(3.238.7.202) 您好!臺灣時間:2021/03/03 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾于倫
研究生(外文):Tseng,Yu-Lun
論文名稱:不同成熟度及發酵對蓮霧葉抗氧化特性之影響
論文名稱(外文):he Effects of Maturity and Fermentation on the Antioxidant Characteristics of Syzygium samarangense Leaves
指導教授:蔡碧仁
指導教授(外文):Tsai, Pi-Jen
口試委員:翁義銘黃卓治
口試委員(外文):Weng, Yih-MingHuang, Tzou-Chi
口試日期:2013-06-20
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:110
中文關鍵詞:蓮霧葉糖化酵素抗氧化能力發酵
外文關鍵詞:Wax apple leavesthe starch degrading enzymeantioxidant capacityfermentation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
國外文獻證實,蓮霧葉中含有豐富的類黃酮成分,如:quercitrin、europetin-3-rhamnoside、gallic acid及myricitrin等,具有抑制糖化酵素活性和抗氧化等功效,而國內蓮霧葉目前則缺乏相關文獻及研究。由於植物的機能性成分會受栽培季節及成熟度而異,故本研究探討屏東的蓮霧葉在不同季節(夏,冬)及成熟度(幼,中,老葉),對於抗氧化成分、抗氧化能力及抑制糖化酵素(α-glucosidase和α-amylase)活性之影響;進一步以不同比例之蓮霧葉進行發酵處理,分析在發酵期間酚類化合物含量、SOD-like、抗氧化成分及抗氧化能力及抑制糖化酵素活性之變化,同時與市售產品及市售藥物(acarbose)之糖化酵素抑制率進行比較;後續進行蓮霧葉的生理活性與成分之相關性分析。
結果顯示,冬季幼葉含有豐富的SOD-like活性、總酚與總類黃酮含量,亦具有最高抑制α-glucosidase和α-amylase活性,分別為夏季幼葉的1.11和1.05倍,其myricitrin和quercitrin為夏季幼葉的3.36和1.16倍。
進一步利用發酵處理增加發酵液中酚類化合物含量與抑制糖化酵素活性。本研究,分別採用不同比例(1、3和5%)蓮霧葉進行發酵後,其抗氧化能力、抗氧化成分、酚類化合物含量及糖化酵素抑制率皆有提升;尤其以5%蓮霧葉發酵者最佳,具有最高的α-glucosidase和α-amylase抑制率,分別為81.18和89.06%。
此外,5%蓮霧葉發酵液與同濃度之市售藥物(acarbose)相比,表現更佳的抑制糖化酵素活性;與市售保健產品相較,5%蓮霧葉發酵液亦呈現較佳的抑制α-amylase活性。經由HPLC分析,本研究的蓮霧葉中含有的酚類化合物包括myricitrin、quercitrin、myricetin、gallic acid、chlorogenic acid及esculetin。進一步由抑制糖化酵素之貢獻度得知,主要提供抑制α-glucosidase活性之成分為myricitrin、myricetin和quercitrin;而抑制α-amylase活性的成分則為myricitrin、quercitrin和chlorogenic acid。因此,蓮霧葉中含有的上述酚類化合物,可有效抑制糖化酵素活性。而統計分析進一步顯示,抑制糖化酵素活性與抗氧化成分(總酚、總類黃酮)及抗氧化能力(SOD-like活性、FRAP和DPPH)呈高度顯著正相關。。
綜合上述結果證實,蓮霧葉具備優良的抗氧化成分,並經發酵處理後,可更進一步增加酚類化合物含量,並顯著提高抑制糖化酵素之能力,值得進一步開發與利用。期望未來可將蓮霧葉作為天然的抗氧化來源,並完善應用其抑制糖化酵素之能力,以開拓蓮霧葉在保健領域的利用性,並提升經濟價值。
Syzygium aqueun (wax apple) leaves have been found to contain many flavonoids, such as quercitrin, europetin-3-rhamnoside and myricitrin, which exhibit antioxidant and antihyperglycemic activities in many papers. However, no researches about antihyperglycemic components of wax apple leaves can be found in Taiwan. Functional components may be affected by harvest seasons and maturity of plant. In this study, the effects of different harvest seasons (summer and winter) and maturity (young, middle and old) on the antioxidant capacity and antihyperglycaemic activities (α-glucosidase and α-amylase activity) of wax apple leaves in Pingtung were studied. Furthermore, fermentation was used to increase the content of phenolic compounds and physiological activity. The contents of phenolic compounds, SOD-like, antioxidant capacities and the inhibition of the starch degrading enzyme inhibition rate were analyzed during fermentation with different ratios (1, 3 and 5%) of wax apple leaves. The results were compared with those of commercially available products and medicine (acarbose) on the starch degrading enzyme inhibition and the correlation between the physiological activity and composition of the leaves were analyzed.

Results showed that, young wax apple leaves in winter showed highest SOD-like activity, total phenol, total flavonoid and their inhibition of α-glucosidase and α-amylase activity were 1.11 and 1.05 times that of summer samples. In addition, their contents of myricitrin and quercitrin were 3.36 and 1.16 times that of summer samples.

