. A new manganese-containing enzyme. The Journal of biological chemistry 1970, 245, 6176-81.

Klöppel, C.; Michels, C.; Zimmer, J.; Herrmann, J. M.; Riemer, J., In yeast redistribution of Sod1 to the mitochondrial intermembrane space provides protection against respiration derived oxidative stress. Biochemical and Biophysical Research Communications 2010, 403, 114-119.

Kong, Q.; Beel, J. A.; Lillehei, K. O., A threshold concept for cancer therapy. Medical Hypotheses 2000, 55, 29-35.

Ku, H. H.; Brunk, U. T.; Sohal, R. S., Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free radical biology & medicine 1993, 15, 621-7.

Kurtzman, C. P.; Fell, J. W., Yeast Systematics and Phylogeny — Implications of molecular identification methods for studies in ecology. In Biodiversity and Ecophysiology of Yeasts, Péter, G.; Rosa, C., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2006; pp 11-30.

Li, J.; Holbrook, N. J., Common mechanisms for declines in oxidative stress tolerance and proliferation with aging. Free Radical Biology and Medicine 2003, 35, 292-299.

Lim, J. H.; Yu, Y. G.; Han, Y. S.; Cho, S.; Ahn, B. Y.; Kim, S. H.; Cho, Y., The crystal structure of an Fe-superoxide dismutase from the hyperthermophile Aquifex pyrophilus at 1.9 A resolution: structural basis for thermostability. Journal of molecular biology 1997, 270, 259-74.

Lin, C. T.; Kuo, T. J.; Shaw, J. F.; Kao, M. C., Characterization of the dimer-monomer equilibrium of the papaya Copper/Zinc superoxide dismutase and its equilibrium shift by a single amino acid mutation. Journal of agricultural and food chemistry 1999, 47, 2944-9.
Madhujith, T.; Shahidi, F., Optimization of the extraction of antioxidative constituents of six barley cultivars and their antioxidant properties. Journal of agricultural and food chemistry 2006, 54, 8048-57.

Madhujith, T.; Shahidi, F., Antioxidative and antiproliferative properties of selected barley (Hordeum vulgarae L.) cultivars and their potential for inhibition of low-density lipoprotein (LDL) cholesterol oxidation. Journal of agricultural and food chemistry 2007, 55, 5018-24.

Malinowski, D. P.; Fridovich, I., Chemical modification of arginine at the active site of the bovine erythrocyte superoxide dismutase. Biochemistry 1979, 18, 5909-17.

Maly, F. E., The B lymphocyte: a newly recognized source of reactive oxygen species with immunoregulatory potential. Free radical research communications 1990, 8, 143-8.

Marklund, S. L.; Holme, E.; Hellner, L., Superoxide dismutase in extracellular fluids. Clinica chimica acta; international journal of clinical chemistry 1982, 126, 41-51.

Matés; gt; J.M, Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 2000, 153, 83-104.

McCord, J. M.; Fridovich, I., Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). The Journal of biological chemistry 1969, 244, 6049-55.

Meier, B.; Radeke, H. H.; Selle, S.; Raspe, H. H.; Sies, H.; Resch, K.; Habermehl, G. G., Human fibroblasts release reactive oxygen species in response to treatment with synovial fluids from patients suffering from arthritis. Free radical research communications 1990, 8, 149-60.

Murphy, M. P., How mitochondria produce reactive oxygen species. The Biochemical journal 2009, 417, 1-13.

Nedeva, T. S.; Petrova, V. Y.; Zamfirova, D. R.; Stephanova, E. V.; Kujumdzieva, A. V., Cu/Zn superoxide dismutase in yeast mitochondria - a general phenomenon. FEMS microbiology letters 2004, 230, 19-25.

Osredkar, J., Copper and zinc, biological role and significance of copper/zinc imbalance. Journal of Clinical Toxicology 2011, s3.

Paschos, T.; Xiros, C.; Christakopoulos, P., Simultaneous saccharification and fermentation by co-cultures of Fusarium oxysporum and Saccharomyces cerevisiae enhances ethanol production from liquefied wheat straw at high solid content. Industrial Crops and Products 2015, 76, 793-802.

Peterhans, E., Reactive oxygen, antioxidants, and autotoxicity in viral diseases. In Oxidative Stress, Cell Activation and Viral Infection, Pasquier, C.; Olivier, R. Y.; Auclair, C.; Packer, L., Eds. Birkhäuser Basel: Basel, 1994; pp 203-215.

