孔凡旗, Antioxidant manufacturing method. In Google Patents: 2015.
王歲樓, 活性乾酵母SOD搖瓶發酵條件. Industrial Microbiology 2000, 30, 4.
田志仁; 汪碧涵, Four species of Pichia yeasts new to taiwan. TAIWANIA 2002, 47, 186-193.
吳彩平. 以固態發酵製備樟芝米及其品質與抗氧化性質. 中興大學, 2006.
杜姿瑩, 酵母在食品工業之應用. 食品工業發展研究所, 1990; p 6.
周建琴, 酵母SOD高產菌的選育及發酵條件的研究. Journal of Anhui Agri.Sci 2008, 36(31):13494-13495, 13554.
宮莉, 酵母SOD高產菌的選育及發酵條件. Journal of Changchun University of Techonology 2006, 27(3), 204-207.
海春旭, 自由基醫學(第一版). 第四軍醫大學出版社, 2006.
莊荃與, 利用固態醱酵法生產超氧歧化酶之研究. 國立屏東科技大學碩士論文, 2006.鄭榮梁, 自由基生物醫學(初版). 藝軒, 2013.
Summary of species characteristics A2 - Kurtzman, Cletus P. In The Yeasts (Fourth Edition), Fell, J. W., Ed. Elsevier: Amsterdam, 1998; pp 915-947.
Adom, K. K.; Liu, R. H., Antioxidant activity of grains. Journal of agricultural and food chemistry 2002, 50, 6182-7.
Anisha, G. S.; Rojan, P. J.; Nicemol, J.; Niladevi, K. N.; Prema, P., Production and characterization of partially purified thermostable α-galactosidases from Streptomyces griseoloalbus for food industrial applications. Food Chemistry 2008, 111, 631-635.
Aryuman, P.; Lertsiri, S.; Visessanguan, W.; Niamsiri, N.; Bhumiratana, A.; Assavanig, A., Glutaminase-producing Meyerozyma (Pichia) guilliermondii isolated from Thai soy sauce fermentation. International journal of food microbiology 2015, 192, 7-12.
Bannister, J. V.; Bannister, W. H.; Rotilio, G., Aspects of the structure, function, and applications of superoxide dismutase. CRC critical reviews in biochemistry 1987, 22, 111-80.
Benz, C. C.; Yau, C., Ageing, oxidative stress and cancer: paradigms in parallax. Nat Rev Cancer 2008, 8, 875-9.
Beyer, W. F., Jr.; Fridovich, I., In vivo competition between iron and manganese for occupancy of the active site region of the manganese-superoxide dismutase of Escherichia coli. The Journal of biological chemistry 1991, 266, 303-8.
Canettieri, E. V.; Almeida e Silva, J. B.; Felipe, M. G., Application of factorial design to the study of xylitol production from eucalyptus hemicellulosic hydrolysate. Applied biochemistry and biotechnology 2001, 94, 159-68.
Carvalho, W.; Silva, S. S.; Converti, A.; Vitolo, M., Metabolic behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Biotechnology and bioengineering 2002, 79, 165-9.
Ceriello, A., Acute hyperglycaemia and oxidative stress generation. Diabetic medicine : a journal of the British Diabetic Association 1997, 14 Suppl 3, S45-9.
Chan, S. H.; Tai, M. H.; Li, C. Y.; Chan, J. Y., Reduction in molecular synthesis or enzyme activity of superoxide dismutases and catalase contributes to oxidative stress and neurogenic hypertension in spontaneously hypertensive rats. Free radical biology & medicine 2006, 40, 2028-39.
Church, D. F.; Pryor, W. A., Free-radical chemistry of cigarette smoke and its toxicological implications. Environmental health perspectives 1985, 64, 111-26.
Donnelly, J. K.; McLellan, K. M.; Walker, J. L.; Robinson, D. S., Superoxide dismutases in foods. A review. Food Chemistry 1989, 33, 243-270.
