(3.238.7.202) 您好!臺灣時間:2021/03/03 23:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃承智
研究生(外文):Huang, Cheng-Jhih
論文名稱:以乙醇萃取芝麻油之研究
論文名稱(外文):Ethanolic extraction for sesame oil
指導教授:吳明昌吳美莉吳美莉引用關係
指導教授(外文):Wu, Ming-ChangWu, Mei-Li
口試委員:吳明昌吳美莉王進崑吳瑞碧張文昌
口試委員(外文):Wu, Ming-ChangWu, Mei-LiWang, Chin-KunWu, Jui-PiChang, Wen-Chang
口試日期:2017-06-30
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:77
中文關鍵詞:油脂氧化乙醇萃取油芝麻素芝麻林素芝麻酚總酚測定
外文關鍵詞:lipid oxidationethanol extract oilssesaminsesamolinsesamoltotal phenolic content
相關次數:
  • 被引用被引用:2
  • 點閱點閱:229
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
油脂氧化已被公認為影響食用油脂品質的主要因素,是造成油脂在化學、感官以及營養上劣變的原因。芝麻油對於抵抗油脂氧化酸敗有顯著性的表現。而今日,不同食品加工方式也參與了芝麻油製成,如微波技術、紅外線加熱技術等,期待產生更好的品質。在本實驗中,冷壓油係以乙醇為溶劑進行萃取,在前處理時,本實驗以不同濃度的乙醇(30%、50%、75%及95%)來測試其萃取效果。為確認芝麻油中抗氧化劑在油中的貢獻,進行了以下的實驗操作,包括DPPH自由基清除能力測定、總酚測定等。同時,與另外四組(120°C、150°C、180°C及210°C)以炒焙、壓榨所得的傳統熱加工芝麻油做比較。在第一部分初始抗氧化方面,隨著乙醇濃度升高,總酚、總類黃酮、DPPH以及ABTS自由基清除能力測定也隨著下降;然而95%萃取卻得到最低的油脂酸價、過氧化物價以及硫巴比妥酸價。由高效液相層析儀測定芝麻中最具功效性的木酚素,結果顯示,120℃傳統熱加工樣品有最高含量芝麻素;30%乙醇萃取樣品有最高含量芝麻林素;210℃傳統熱加工樣品有最高含量芝麻酚。在第二部分,取熱加工120℃、210℃以及30%乙醇萃取之樣品油經由暗室烘箱65℃的八週儲藏實驗後,結果仍是以210℃呈現最好的抗氧化效果;30%乙醇萃取次之;120℃最差。因此,乙醇萃取芝麻油的確可以保留芝麻較多的木酚素,但抗氧力仍不如梅納反應所聚合及生成之抗氧化物。未來,琥珀色的乙醇萃取油可以取代低溫炒焙芝麻油供作涼拌蔬菜使用。
Lipid oxidation has been recognized as the major problem affecting the quality of edible oils. It also causes the deteriorative changes in the chemical, sensory and nutritional properties. Sesame oil is known to be significantly resistant to oxidative rancidity. Today, different food processing methods are also involved in sesame oil produced, such as microwave technology, infrared heating technology, look forward to produce better quality. In this study, ethanol was used as the solvent to extract sesame oil. During pretreatment, different concentrations of four ethanol groups (30%, 50%, 70% and 95%) will be used to determine the extraction efficiency. Then, experiments such as DPPH radical scavenging activity, total phenol content and so on were used to confirm the contributions of antioxidants. At the same time, four groups of the traditional sesame oil (120℃, 150℃, 180℃ and 210℃) which was processed from roasting and squeezing treatment was used as the control. The results of the first stage showed the higher ethanol concentrations produced lower total phenolic content, total flavonoid content, ABTS and DPPH radical scavenging activity. The extraction with 95% ethanol got the lowest acid value, peroxide value and thiobarbituric acid value. Lignans was regarded as the most active compound in sesame, by determination of HPLC, the results showed that 120℃traditional process oils increased the most sesamin contents, 30% ethanol extract oils increase the most sesamolin contents, 210℃traditional process oils increased the most sesamol contents. In the second stage, eight weeks oven storage experiments with 65℃, 120℃, 210℃traditional process and 30% ethanol extract oils was carried out. The results showed traditional process with 210℃showed the best antioxidative activity, 30% ethanol extract oils were the second. Therefore, ethanol extract oils contain more lignans, while the antioxidant capacity from lignans less than antioxidant substances which are from Maillard reaction. In the future, ethanol extract sesame oils with favorite amber color will be potential to replace low temperature roasted sesame oil, and more useful for vegetable salad.