Among the fermented solution, sample with 5% wax apple leaves showed the highest α-glucosidase and α-amylase inhibition (81.18 and 89.06%, respectively). In addition, this sample also showed higher starch degrading enzyme inhibition when compared with acarbose or commercial health products based on the same concentration. The phenolic compounds including myricitrin, quercitrin, myricetin, gallic acid, chlorogenic acid and esculetin were found in wax apple leaves through HPLC analysis. Among them, α-glucosidase inhibition were found mainly contributed by myricitrin, myricetin and quercitrin; while α-amylase inhibition were majorly contributed by myricitrin, quercitrin and chlorogenic acid. Further statistics assay showed that, the starch degrading enzyme inhibition rate, antioxidant components (total phenolic, total flavonoids) and antioxidant capacity (SOD-like activity, FRAP and DPPH) were significantly positively correlated.

Based on the above results, wax apple leaves exhibited excellent antioxidant capacities, their content of phenolic compounds can be increased by fermentation, as well as significant improvement of starch degrading enzymes inhibition. It is expected that the wax apple leaves can be used as a natural antioxidant source, and improved its ability to inhibit the starch degrading enzyme. Therefore, wax apple leaves are worth of further development in the field of health, and enhanced economic value.
中文摘要 I
Abstract II
謝誌 IV
目錄 V
圖表目錄 VIII
第1章 前言 1
第2章 文獻回顧 2
2.1 多酚化合物 2
2.1.1 酚酸(Phenolic acid) 2
2.1.2 類黃酮(Flavonoids) 6
2.2多酚化合物生理活性 8
2.2.1 抗氧化作用 8
2.2.2 調控糖化酵素 8
2.3 影響多酚化合物之抗氧化因子 10
2.3.1 品種 12
2.3.2 季節 12
2.3.3 成熟度 12
2.4 天然植物葉片 12
2.4.1桑葉 13
2.4.2芭樂葉 13
2.4.3蓮霧葉 14
2.5 蓮霧葉機能性成分 19
2.5.1 Myricitrin 19
2.5.2 Quercitrin 21
2.5.3 Myricetin 22
2.5.4 Gallic acid 22
2.6 發酵 23
2.6.1 發酵之益處 26
2.6.2 發酵產品之應用 28
第3章 材料與方法 30
3.1實驗材料 30
3.2實驗藥品 30
3.3實驗儀器 31
3.4試驗設計 32
3.4.1生長季節及成熟度對蓮霧葉對抗氧化及降血糖活性之影響 32
3.4.2不同比例之蓮霧葉在發酵過程對抗氧化與降血糖活性之影響 32
3.5品質分析項目 35
3.5.1 超氧歧化酶分析 35
3.5.2 降血糖活性分析 35
3.5.3抗氧化成分分 37
3.5.4抗氧化能力分析 37
3.5.5 HPLC分析 38
3.5.6理化性質分析 40
3.5.7統計分析 40
第4章 結果與討論 41
4.1季節與採收成熟度對蓮霧葉抗氧化活性之影響 41
4.1.1 SOD-like活性分析 41
4.1.2 抗氧化成分之影響 43
4.2. 季節與採收成熟度對蓮霧葉降血糖成分分析 49
4.2.1 HPLC分析myricitrin和quercitrin含量 49
4.2.2 HPLC分析酚類化合物含量 54
4.3. 季節與成熟度對蓮霧葉降血糖活性之影響 57
4.3.1 降血糖活性分析 57
4.3發酵對蓮霧葉抗氧化之影響 63
4.3.1 發酵過程中不同比例之蓮霧葉對SOD-like活性影響 63
4.3.2發酵過程中不同比例之蓮霧葉對抗氧化能力影響 65
4.3.3發酵過程中不同比例之蓮霧葉對抗氧化成分影響 69
4.3.4降血糖成分之影響 71
4.4 發酵對蓮霧葉降血糖活性之影響 78
4.4.1 α-glucosidase抑制率 78
4.4.2 α-amylase抑制率 79
4.4.3 蓮霧葉發酵液與acarbose及市售產品之抑制糖化酵素活性比較 81
4.4.4.蓮霧葉發酵液 (5%)與acarbose (5%) 之抑制糖化酵素比較 81
4.5 相關性分析 84
4.6 發酵蓮霧葉理化性質分析 86
4.6.1 pH值 86
4.6.2 酒精度 86
4.6.3 可溶性固形物含量 86
第5章 結論 88
第6章 參考文獻 89
Adetuyi, F. O., & Ibrahim, T. A. 2014. Effect of fermentation time on the phenolic, flavonoid and vitamin C contents and antioxidant activities of Okra (Abelmoschus esculentus) seeds. Nigerian Food Journal, 32(2): 128-137.

Ag, H.1994. Pharmacology of α‐glucosidase inhibition. European Journal of Clinical Investigation, 24(S3): 3-10.