Đorđević, T. M.; Šiler-Marinković, S. S.; Dimitrijević-Branković, S. I., Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chemistry 2010, 119, 957-963.
El Mistiri, M.; Verdecchia, A.; Rashid, I.; El Sahli, N.; El Mangush, M.; Federico, M., Cancer incidence in eastern Libya: the first report from the Benghazi Cancer Registry, 2003. Int J Cancer 2007, 120, 392-7.
Forman, H. J.; Fridovich, I., On the stability of bovine superoxide dismutase. The effects of metals. The Journal of biological chemistry 1973, 248, 2645-9.
Fridovich, I., Superoxide dismutases. Advances in enzymology and related areas of molecular biology 1986, 58, 61-97.
Geller, B. L.; Winge, D. R., A method for distinguishing Cu,Zn- and Mn-containing superoxide dismutases. Analytical biochemistry 1983, 128, 86-92.
Gill, S. S.; Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry : PPB / Societe francaise de physiologie vegetale 2010, 48, 909-30.
Gligic, L.; Radulovic, Z.; Zavisic, G., Superoxide dismutase biosynthesis by two thermophilic bacteria. Enzyme and microbial technology 2000, 27, 789-792.
Greene, D. A.; Sima, A. A.; Stevens, M. J.; Feldman, E. L.; Lattimer, S. A., Complications: neuropathy, pathogenetic considerations. Diabetes care 1992, 15, 1902-25.
Gu, X.; Neric, N. J.; Crabb, J. S.; Crabb, J. W.; Bhattacharya, S. K.; Rayborn, M. E.; Hollyfield, J. G.; Bonilha, V. L., Age-related changes in the retinal pigment epithelium (RPE). PLoS One 2012, 7, e38673.
Hölker, U.; Lenz, J., Solid-state fermentation — are there any biotechnological advantages? Current Opinion in Microbiology 2005, 8, 301-306.
Hagen, U., Biochemical aspects of radiation biology. Experientia 1989, 45, 7-12.
Halliwell, B., The role of oxygen radicals in human disease, with particular reference to the vascular system. Haemostasis 1993, 23 Suppl 1, 118-26.
Harman, D., The biologic clock: the mitochondria? Journal of the American Geriatrics Society 1972, 20, 145-7.
Hernandez-Saavedra, N. Y.; Ochoa, J. L., Copper-zinc superoxide dismutase from the marine yeast Debaryomyces hansenii. Yeast (Chichester, England) 1999, 15, 657-68.
Jang, Y. C.; Van Remmen, H., The mitochondrial theory of aging: insight from transgenic and knockout mouse models. Experimental gerontology 2009, 44, 256-60.
Jin, Z. Q.; Chen, X., A simple reproducible model of free radical-injured isolated heart induced by 1,1-diphenyl-2-picryl-hydrazyl (DPPH). Journal of pharmacological and toxicological methods 1998, 39, 63-70.
Kashyap, P.; Sabu, A.; Pandey, A.; Szakacs, G.; Soccol, C. R., Extra-cellular L-glutaminase production by Zygosaccharomyces rouxii under solid-state fermentation. Process Biochemistry 2002, 38, 307-312.
Keele, B. B., Jr.; McCord, J. M.; Fridovich, I., Superoxide dismutase from Escherichia coli B. A new manganese-containing enzyme. The Journal of biological chemistry 1970, 245, 6176-81.
Klöppel, C.; Michels, C.; Zimmer, J.; Herrmann, J. M.; Riemer, J., In yeast redistribution of Sod1 to the mitochondrial intermembrane space provides protection against respiration derived oxidative stress. Biochemical and Biophysical Research Communications 2010, 403, 114-119.
Kong, Q.; Beel, J. A.; Lillehei, K. O., A threshold concept for cancer therapy. Medical Hypotheses 2000, 55, 29-35.
Ku, H. H.; Brunk, U. T.; Sohal, R. S., Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free radical biology & medicine 1993, 15, 621-7.