目錄
中文摘要…………………………………………………………………………………I
Abstract…………………………………………………………………………………III
謝誌……………………………………………………………………………………………V
目錄……………………………………………………………………………………………VI
圖目錄………………………………………………………………………………………XI
表目錄………………………………………………………………………………………XIII
附錄……………………………………………………………………………………………XIV
第1章 前言………………………………………………………………………………1
第2章 文獻回顧……………………………………………………………………2
2.1芝麻油簡介………………………………………………………………………2
2.1.1概述………………………………………………………………………………2
2.1.2營養價值 …………………………………………………………2
2.1.3一般特性……………………………………………………………………5
2.1.4製程………………………………………………………………………………5
2.1.5冷壓技術……………………………………………………………………7
2.1.6新興溶劑萃取技術…………………………………………………7
2.2油脂氧化機制………………………………………………………………8
2.2.1自氧化反應………………………………………………………………8
2.2.2熱氧化反應………………………………………………………………12
2.2.3光氧化反應………………………………………………………………12
2.2.4酶氧化反應………………………………………………………………13
2.3油脂抗氧化機制……………………………………………………………16
2.3.1自由基終止劑…………………………………………………………16
2.3.2還原劑或氧清除劑………………………………………………16
2.3.3金屬螯合劑………………………………………………………………16
2.4芝麻中抗氧化成分……………………………………………………17
2.4.1酚類……………………………………………………………………………17
2.4.2 木酚素……………………………………………………………………17
第3章 材料與方法……………………………………………………………20
3.1實驗原料………………………………………………………………………20
3.2實驗藥品………………………………………………………………………20
3.3儀器設備………………………………………………………………………23
3.4實驗架構………………………………………………………………………24
3.5樣品製備………………………………………………………………………26
3.5.1熱加工之芝麻油製備…………………………………………26
3.5.2乙醇萃取之芝麻油製備……………………………………26
3.5.3甲醇萃取製備芝麻油樣品萃取液…………………26
3.5.4甲醇萃取製備HPLC操作之芝麻油樣品萃取液……………26
3.6油脂品質分析…………………………………………………………………………………27
3.6.1酸價………………………………………………………………………………………………27
3.6.2過氧化價……………………………………………………………………………………27
3.6.3硫巴比妥酸價…………………………………………………………………………28
3.7抗氧化能力分析…………………………………………………………………………28
3.7.1總酚含量測定 ………………………………………………………………28
3.7.2總類黃酮含量測定 ……………………………………………………29
3.7.3 DPPH自由基清除率測定…………………………………………………29
3.7.4 TEAC總抗氧化力測定………………………………………………………29
3.7.5 還原力測定…………………………………………………………………………30
3.7.6螯合亞鐵離子能力測定……………………………………………………30
3.8 高效液相層析分析木酚素含量測定………………………………30
3.9色澤分析………………………………………………………………………………………32
3.10儲藏試驗分析…………………………………………………………………………32
3.11統計分析……………………………………………………………………………………32
第4章 結果與討論 …………………………………………………………….33
4.1熱加工與乙醇萃取之芝麻油油脂品質分………………………33
4.2熱加工與乙醇萃取之芝麻油酚類化合物含量測定………33
4.2.1熱加工與乙醇萃取之芝麻油總酚含量分析 ………35
4.2.2熱加工與乙醇萃取之芝麻油總類黃酮含量分析…………35
4.2.3熱加工與乙醇萃取之芝麻油HPLC木酚素含量分析…………35
4.3抗氧化能力分析………………………………………………………………………………………42
4.3.1熱加工與乙醇萃取之芝麻油DPPH自由基清除率測定………42
4.3.2熱加工與乙醇萃取之芝麻油TEAC總抗氧化力測定…………42
4.3.3熱加工與乙醇萃取之芝麻油還原力測定…………………………………43
4.3.4熱加工與乙醇萃取之芝麻油螯合亞鐵離子能力測定…………43
4.4色澤分析…………………………………………………………….….44
4.5熱加工與乙醇萃取之芝麻油儲藏試驗分析……………………………50
4.5.1熱加工與乙醇萃取之芝麻油品質分析-酸價……………………50
4.5.2熱加工與乙醇萃取之芝麻油品質分析-過氧化價……………50
4.5.3熱加工與乙醇萃取之芝麻油總酚含量…………………………………50
4.5.4熱加工與乙醇萃取之芝麻油HPLC木酚素含量變化…………51
4.5.5熱加工與乙醇萃取之芝麻油色澤L值之變化……………………51
4.5.6熱加工與乙醇萃取之芝麻油色澤a值之變化……………………52
4.5.7熱加工與乙醇萃取之芝麻油色澤b值之變化……………………52
4.5.8熱加工與乙醇萃取之芝麻油色澤ΔE*之變化……………………52
第5章 結論……………………………………………………………………………………………………61
第6章 參考文獻………………………………………………………………………………………62