Amor, E. C., Villaseñor, I. M., Yasin, A., & Choudhary, M. I. 2004. Prolyl endopeptidase inhibitors from Syzygium samarangense (Blume) Merr. & LM Perry. Zeitschrift für Naturforschung C 59(1-2): 86-92.

Araújo, M. C., Ferraz-Filha, Z. S., Ferrari, F. C., & Saúde-Guimarães, D. A. 2016. Campomanesia velutina leaves extracts exert hypouricemic effects through inhibition of xanthine oxidase and ameliorate inflammatory response triggered by MSU crystals. Revista Brasileira de Farmacognosia, 26(6): 720-727.

Assanga, S. I., Luján, L. L., Rivera-Castañeda, E. G., Gil-Salido, A. A., Acosta-Silva, A. L., & Rubio-Pino, J. L. 2013. Effect of maturity and harvest season on antioxidant activity, phenolic compounds and ascorbic acid of Morinda citrifolia L.(noni) grown in Mexico (with track change). African Journal of Biotechnology, 12(29).

Austin, M. B., & Noel, J. P. 2003. The chalcone synthase superfamily of type III polyketide synthases. Natural Product Reports, 20(1): 79-110.

Babujanarthanam, R., Kavitha, P., & Pandian, M. R. 2010. Quercitrin, a bioflavonoid improves glucose homeostasis in streptozotocin‐induced diabetic tissues by altering glycolytic and gluconeogenic enzymes. Fundamental & Clinical Pharmacology, 24(3): 357-364.

Babujanarthanam, R., Kavitha, P., Rao, U. M., & Pandian, M. R. 2011. Quercitrin a bioflavonoid improves the antioxidant status in streptozotocin: induced diabetic rat tissues. Molecular and Cellular Biochemistry, 358(1-2): 121.

Balasundram, N., Sundram, K., & Samman, S. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food chemistry, 99(1): 191-203.

Bavani, A. (2016).Studies on the effects of myricetin derivatives from Syzygium malaccense in hyperglycemia and related complications (Doctoral dissertation, University of Malaya).

Bhat, R., Suryanarayana, L. C., Chandrashekara, K. A., Krishnan, P., Kush, A., & Ravikumar, P. 2015. Lactobacillus plantarum mediated fermentation of Psidium guajava L. fruit extract. Journal of bioscience and bioengineering, 119(4): 430-432.

Boots, A. W., Haenen, G. R., & Bast, A. 2008. Health effects of quercetin: from antioxidant to nutraceutical. European Journal of Pharmacology 585(2): 325-337.

Brett, G. M., Hollands, W., Needs, P. W., Teucher, B., Dainty, J. R., Davis, B. D., & Kroon, P. A. 2008. Absorption, metabolism and excretion of flavanones from single portions of orange fruit and juice and effects of anthropometric variables and contraceptive pill use on flavanone excretion. British Journal of Nutrition, 101(5): 664-675.

Cha, M. N., Kim, H. J., Kim, B. G., & Ahn, J. H. 2014. Synthesis of chlorogenic acid and p coumaroyl shikimates from glucose using engineered Escherichia coli. J Microbiol Biotechnol, 24, 1109-17.

Chan‐Blanco, Y., Vaillant, F., Pérez, A. M., Belleville, M. P., Zúñiga, C., & Brat, P. 2007. The ripening and aging of noni fruits (Morinda citrifolia L.): microbiological flora and antioxidant compounds. Journal of the Science of Food and Agriculture, 87(9): 1710-1716.

Chang, W. C., & Shen, S. C. 2013. Effect of water extracts from edible myrtaceae plants on uptake of 2‐(n‐(7‐nitrobenz‐2‐oxa‐1, 3‐diazol‐4‐yl) amino)‐2‐deoxyglucose in TNF‐α‐Treated FL83B mouse hepatocytes. Phytotherapy Research, 27(2): 236-243.

Chen, H. Y., & Yen, G. C. 2007. Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chemistry, 101(2): 686-694.

Chirumbolo, S. 2010. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflammation & Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy) 9(4): 263-285.

Croft, K. D. 1998. The chemistry and biological effects of flavonoids and phenolic acidsa. Annals of the New York Academy of Sciences, 854(1): 435-442.

Crozier, A., Burns, J., Aziz, A. A., Stewart, A. J., Rabiasz, H. S., Jenkins, G. I., ... &LEAN, M. E. 2000. Antioxidant flavonols from fruits, vegetables and beverages: measurements and bioavailability. Biological Research 33(2): 79-88.

Curiel, J. A., Pinto, D., Marzani, B., Filannino, P., Farris, G. A., Gobbetti, M., & Rizzello, C. G. 2015. Lactic acid fermentation as a tool to enhance the antioxidant properties of Myrtus communis berries. Microbial cell factories, 14(1): 67.

Davies, K. M., Schwinn, K. E., Deroles, S. C., Manson, D. G., Lewis, D. H., Bloor, S. J., & Bradley, J. M. 2003. Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase. Euphytica 131(3): 259-268.

Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P., Tognolini, M., Borges, G., & Crozier, A. 2013. Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & redox signaling, 18(14): 1818-1892.

Di Cagno, R., Coda, R., De Angelis, M., & Gobbetti, M. 2013. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiology, 33(1): 1-10.

Di Majo, D., La Guardia, M., Leto, G., Crescimanno, M., Flandina, C., & Giammanco, M. 2014. Flavonols and flavan-3-ols as modulators of xanthine oxidase and manganese superoxide dismutase activity. International Journal of Food Sciences and Nutrition, 65(7): 886-892.

Djoukeng, J. D., Abou-Mansour, E., Tabacchi, R., Tapondjou, A. L., Bouda, H., & Lontsi, D. 2005. Antibacterial triterpenes from Syzygium guineense (Myrtaceae). Journal of Ethnopharmacology, 101(1): 283-286.

Donnelly, J. K., McLellan, K. M., Walker, J. L., & Robinson, D. S. 1989. Superoxide dismutases in foods. A review. Food Chemistry, 33(4): 243-270.

Domitrović, R., Rashed, K., Cvijanović, O., Vladimir-Knežević, S., Škoda, M., & Višnić, A. 2015. Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chemico-biological Interactions, 230: 21-29.

Dueñas, M., Fernández, D., Hernández, T., Estrella, I., & Muñoz, R. 2005. Bioactive phenolic compounds of cowpeas (Vigna sinensis L). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. Journal of the Science of Food and Agriculture, 85(2): 297-304.

Erlund, I. 2004. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutrition Research, 24(10): 851-874.:

Espirito-Santo, A. P., Carlin, F., & Renard, C. M. 2015. Apple, grape or orange juice: which one offers the best substrate for lactobacilli growth?—A screening study on bacteria viability, superoxide dismutase activity, folates production and hedonic characteristics.Food Research International, 78: 352-360.

Fernandez, S. P., Nguyen, M., Yow, T. T., Chu, C., Johnston, G. A., Hanrahan, J. R., & Chebib, M. 2009. The flavonoid glycosides, myricitrin, gossypin and naringin exert anxiolytic action in mice. Neurochemical Research, 34(10): 1867-1875.

Firuzi, O., Lacanna, A., Petrucci, R., Marrosu, G., & Saso, L. 2005. Evaluation of the antioxidant activity of flavonoids by “ferric reducing antioxidant power” assay and cyclic voltammetry. Biochimica et Biophysica Acta (BBA)-General Subjects, 1721(1): 174-184.

Flaczyk, E., Kobus-Cisowska, J., Przeor, M., Korczak, J., Remiszewski, M., Korbas, E., & Buchowski, M. 2013. Chemical characterization and antioxidative properties of Polish variety of Morus alba L. leaf aqueous extracts from the laboratory and pilot-scale processes. Agricul. Sci, 4(5): 141-147.

Formica, J. V., & Regelson, W. 1995. Review of the biology of quercetin and related bioflavonoids. Food and Chemical Toxicology, 33(12): 1061-1080

Ghayur, M. N., Gilani, A. H., Khan, A., Amor, E. C., Villaseñor, I. M., & Choudhary, M. I. 2006. Presence of calcium antagonist activity explains the use of Syzygium samarangense in diarrhoea. Phytotherapy Research, 20(1): 49-52.

Ghasemzadeh, A., & Ghasemzadeh, N. 2011. Flavonoids and phenolic acids: role and biochemical activity in plants and human. Journal of Medicinal Plants Research, 5(31), 6697-6703.

Giannesi, G. C., de Moraes, M. D. L. T., Terenzi, H. F., & Jorge, J. A. 2006. A novel α-glucosidase from chaetomium thermophilum var. coprophilum that converts maltose into trehalose: purification and partial characterisation of the enzyme. Process Biochemistry, 41(8): 1729-1735.

Giovanelli, G., & Buratti, S. 2009. Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chemistry, 112(4): 903-908.

Hashim, A., Khan, M. S., Khan, M. S., Baig, M. H., & Ahmad, S. 2013. Antioxidant and α-amylase inhibitory property of Phyllanthus virgatus L.: an in vitro and molecular interaction study. BioMed research international, 2013.

Hobbs, C. A., Swartz, C., Maronpot, R., Davis, J., Recio, L., Koyanagi, M., & Hayashi, S. M. 2015. Genotoxicity evaluation of the flavonoid, myricitrin, and its aglycone, myricetin. Food and Chemical Toxicology, 83: 283-292.

Hollman, P. C. H., & Arts, I. C. W. 2000. Flavonols, flavones and flavanols–nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80(7): 1081-1093.

Hunaefi, D., Akumo, D. N., & Smetanska, I. 2013. Effect of fermentation on antioxidant properties of red cabbages. Food Biotechnology, 27(1): 66-85.

Hue, K. T., Do Thi Thanh Van, I. L., Wredle, E., & Spörndly, E. 2012. Effect of harvesting frequency, variety and leaf maturity on nutrient composition, hydrogen cyanide content and cassava foliage yield. Asian-Australasian Journal of Animal Sciences, 25(12): 1691.