Kurtzman, C. P.; Fell, J. W., Yeast Systematics and Phylogeny — Implications of molecular identification methods for studies in ecology. In Biodiversity and Ecophysiology of Yeasts, Péter, G.; Rosa, C., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2006; pp 11-30.
Li, J.; Holbrook, N. J., Common mechanisms for declines in oxidative stress tolerance and proliferation with aging. Free Radical Biology and Medicine 2003, 35, 292-299.
Lim, J. H.; Yu, Y. G.; Han, Y. S.; Cho, S.; Ahn, B. Y.; Kim, S. H.; Cho, Y., The crystal structure of an Fe-superoxide dismutase from the hyperthermophile Aquifex pyrophilus at 1.9 A resolution: structural basis for thermostability. Journal of molecular biology 1997, 270, 259-74.
Lin, C. T.; Kuo, T. J.; Shaw, J. F.; Kao, M. C., Characterization of the dimer-monomer equilibrium of the papaya Copper/Zinc superoxide dismutase and its equilibrium shift by a single amino acid mutation. Journal of agricultural and food chemistry 1999, 47, 2944-9.
Madhujith, T.; Shahidi, F., Optimization of the extraction of antioxidative constituents of six barley cultivars and their antioxidant properties. Journal of agricultural and food chemistry 2006, 54, 8048-57.
Madhujith, T.; Shahidi, F., Antioxidative and antiproliferative properties of selected barley (Hordeum vulgarae L.) cultivars and their potential for inhibition of low-density lipoprotein (LDL) cholesterol oxidation. Journal of agricultural and food chemistry 2007, 55, 5018-24.
Malinowski, D. P.; Fridovich, I., Chemical modification of arginine at the active site of the bovine erythrocyte superoxide dismutase. Biochemistry 1979, 18, 5909-17.
Maly, F. E., The B lymphocyte: a newly recognized source of reactive oxygen species with immunoregulatory potential. Free radical research communications 1990, 8, 143-8.
Marklund, S. L.; Holme, E.; Hellner, L., Superoxide dismutase in extracellular fluids. Clinica chimica acta; international journal of clinical chemistry 1982, 126, 41-51.
Matés; gt; J.M, Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 2000, 153, 83-104.
McCord, J. M.; Fridovich, I., Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). The Journal of biological chemistry 1969, 244, 6049-55.
Meier, B.; Radeke, H. H.; Selle, S.; Raspe, H. H.; Sies, H.; Resch, K.; Habermehl, G. G., Human fibroblasts release reactive oxygen species in response to treatment with synovial fluids from patients suffering from arthritis. Free radical research communications 1990, 8, 149-60.
Murphy, M. P., How mitochondria produce reactive oxygen species. The Biochemical journal 2009, 417, 1-13.
Nedeva, T. S.; Petrova, V. Y.; Zamfirova, D. R.; Stephanova, E. V.; Kujumdzieva, A. V., Cu/Zn superoxide dismutase in yeast mitochondria - a general phenomenon. FEMS microbiology letters 2004, 230, 19-25.
Osredkar, J., Copper and zinc, biological role and significance of copper/zinc imbalance. Journal of Clinical Toxicology 2011, s3.
Paschos, T.; Xiros, C.; Christakopoulos, P., Simultaneous saccharification and fermentation by co-cultures of Fusarium oxysporum and Saccharomyces cerevisiae enhances ethanol production from liquefied wheat straw at high solid content. Industrial Crops and Products 2015, 76, 793-802.
Peterhans, E., Reactive oxygen, antioxidants, and autotoxicity in viral diseases. In Oxidative Stress, Cell Activation and Viral Infection, Pasquier, C.; Olivier, R. Y.; Auclair, C.; Packer, L., Eds. Birkhäuser Basel: Basel, 1994; pp 203-215.
Piper, P. W., Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives. Free Radical Biology and Medicine 1999, 27, 1219-1227.
Raghavarao, K. S. M. S.; Ranganathan, T. V.; Karanth, N. G., Some engineering aspects of solid-state fermentation. Biochemical Engineering Journal 2003, 13, 127-135.