圖目錄
圖 1、芝麻油提油過程 …………………………………………………………………6
圖 2、油脂自氧化的反應階段……………………………………………………………10
圖 3、脂質自氧化反應中氫過氧化物的形成………………………………11
圖 4、油脂熱氧化環化機制…………………………………………………………………14
圖 5、DIELS- ALDER反應機制…………………………………………………………14
圖 6、光敏感物質的第一類型及第二類型光氧化反應……………15
圖 7、脂肪加氧酶反應機制…………………………………………………………………15
圖 8 、芝麻木酚素之化學結構…………………………………………………………19
圖 9、芝麻素與細辛素之化學結構 ………………………………………19
圖 10、實驗架構圖…………………………………………………………………………………25
圖 11、不同加工炒焙溫度與乙醇濃度對傳統熱加工以及乙醇萃取芝麻 油中總酚含量之影響………………………………………………………………………………38
圖 12、不同加工炒焙溫度與乙醇濃度對傳統熱加工以及乙醇萃取芝麻 油中總類黃酮含量之影響……………………………………………………………………39
圖 13、傳統熱加工以及乙醇萃取芝麻油中木酚素的高效液相層析圖……………………………………………………………………………………………………………………40
圖 14、不同加工炒焙溫度與乙醇濃度對傳統熱加工以及乙醇萃取芝麻 油中DPPH自由基清除能力之影響………………………………………………………45
圖 15、不同加工炒焙溫度與乙醇濃度對傳統熱加工以及乙醇萃取芝麻
油中ABTS自由基清除能力之影響………………………………………………………46
圖 16、不同加工炒焙溫度與乙醇濃度對傳統熱加工以及乙醇萃取芝麻油中還原力之影響……………………………………………………………………………………47
圖 17、不同加工炒焙溫度與乙醇濃度對傳統熱加工以及乙醇萃取芝麻油中螯合亞鐵離子測定之影響……………………………………………………………48
圖 18、芝麻油樣品於65℃烘箱儲存過程酸價之變化………………53
圖 19、芝麻油樣品於65℃烘箱儲存過程過氧化價之變化……54
圖 20、芝麻油樣品於65℃烘箱儲存過程總酚含量之變化……55
圖 21、芝麻油樣品於65℃烘箱儲存過程L值之變化…………………57
圖 22、芝麻油樣品於65℃烘箱儲存過程a值之變化…………………58
圖 23、芝麻油樣品於65℃烘箱儲存過程b值之變化…………………59
表目錄
表 1、芝麻之營養成分………………………………………………………………………………4
表 2、沖提梯度……………………………………………………………………………………………32
表 3、不同加工炒焙溫度與乙醇濃度對傳統熱加工以及乙醇萃取芝麻油的酸價、過氧化價以及硫巴比妥酸價之影響…………………………………37
表 4、不同加工炒焙溫度與乙醇濃度萃取對傳統熱加工以及冷壓芝麻油的木酚素之影響 …………………………………………………………………………………41
表 5、不同加工炒焙溫度與乙醇濃度對傳統熱加工以及乙醇萃取芝麻油
的色澤之影響………………………………………………………………………………………………49
表 6、芝麻油樣品於65℃烘箱儲藏八週儲存過程的木酚素含量之變化………………………………………………………………………………………………………………………56
表 7、芝麻油樣品於65℃烘箱儲藏八週儲存過程的ΔE*之變化60
附錄
附錄一、木酚素之總酚、ABTS自由基清除能力和螯合亞鐵離子能力測定
影響…………………………………………………………………………………………………………………74
附錄二、A:SESAMIN、B:SESAMOLIN、C:SESAMOL標準品之高效
液相層析圖……………………………………………………………………………………………………75
附錄三、A:八組芝麻油樣品、B:65℃烘箱前、C:65℃烘箱後色澤圖………………………………………………………………………………………………………………………76
國家標準(CNS)食用芝麻油https://www.cnsonline.com.tw/