Piper, P. W., Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives. Free Radical Biology and Medicine 1999, 27, 1219-1227.

Raghavarao, K. S. M. S.; Ranganathan, T. V.; Karanth, N. G., Some engineering aspects of solid-state fermentation. Biochemical Engineering Journal 2003, 13, 127-135.
Raha, S.; Robinson, B. H., Mitochondria, oxygen free radicals, disease and ageing. Trends in biochemical sciences 2000, 25, 502-8.

Rodrigues, R. C.; Sene, L.; Matos, G. S.; Roberto, I. C.; Pessoa, A., Jr.; Felipe, M. G., Enhanced xylitol production by precultivation of Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate. Current microbiology 2006, 53, 53-9.

Rosen, P.; Du, X.; Sui, G. Z., Molecular mechanisms of endothelial dysfunction in the diabetic heart. Advances in experimental medicine and biology 2001, 498, 75-86.

Sandy, M. S.; Moldeus, P.; Ross, D.; Smith, M. T., Role of redox cycling and lipid peroxidation in bipyridyl herbicide cytotoxicity. Studies with a compromised isolated hepatocyte model system. Biochemical pharmacology 1986, 35, 3095-101.

Schinina, M. E.; Carlini, P.; Polticelli, F.; Zappacosta, F.; Bossa, F.; Calabrese, L., Amino acid sequence of chicken Cu, Zn-containing superoxide dismutase and identification of glutathionyl adducts at exposed cysteine residues. European journal of biochemistry / FEBS 1996, 237, 433-9.

Sene, L.; Felipe, M. G.; Silva, S. S.; Vitolo, M., Preliminary kinetic characterization of xylose reductase and xylitol dehydrogenase extracted from Candida guilliermondii FTI 20037 cultivated in sugarcane bagasse hydrolysate for xylitol production. Applied biochemistry and biotechnology 2001, 91-93, 671-80.

Sibirnyi, A. A.; Shavlovskii, G. M.; Ksheminskaia, G. P.; Orlovskaia, A. G., [Active transport of riboflavin in the yeast Pichia guilliermondii. Detection and some properties of the cryptic riboflavin permease]. Biokhimiia (Moscow, Russia) 1977, 42, 1841-51.

Singhania, R. R.; Soccol, C. R.; Pandey, A., Application of tropical agro-industrial residues as substrate for solid-state fermentation processes. In Current Developments in Solid-state Fermentation, Pandey, A.; Soccol, C. R.; Larroche, C., Eds. Springer New York: New York, NY, 2008; pp 412-442.

Singhania, R. R.; Patel, A. K.; Soccol, C. R.; Pandey, A., Recent advances in solid-state fermentation. Biochemical Engineering Journal 2009, 44, 13-18.

Tainer, J. A.; Getzoff, E. D.; Richardson, J. S.; Richardson, D. C., Structure and mechanism of copper, zinc superoxide dismutase. Nature 1983, 306, 284-7.

Tanner, F. W., Jr.; Vojnovich, C.; JM, V. A. N. L., Riboflavin production by Candida species. Science (New York, N.Y.) 1945, 101, 180-1.

Wang, J., The differences between iron and iron-substituted manganese superoxide dismut ase with respect to hydrogen peroxide treatment. Theses and Dissertations--Chemistry. Paper 37. 2014, 5.

Wang wei-xia, L. f.-h., 高產SOD海洋酵母菌的篩選及其發酵條件. Food science and technology 2007, 1005-9989(2007)05-0029-04.

West, I. C., Radicals and oxidative stress in diabetes. Diabetic medicine : a journal of the British Diabetic Association 2000, 17, 171-80.

Wojtunik-Kulesza, K. A.; Oniszczuk, A.; Oniszczuk, T.; Waksmundzka-Hajnos, M., The influence of common free radicals and antioxidants on development of Alzheimer’s Disease. Biomedicine & Pharmacotherapy 2016, 78, 39-49.

Wu, W. S.; Tsai, R. K.; Chang, C. H.; Wang, S.; Wu, J. R.; Chang, Y. X., Reactive oxygen species mediated sustained activation of protein kinase C alpha and extracellular signal-regulated kinase for migration of human hepatoma cell Hepg2. Molecular cancer research : MCR 2006, 4, 747-58.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