Hwang, D., Charchoghlyan, H., Lee, J. S., & Kim, M. 2015. Bioactive compounds and antioxidant activities of the Korean lotus leaf (Nelumbo nucifera) condiment: volatile and nonvolatile metabolite profiling during fermentation. International Journal of Food Science & Technology, 50(9): 1988-1995.

Iqbal, S., & Bhanger, M. I. 2006. Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan. Journal of food Composition and Analysis, 19(6): 544-551.

Iqbal, S., Younas, U., Chan, K. W., Sarfraz, R. A., & Uddin, M. K. 2012. Proximate composition and antioxidant potential of leaves from three varieties of Mulberry (Morus sp.): a comparative study. International journal of molecular sciences, 13(6): 6651-6664.

Jang, H. D., Chang, K. S., Chang, T. C., & Hsu, C. L. 2010. Antioxidant potentials of buntan pumelo (Citrus grandis Osbeck) and its ethanolic and acetified fermentation products. Food Chemistry, 118(3): 554-558.

Jeszka-Skowron, M., Flaczyk, E., Jeszka, J., Krejpcio, Z., Król, E., & Buchowski, M. S.2014. Mulberry leaf extract intake reduces hyperglycaemia in streptozotocin (STZ)-induced diabetic rats fed high-fat diet. Journal of Functional Foods, 8: 9-17.

Kassem, M. E. S., Ibrahim, L. F., Hussein, S. R., El-Sharawy, R., El-Ansari, M. A., Hassanane, M. M., & Booles, H. F. 2016. Myricitrin and bioactive extract of Albizia amara leaves: DNA protection and modulation of fertility and antioxidant-related genes expression. Pharmaceutical Biology, 54(11): 404-2409.

Klavsen, S. K., & Madsen, T. V. 2008. Effect of leaf age on CAM activity in Littorella uniflora. Aquatic Botany, 89(1): 50-56.

Kumar, S., & Pandey, A. K. 2013. Chemistry and biological activities of flavonoids: an overview.The Scientific World Journal, 2013.

Kumar, S., Sandhir, R., & Ojha, S. 2014. Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC research notes, 7(1): 560.

Lee, S. H., Park, Y. H., Moon, B. H., Lee, E. J., Hong, S. W., & Lim, Y. H. 2008. Substitution effect of hydroxyl groups on the 1H and 13C chemical shifts in hydroxyflavonols. Bull. Korean Chem. Soc, 29: 1597-1600.

Lee, W. J., & Choi, S. W. 2012. Quantitative changes of polyphenolic compounds in mulberry (Morus alba L.) leaves in relation to varieties, harvest period, and heat processing. Preventive Nutrition and food Science, 17(4): 280-285.

Lee, S. Y., Mediani, A., AH, N. A., Abu Bakar Sajak, A., & Abas, F. 2014. Antioxidant and α-glucosidase inhibitory activities of the leaf and stem of selected traditional medicinal plants. International Food Research Journal, 21(1): 165-172.

Lee, H. H., Yin, L. J., Tai, H. M., & Jiang, S. T. 2016. Facilitating the release of bionutrients from Morinda citrifolia (noni) by cellulase hydrolysis and lactic acid bacteria fermentation and their effects on α-amylase and α-glucosidase activities. Journal of Marine Science and Technology, 24(3): 648-655.

Leo, C. H., & Woodman, O. L. 2015. Flavonols in the prevention of diabetes-induced vascular dysfunction. Journal of Cardiovascular Pharmacology, 65(6): 532-544.

Lin, Y., Zhang, W., Li, C., Sakakibara, K., Tanaka, S., & Kong, H. 2012. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass and Bioenergy, 47: 395-401.

Li, Y., & Ding, Y. 2012. Minireview: therapeutic potential of myricetin in diabetes mellitus. Food Science and Human Wellness 1(1): 19-25.

Lukačin, R., Wellmann, F., Britsch, L., Martens, S., & Matern, U. 2003. Flavonol synthase from Citrus unshiu is a bifunctional dioxygenase. Phytochemistry, 62(3): 287-292.

Kim, Y. J., Kim, H. C., Ko, H., Amor, E. C., Lee, J. W., & Yang, H. O. 2012. Inhibitory effects of aurentiacin from Syzygium samarangense on lipopolysaccharide-induced inflammatory response in mouse macrophages. Food and Chemical Toxicology, 50(3): 1027-1035.

Kim, Y. J., Kim, H. C., Ko, H., Amor, E. C., Lee, J. W., & Yang, H. O. 2011. Stercurensin inhibits nuclear factor‐κB‐dependent inflammatory signals through attenuation of TAK1–TAB1 complex formation. Journal of Cellular Biochemistry, 112(2): 548-558.

Kim, M. J., Lee, S. B., Lee, H. S., Lee, S. Y., Baek, J. S., Kim, D., ... & Park, K. H. 1999. Comparative study of the inhibition of α-glucosidase, α-amylase, and cyclomaltodextrin glucanosyltransferase by acarbose, isoacarbose, and acarviosine–glucose. Archives of Biochemistry and Biophysics, 371(2): 277-283.