經濟部標準檢驗局。2003。食用油脂檢驗法酸價之測定。中華民國國家標準 CNS 3647(N6082)。

中華民國國家標準。2003。食用油脂檢驗法過氧化價之測定。中華民國國家標準CNS 3650(N6085)。

美國農業部營養數據庫 https://ndb.nal.usda.gov/ndb/

石倩如(2007)芝麻中 sesaminol triglucoside 萃出物在大鼠吸收代謝及抗氧化活性之探討臺灣大學食品科技研究所學位論文。

向韻旬(2010)檸檬精製成mumefural含量及抗氧化能力之變化。屏東科技大學碩士論文。

吳怡萱(2007)不同加熱前處理對芝麻油抗氧化物質之研究。國立宜蘭大學食品科學系碩士論文。

呂勻生、孫繼(2001)芝麻高產栽培。農村科學實驗。4:8-10

李日升、周文明、李曉可、鄒陽(2007)細辛素及其衍生物的合成與生物活性。西北農林科技大學學報 (自然科學版)。

沈文宗(1987)苦茶籽被炒條件對苦茶油產品品質之影響。大葉大學食品科學系碩士論文。

沈文宗(1998)苦籽焙炒條件對苦茶油產品品質之影響。大葉大學食品工程研究所碩士論文。

周瑞寶(2010)特種植物油料加工工藝。

河南工業大學食品科學與工程系碩士論文。

徐永鑫(2001)芝麻粕中lignans及lignan glycosides之分析及抗氧化性探討。國立台灣大學食品科技研究所博士論文。

徐錫樑(1987)麻油加工技術與品質改進之研究。國立中興大學食品科學系碩士論文。

陳風香、曹文明、薛斌(2012)壓榨芝麻油中摻精煉芝油的鑒別技術研究。14th ICC cereal and bread congress and forum on fats and oils。

黃紀念、宋國輝、孫強、詹傳保(2009)芝麻林素和芝麻素分離純化研究。河南農業科學38(9):79-82。

楊雅新、汪學德、鄭永戰(2016)冷榨芝麻油在煎炸過程中的品質變化。糧食與油脂29(7):35-38。

楊蘭花、錢俊青(2007)乙醇萃取菜籽油卵磷脂的工藝研究。中國糧油學報22(4):75-79。

劉玉蘭、劉瑞花、張振山、楊忠欣(2016)芝麻油生產工藝對細辛素形成的影響。中國糧油學報31(1):65-69。

劉帥(2016)芝麻素轉化為細辛素條件的研究及其抗衰老應用。

劉紅豔、趙應忠(2006)芝麻產量性狀與品質性狀的典型相關分析。中國油料作物學報 28(2):129-132。

潘書毓(2002)台灣產山藥之酚類含量及抗氧化特性與加工的影響。中國文化大學生活應用科學所碩士論文。

蔡世勇(1992)。芝麻油之特性及製程介紹。食品工業24(9):33-39

鄭靜桂(1988)芝麻及芝麻油中天然抗氧化成分探討。食品工業 20(12):32-37。

Abou-Gharbia, H. A., Shehata, A. A. Y., and Shahidi, F. (2000). Effect of processing on oxidative stability and lipid classes of sesame oil. Food research international,33(5), 331-340.

Alfawaz, M., Smith, J. S., Jeon, and I. J. (1994). Maillard reaction products as antioxidants in pre-cooked ground beef. Food Chemistry, 51(3)311-318.

Andreou, A., and Feussner, I. (2009). Lipoxygenases–structure and reaction mechanism. Phytochemistry, 70(13), 1504-1510.

Barriuso, B., Astiasarán, I., and Ansorena, D. (2013). A review of analytical methods measuring lipid oxidation status in foods: a challenging task. European Food Research and Technology, 236(1), 1-15.

Bianchi, L. M., Duncan, S. E., Webster, J. B., Neilson, A. P., and O'Keefe, S. F. (2015). Contribution of chlorophyll to photooxidation of soybean oil at specific visible wavelengths of light. Journal of Food Science, 80(2), C252-C261.