Raha, S.; Robinson, B. H., Mitochondria, oxygen free radicals, disease and ageing. Trends in biochemical sciences 2000, 25, 502-8.
Rodrigues, R. C.; Sene, L.; Matos, G. S.; Roberto, I. C.; Pessoa, A., Jr.; Felipe, M. G., Enhanced xylitol production by precultivation of Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate. Current microbiology 2006, 53, 53-9.
Rosen, P.; Du, X.; Sui, G. Z., Molecular mechanisms of endothelial dysfunction in the diabetic heart. Advances in experimental medicine and biology 2001, 498, 75-86.
Sandy, M. S.; Moldeus, P.; Ross, D.; Smith, M. T., Role of redox cycling and lipid peroxidation in bipyridyl herbicide cytotoxicity. Studies with a compromised isolated hepatocyte model system. Biochemical pharmacology 1986, 35, 3095-101.
Schinina, M. E.; Carlini, P.; Polticelli, F.; Zappacosta, F.; Bossa, F.; Calabrese, L., Amino acid sequence of chicken Cu, Zn-containing superoxide dismutase and identification of glutathionyl adducts at exposed cysteine residues. European journal of biochemistry / FEBS 1996, 237, 433-9.
Sene, L.; Felipe, M. G.; Silva, S. S.; Vitolo, M., Preliminary kinetic characterization of xylose reductase and xylitol dehydrogenase extracted from Candida guilliermondii FTI 20037 cultivated in sugarcane bagasse hydrolysate for xylitol production. Applied biochemistry and biotechnology 2001, 91-93, 671-80.
Sibirnyi, A. A.; Shavlovskii, G. M.; Ksheminskaia, G. P.; Orlovskaia, A. G., [Active transport of riboflavin in the yeast Pichia guilliermondii. Detection and some properties of the cryptic riboflavin permease]. Biokhimiia (Moscow, Russia) 1977, 42, 1841-51.
Singhania, R. R.; Soccol, C. R.; Pandey, A., Application of tropical agro-industrial residues as substrate for solid-state fermentation processes. In Current Developments in Solid-state Fermentation, Pandey, A.; Soccol, C. R.; Larroche, C., Eds. Springer New York: New York, NY, 2008; pp 412-442.
Singhania, R. R.; Patel, A. K.; Soccol, C. R.; Pandey, A., Recent advances in solid-state fermentation. Biochemical Engineering Journal 2009, 44, 13-18.
Tainer, J. A.; Getzoff, E. D.; Richardson, J. S.; Richardson, D. C., Structure and mechanism of copper, zinc superoxide dismutase. Nature 1983, 306, 284-7.
Tanner, F. W., Jr.; Vojnovich, C.; JM, V. A. N. L., Riboflavin production by Candida species. Science (New York, N.Y.) 1945, 101, 180-1.
Wang, J., The differences between iron and iron-substituted manganese superoxide dismut ase with respect to hydrogen peroxide treatment. Theses and Dissertations--Chemistry. Paper 37. 2014, 5.
Wang wei-xia, L. f.-h., 高產SOD海洋酵母菌的篩選及其發酵條件. Food science and technology 2007, 1005-9989(2007)05-0029-04.
West, I. C., Radicals and oxidative stress in diabetes. Diabetic medicine : a journal of the British Diabetic Association 2000, 17, 171-80.
Wojtunik-Kulesza, K. A.; Oniszczuk, A.; Oniszczuk, T.; Waksmundzka-Hajnos, M., The influence of common free radicals and antioxidants on development of Alzheimer’s Disease. Biomedicine & Pharmacotherapy 2016, 78, 39-49.
Wu, W. S.; Tsai, R. K.; Chang, C. H.; Wang, S.; Wu, J. R.; Chang, Y. X., Reactive oxygen species mediated sustained activation of protein kinase C alpha and extracellular signal-regulated kinase for migration of human hepatoma cell Hepg2. Molecular cancer research : MCR 2006, 4, 747-58.