Kim, S. J., Han, D., Moon, K. D., & Rhee, J. S. 1995. Measurement of superoxide dismutase-like activity of natural antioxidants. Bioscience, Biotechnology, and Biochemistry, 59(5): 822-826.

Kiritsakis, K., Kontominas, M. G., Kontogiorgis, C., Hadjipavlou-Litina, D., Moustakas, A., & Kiritsakis, A. 2010. Composition and antioxidant activity of olive leaf extracts from Greek olive cultivars. Journal of the American Oil Chemists' Society, 87(4): 369-376.

Kwon, Y. I., Apostolidis, E., Kim, Y. C., & Shetty, K. 2007. Health benefits of traditional corn, beans, and pumpkin: in vitro studies for hyperglycemia and hypertension management. Journal of Medicinal Food, 10(2): 266-275.

Manaharan, T., Appleton, D., Cheng, H. M., & Palanisamy, U. D. 2012. Flavonoids isolated from Syzygium aqueum leaf extract as potential antihyperglycaemic agents. Food Chemistry, 132(4): 1802-1807.

Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. 2004. Polyphenols: food sources and bioavailability. The American journal of clinical nutrition, 79(5): 727-747.

Mai, T. T., Thu, N. N., Tien, P. G., & Van Chuyen, N. 2007. Alpha-glucosidase inhibitory and antioxidant activities of Vietnamese edible plants and their relationships with polyphenol contents. Journal of Nutritional Science and Vitaminology, 53(3): 267-276.

Meng, S., Cao, J., Feng, Q., Peng, J., & Hu, Y. 2013. Roles of chlorogenic acid on regulating glucose and lipids metabolism: a review. Evidence-Based Complementary and Alternative Medicine, 2013.
Meotti, F. C., Posser, T., Missau, F. C., Pizzolatti, M. G., Leal, R. B., & Santos, A. R. 2007. Involvement of p38 MAPK on the antinociceptive action of myricitrin in mice. Biochemical Pharmacology, 74(6): 924-931.

Michel, M. C., Guimarães, A. G., Paula, C. A., Rezende, S. A., Sobral, M. E., & Guimarães, D. A. S. 2013. Extracts from the leaves of Campomanesia velutina inhibits production of LPS/INF-γ induced inflammatory mediators in J774A. 1 cells and exerts anti-inflammatory and antinociceptive effects in vivo. Revista Brasileira de Farmacognosia, 23(6): 927-936.

Minussi, R. C., Rossi, M., Bologna, L., Cordi, L., Rotilio, D., Pastore, G. M., & Durán, N. 2003. Phenolic compounds and total antioxidant potential of commercial wines. Food Chemistry, 82(3): 409-416.

Miyahara, C., Miyazawa, M., Satoh, S., SAKAI, A., & MIZUSAKI, S. 2004. Inhibitory effects of mulberry leaf extract on postprandial hyperglycemia in normal rats. Journal of Nutritional Science and Vitaminology, 50(3): 161-164.

Nantitanon, W., Yotsawimonwat, S., & Okonogi, S. 2010. Factors influencing antioxidant activities and total phenolic content of guava leaf extract. LWT-Food Science and Technology, 43(7): 1095-1103.

Natella, F., Nardini, M., Di Felice, M., & Scaccini, C. (1999). Benzoic and cinnamic acid derivatives as antioxidants: Structure− activity relation. Journal of agricultural and food chemistry, 47(4), 1453-1459.

Nijveldt, R. J., Van Nood, E. L. S., Van Hoorn, D. E., Boelens, P. G., Van Norren, K., & Van Leeuwen, P. A. 2001. Flavonoids: a review of probable mechanisms of action and potential applications. The American journal of clinical nutrition, 74(4): 418-425.

Ogodo, A. C., Ugbogu, O. C., Ugbogu, A. E., & Ezeonu, C. S. 2015. Production of mixed fruit (pawpaw, banana and watermelon) wine using Saccharomyces cerevisiae isolated from palm wine. SpringerPlus, 4(1): 683.

Ong, K. C., & Khoo, H. E. 2000. Effects of myricetin on glycemia and glycogen metabolism in diabetic rats. Life Sciences, 67(14): 1695-1705.

Osman, H., Rahim, A. A., Isa, N. M., & Bakhir, N. M. 2009. Antioxidant activity and phenolic content of Paederia foetida and Syzygium aqueum. Molecules, 14(3): 970-978.

Padilla-Camberos, E., Lazcano-Díaz, E., Flores-Fernandez, J. M., Owolabi, M. S., Allen, K., & Villanueva-Rodríguez, S. 2014. Evaluation of the inhibition of carbohydrate hydrolyzing enzymes, the antioxidant activity, and the polyphenolic content of Citrus limetta peel extract. The Scientific World Journal.