Brand-Williams, W., Cuvelier, M. E., and Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30.

Budowski P.,K.S. (1950) The Chemical and Physiological Properties of Sesasme Oil. The European Journal of Lipid Science and Technology 6:125-145

Budowski, P., and Markley, K. S. (1951). The chemical and physiological properties of sesame oil. Chemical Reviews, 48(1), 125-151.

Carlsson, D. J., Suprunchuk, T., and Wiles, D. M. (1976). Photooxidation of unsaturated oils: Effects of singlet oxygen quenchers. Journal of the American Oil Chemists’ Society, 53(10) , 656-660.

Carr, R. A. (1978). Refining and degumming systems for edible fats and oils. Journal of the American Oil Chemists’ Society, 55(11), 765-771.

Chiou, A., Salta, F. N., Kalogeropoulos, N., Mylona, A., Ntalla, I., and Andrikopoulos, N. K. (2007). Retention and Distribution of Polyphenols after Pan‐Frying of French Fries in Oils Enriched with Olive Leaf Extract.Journal of Food Science,72(8).

Choe E., Min D.B. (2006) Mechanisms and factors for edible oil oxidation. Compr Rev Food Sci Food Saf 5: 169-186.

De Greyt W(2006) Influence of chemical refining on the major and minor components of rice brain oil. J Am Oil Chem Soc 83: 15-21.

Decker, E. A., and Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food.Journal of Agricultural and Food Chemistry,38(3), 674-677.

Dreher, M. L. (1997). Functional Foods: Designing foods for improving health function: overview. Journal of Nutraceuticals, Functional and Medical Foods, 1(2), 3-5.

Evans, D. A., and Johnson, J. S. (1999). Diels-Alder Reactions.Comprehensive Asymmetric Catalysis, 3, 1177.

Farmer, E. H., Bloomfield, G. F., Sundralingam, A., and Sutton, D. A. (1942). The course and mechanism of autoxidation reactions in olefinic and polyolefinic substances, including rubber. Transactions of the Faraday Society,38, 348-356.

Farmer, E. H., Bloomfield, G. F., Sundralingam, A., and Sutton, D. A. (1942). The course and mechanism of autoxidation reactions in olefinic and polyolefinic substances, including rubber. Transactions of the Faraday Society, 38, 348-356.

Foote, C. S. (1968). Mechanisms of photosensitized oxidation. Science,162(3857), 963-970.

Fukuda, Y., Nagata, M., Osawa, T., and Namiki, M. (1986). Chemical aspects of the antioxidative activity of roasted sesame seed oil, and the effect of using the oil for frying. Agricultural and Biological Chemistry, 50(4), 857-862.

Fukuda, Y., Osawa, T., Kawakishi, S., and Namiki, M. (1994). Chemistry of lignan antioxidants in sesame seed and oil. Food Phytochemicals for Cancer Prevention II . Rev. 27, 264-274

Gorkum, R. V. and Bouwman, E. (2005). The oxidative drying of alkyd paint catalysed by metal complexes. Coord. Chem. Rev.249:1709.

Graduate Program of Nutrition, Department of Human Development and Family Studies, National Taiwan Normal University.(2007). The contents of lignans in commercial sesame oils of Taiwan and their changes during heating. Food Chemistry, 104:341-344.

hahidi, F., Janitha, P. K., and Wanasundara, P. D. (1992). Phenolic antioxidants. Critical Reviews in Food science and Nutrition,32(1):67-103.

Hemalatha, S. (2007). Sesame lignans enhance the thermal stability of edible vegetable oils.Food chemistry,105(3):1076-1085.

Hodge, J. E. (1953). Dehydrated foods. Chemistry of browning reactions in model systems. Journal of Agricultural and food Chemistry, 1, 928-943.

Jeong, S. M., Kim, S. Y., Kim, D. R., Nam, K. C., Ahn, D. U., Lee, and S. C. (2004). Effect of seed roasting conditions on the antioxidant activity of defatted sesame meal extracts. Journal of Food Science-chicago-, 69: C377-C381.

Jiang, Q., Christen, S., Shigenaga, M. K., and Ames, B. N. (2001). γ-Tocopherol, the major form of vitamin E in the US diet, deserves more attention. The American Journal of Clinical Nutrition,74(6), 714-722.

Johnson, O. C., and Kummerow, F. A. (1957). Chemical changes which take place in an edible oil during thermal oxidation. Journal of the American Oil Chemists' Society, 34(8), 407-409.

Jubert, C., and Bailey, G. (2007). Isolation of chlorophylls a and b from spinach by counter-current chromatography. Journal of Chromatography A, 1140(1), 95-100.

Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S., and Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954-3962.

Kanner, J., German, J. B., Kinsella, J. E., and Hultin, H. O. (1987). Initiation of lipid peroxidation in biological systems. Critical Reviews in Food Science and Nutrition, 25(4):317-364.

Kikugawa, K., Arai, M., and Kurechi, T. (1983). Participation of sesamol in stability of sesame oil. Journal of the American Oil Chemists’ Society,60(8), 1528-1533.

Kim, J. H., Seo, W. D., Lee, S. K., Lee, Y. B., Park, C. H., Ryu, H. W., and Lee, J. H. (2014). Comparative assessment of compositionalc omponents, antioxidant effects, and lignan extractions from Korean white and black sesame (Sesamum indicum L.) seeds for different crop years. Journal of Functional Foods, 7: 495-505.

Kiritsakis, A. K., Stine, C. M., and Dugan, L. R. (1983). Effect of selected antioxidants on the stability of virgin olive oil. Journal of the American Oil Chemists’ Society, 60(7), 1286-1290.

Lemcke-Norojärvi, M., Kamal-Eldin, A., Appelqvist, L. A., Dimberg, L. H., Öhrvall, M., and Vessby, B. (2001). Corn and sesame oils increase serum γ-tocopherol concentrations in healthy Swedish women. The Journal of Nutrition, 131(4), 1195-1201.

Luypaert, J., Zhang M. H. and Massart D. L. (2004) Feasibility study for the use of near infrared spectroscopy in the qualitative and quantitative analysis of green tea , Camellia sinensis (L.), Analytica Chimica Acta 478: 303-312.

MacRae, W. D., and Towers, G. N. (1984). Biological activities of lignans. Phytochemistry, 23(6), 1207-1220.

Manach, C., Scalbert, A., Morand, C., Rémésy, C., and Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727-747.
Meltzer, J. B., Frankel, E. N., Bessler, T. R., and Perkins, E. G. (1981). Analysis of thermally abused soybean oils for cyclic monomers. Journal of the American Oil Chemists’ Society,58(7), A779-A784.

Morales, F. J., and Jiménez-Pérez, S. (2001). Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chemistry, 72(1), 119-125.

Morales, F. J., and Jiménez-Pérez, S. (2001). Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chemistry, 72(1), 119-125.

Namiki, M(1995) The Chemistry and Physiological Functions of Sesame.Food Reviews International, 11(2):281-329.

Nawar, W. F. (1996). Lipids in food chemistry, ed. O. Fennema, 225-320.

Nicoli, M. C., Anese, M., and Parpinel, M. (1999). Influence of processing on the antioxidant properties of fruit and vegetables. Trends in Food Science and Technology, 10(3), 94-100.

Oyaizu M (1986). Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi, 35:771-775.

Parker, T. D., Adams, D. A., Zhou, K., Harris, M., and Yu, L. (2003). Fatty acid composition and oxidative stability of cold‐pressed edible seed oils. Journal of Food Science, 68(4), 1240-1243.

Perkins, E. G. (1967). Characterization of the nonvolatile compounds formed during the thermal oxidation of corn oil. II. Phthalate esters. Journal of the American Oil Chemists’ Society, 44(3): 197-199.

Rizki, H., Kzaiber, F., Elharfi, M., Ennahli, S., and Hanine, H. (2015). Effects of roasting temperature and time on the physicochemical properties of sesame (Sesamum indicum. L) seeds. International Journal of Innovation and Applied Studies, 11(1), 148.

Sakihama, Y., Cohen, M. F., Grace, S. C., and Yamasaki, H. (2002). Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology, 177(1), 67-80.

Shen, Y., Jin, L., Xiao, P., Lu, Y., and Bao, J. (2009). Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. Journal of Cereal Science,49(1), 106-111.

Shimada, K., Fujikawa, K., Yahara, K., and Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40(6): 945-948.

Shyu, Y. S., and Hwang, L. S. (2002). Antioxidative activity of the crude extract of lignan glycosides from unroasted Burma black sesame meal. Food Research International, 35(4), 357-365

Simopoulos, A. P., Leaf, A., and Salem Jr, N. (1999). Essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Annals of Nutrition and Metabolism, 43(2), 127-130.