Park, K. S., Chong, Y., & Kim, M. K. 2016. Myricetin: biological activity related to human health. Applied Biological Chemistry, 59(2): 259-269.,

Pellegrini, N., Serafini, M., Colombi, B., Del Rio, D., Salvatore, S., Bianchi, M., & Brighenti, F. 2003. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. The Journal of nutrition, 133(9): 2812-2819.

Perez-Vizcaino, F., & Duarte, J. 2010. Flavonols and cardiovascular disease. Molecular Aspects of Medicine, 31(6): 478-494.

Qiao, L., Sun, Y., Chen, R., Fu, Y., Zhang, W., Li, X., & Ye, X. 2014. Sonochemical effects on 14 flavonoids common in citrus: relation to stability. PloS one, 9(2): e87766.

Qin, M., Luo, Y., Meng, X. B., Wang, M., Wang, H. W., Song, S. Y., & Sun, X. B. 2015. Myricitrin attenuates endothelial cell apoptosis to prevent atherosclerosis: An insight into PI3K/Akt activation and STAT3 signaling pathways. Vascular Pharmacology, 70: 23-34.

Qing, L. S., Xue, Y., Zhang, J. G., Zhang, Z. F., Liang, J., Jiang, Y., & Liao, X. 2012. Identification of flavonoid glycosides in Rosa chinensis flowers by liquid chromatography–tandem mass spectrometry in combination with 13 C nuclear magnetic resonance. Journal of Chromatography A, 1249: 130-137.

Patel, S. S., & Goyal, R. K. 2011. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats. Pharmacognosy Research, 3(4): 239.

Punithavathi, V. R., Prince, P. S. M., Kumar, R., & Selvakumari, J. 2011. Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. European Journal of Pharmacology, 650(1): 465-471.
Robledo Pérez, K. P., Buenaño Schol, J., & Maúrtua Morales, S. 2017. Behavior of polyphenol content and antioxidant activity of noni wine (Morinda citrifolia L.) during alcoholic fermentation. America Journal of Food Technology, 10: 1557-4571

Rüfer, C. E., & Kulling, S. E. 2006. Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. Journal of agricultural and food chemistry, 54(8): 2926-2931.

Sancho, R. A. S., & Pastore, G. M. 2012. Evaluation of the effects of anthocyanins in type 2 diabetes. Food Research International, 46(1): 378-386.

Sales, P. M., Souza, P. M., Simeoni, L. A., Magalhães, P. O., & Silveira, D. 2012. α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. Journal of Pharmacy & Pharmaceutical Sciences, 15(1): 141-183.

Sarr, M., Chataigneau, M., Martins, S., Schott, C., El Bedoui, J., Oak, M. H., & Schini-Kerth, V. B. 2006. Red wine polyphenols prevent angiotensin II-induced hypertension and endothelial dysfunction in rats: role of NADPH oxidase. Cardiovascular Research, 71(4): 794-802.

Semwal, D. K., Semwal, R. B., Combrinck, S., & Viljoen, A. 2016. Myricetin: A dietary molecule with diverse biological activities. Nutrients, 8(2): 90.

Senanayake, S. N. 2013. Green tea extract: Chemistry, antioxidant properties and food applications–A review. Journal of Functional Foods, 5(4): 1529-1541.

Seo, J., Lee, S., Elam, M. L., Johnson, S. A., Kang, J., & Arjmandi, B. H. 2014. Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy. Food science & Nutrition, 2(2): 174-180.

Sies, H., Hollman, P. C., Grune, T., Stahl, W., Biesalski, H. K., & Williamson, G. 2012. Protection by flavanol-rich foods against vascular dysfunction and oxidative damage: 27th Hohenheim Consensus Conference. Advances in Nutrition: An International Review Journal, 3(2): 217-221.

Singh, M., Kaur, M., & Silakari, O. 2014. Flavones: an important scaffold for medicinal chemistry. European journal of medicinal chemistry, 84: 206-239.

Shen, S. C., & Chang, W. C. 2013. Hypotriglyceridemic and hypoglycemic effects of vescalagin from Pink wax apple [Syzygium samarangense (Blume) Merrill and Perry cv. Pink] in high-fructose diet-induced diabetic rats. Food Chemistry, 136(2): 858-863.

Shen, S. C., Cheng, F. C., & Wu, N. J. 2008. Effect of guava (Psidium guajava Linn.) leaf soluble solids on glucose metabolism in type 2 diabetic rats. Phytotherapy Research, 22(11): 1458-1464.


Shimosaki, S., Tsurunaga, Y., Itamura, H., & Nakamura, M. 2011. Anti-allergic effect of the flavonoid myricitrin from Myrica rubra leaf extracts in vitro and in vivo. Natural Product Research, 25(4): 374-380.

Shumoy, H., Gabaza, M., Vandevelde, J., & Raes, K. 2017. Soluble and bound phenolic contents and antioxidant capacity of tef injera as affected by traditional fermentation. Journal of Food Composition and Analysis, 58: 52-59.