Sloan, E. (2014). The top ten functional food trends. Food Technology (Chicago), 68(4), 22-45.

Spikes, J. D. (1989). Photosensitization. In The science of photobiology (pp. 79-110). Springer US.

Suja, K. P., Abraham, J. T., Thamizh, S. N., Jayalekshmy, A., and Arumughan, C. (2004). Antioxidant efficacy of sesame cake extract in vegetable oil protection. Food Chemistry,84(3), 393-400.

Sun, T., and Ho, C. T. (2005). Antioxidant activities of buckwheat extracts. Food Chemistry, 90(4), 743-749.

Tahvanainen, J., Julkunen-Tiitto, R., and Kettunen, J. (1985). Phenolic glycosides govern the food selection pattern of willow feeding leaf beetles. Oecologia 67(1): 52-56.

Tarladgis, B. G., Watts, B. M., Younathan, M. T., and Dugan, L. (1960). A distillation method for the quantitative determination of malonaldehyde in rancid foods. Journal of the American Oil Chemists Society, 37(1), 44-48.

Usuki, R., Suzuki, T., Endo, Y., and Kaneda, T. (1984). Residual amounts of chlorophylls and pheophytins in refined edible oils. Journal of the American Oil Chemists’ Society, 61(4), 785-788.

Van Hoed V., Depaemelaere G., Ayala J.V., Santiwattana P., Verhe R.,Veldink, G. A., Vliegenthart, J. F. G., and Boldingh, J. (1977). Plant lipoxygenases.Progress in the Chemistry of Fats and other Lipids,15(2), 131-166.

Vick, B. A. and Zimmerman, D. C. (1987). Oxidative systems for modification of fatty acids: the lipoxygenase pathway. The Biochemistry of Plants, 9: 53-90.
Vinson, J. A., Su, X., Zubik, L., and Bose, P. (2001). Phenol antioxidant quantity and quality in foods: fruits. Journal of Agricultural and Food Chemistry, 49(11), 5315-5321.

Vujasinovic V., Djilas S., Dimic E., Romanic R., Takaci A (2010) Shelf life of cold-pressed pumpkin (Cucurbita pepo L.) seed oil obtained with a screw press. J Am Oil Chem Soc 87: 1497-1505.

Wanasundara, P. K. J. P. D., and Shahidi, F. (2005). Antioxidants: science, technology, and applications. Bailey's industrial oil and fat products.

Weiss, E. A. (1983). Sesame. Weiss, EA Oilseed crops. London, Longman, 282-340.

Were, B.A., Onkware, A.O., Gudu, S., Welander, M. ,Carlsson, and A.S.(2006) Seed Oil Content and Fatty Acid Composition in East African Sesame (Sesamum indicum L.) Accessions Evaluated over 3 Years. Field Crops Research 97:254-260.

Willför, S. M., Smeds, A. I., and Holmbom, and B. R. (2006). Chromatographic analysis of lignans. Journal of Chromatography A, 1112(1): 64-77.

Wintermans, J. F. G. M., and De Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA)-Biophysics Including Photosynthesis, 109(2), 448-453.

Wu, W. H. (2007). The contents of lignans in commercial sesame oils of Taiwan and their changes during heating. Food Chemistry,104(1), 341-344.

Yamauchi, R. (1997). Vitamin E: Mechanism of its antioxidant activity. Food Science and Technology International, Tokyo, 3(4), 301-309.

Yamauchi, R., and Matsushita, S. (1979). Products formed by photosensitized oxidation of tocopherols. Agricultural and Biological Chemistry, 43(10), 2151-2156.

Yoshida H, Shigezaki J, Takagi S, and Kajimoto G. (1995).Variation in the composition of various acyl lipid, tocopherols and lignans in sesame seed oil roasted in a microwave oven. J Sci Food Agric 68: 407-415.

Yoshida, H., and Takagi, S. (1997). Effects of seed roasting temperature and time on the quality characteristics of sesame (Sesamum indicum) oil. Journal of the Science of Food and Agriculture, 75(1), 19-26.

Yung, S. S. and Lucy, S. H. (2001). Antioxidative activity of crude extract of lignan glycosides in sesame meal. Presented at the 92nd AOCS Annual Meeting and Expo.May 13-16.Minneapolis,MN.,USA
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