Simirgiotis, M. J., Adachi, S., To, S., Yang, H., Reynertson, K. A., Basile, M. J., & Kennelly, E. J. 2008. Cytotoxic chalcones and antioxidants from the fruits of Syzygium samarangense (Wax Jambu). Food Chemistry, 107(2): 813-819.

Slimestad, R., Fossen, T., & Vågen, I. M. 2007. Onions: a source of unique dietary flavonoids. Journal of Agricultural and Food Chemistry, 55(25): 10067-10080.

Souza, P. M. D. 2010. Application of microbial α-amylase in industry-A review. Brazilian Journal of Microbiology, 41(4): 850-861.

Sroka, Z., & Cisowski, W. 2003. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food and Chemical Toxicology, 41(6): 753-758.

Sun, G. B., Qin, M., Ye, J. X., Meng, X. B., Wang, M., Luo, Y., & Sun, X. B. 2013. Inhibitory effects of myricitrin on oxidative stress-induced endothelial damage and early atherosclerosis in ApoE−/− mice. Toxicology and Applied Pharmacology, 271(1): 114-126.

Swain, M. R., Anandharaj, M., Ray, R. C., & Parveen Rani, R. 2014. Fermented fruits and vegetables of Asia: a potential source of probiotics. Biotechnology Research International.

Szkudelski, T., & Szkudelska, K. 2015. Resveratrol and diabetes: from animal to human studies. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1852(6): 1145-1154.

Tsao, R. 2010. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12): 1231-1246.

Tung, Y. T., Chang, W. C., Chen, P. S., Chang, T. C., & Chang, S. T. 2011. Ultrasound‐assisted extraction of phenolic antioxidants from Acacia confusa flowers and buds. Journal of Separation Science, 34(7): 844-851.

Vinayagam, R., & Xu, B. 2015. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutrition & Metabolism, 12(1): 60

Velika, B., & Kron, I. 2012. Antioxidant properties of benzoic acid derivatives against superoxide radical.Free Radicals and Antioxidants, 2(4): 62-67.

Vrhovsek, U., Masuero, D., Palmieri, L., & Mattivi, F. 2012. Identification and quantification of flavonol glycosides in cultivated blueberry cultivars. Journal of Food Composition and Analysis, 25(1): 9-16.

Vu, T. T., Jeong, C. Y., Nguyen, H. N., Lee, D., Lee, S. A., Kim, J. H., ... & Lee, H. 2015. Characterization of Brassica napus flavonol synthase involved in flavonol biosynthesis in Brassica napus L. Journal of Agricultural and Food Chemistry, 63(35): 7819-7829.

Wang, L., Tu, Y. C., Lian, T. W., Hung, J. T., Yen, J. H., & Wu, M. J. 2006. Distinctive antioxidant and antiinflammatory effects of flavonols. Journal of Agricultural and Food Chemistry, 54(26): 9798-9804.

Wang, H., Du, Y. J., & Song, H. C. 2010. α-glucosidase and α-amylase inhibitory activities of guava leaves. Food Chemistry, 123(1): 6-13.

Wang, H., & Helliwell, K. 2001. Determination of flavonols in green and black tea leaves and green tea infusions by high-performance liquid chromatography. Food Research International, 34(2): 223-227.
Wang, J., Lu, M. L., Dai, H. L., Zhang, S. P., Wang, H. X., & Wei, N. 2015. Esculetin, a coumarin derivative, exerts in vitro and in vivo antiproliferative activity against hepatocellular carcinoma by initiating a mitochondrial-dependent apoptosis pathway. Brazilian Journal of Medical and Biological Research, 48(3): 245-253.

Xiao, J. 2015. Dietary flavonoid aglycones and their glycosides: which show better biological significance? Critical Reviews in Food Science and Nutrition.

Xiao, J., Muzashvili, T. S., & Georgiev, M. I. 2014. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnology Advances, 32(6): 1145-1156.:

Woodman, O. L., & Chan, E. C. 2004. Vascular and anti‐oxidant actions of flavonols and flavones. Clinical and Experimental Pharmacology and Physiology, 31(11): 786-790.

Woodman, O. L., Meeker, W. F., & Boujaoude, M. 2005. Vasorelaxant and antioxidant activity of flavonols and flavones: structure-activity relationships. Journal of Cardiovascular Pharmacology, 46(3): 302-309.

Wu, S. C., Su, Y. S., & Cheng, H. Y. 2011. Antioxidant properties of Lactobacillus-fermented and non-fermented Graptopetalum paraguayense E. Walther at different stages of maturity. Food Chemistry, 129(3): 804-809.

Xiao, J., Kai, G., Yamamoto, K., & Chen, X. 2013. Advance in dietary polyphenols as α-glucosidases inhibitors: a review on structure-activity relationship aspect.Critical reviews in food science and nutrition, 53(8): 818-836

Xiao, J., Ni, X., Kai, G., & Chen, X. 2013. A review on structure–activity relationship of dietary polyphenols inhibiting α-amylase. Critical reviews in food science and nutrition, 53(5): 497-506.

Yonamine, C. Y., Pinheiro-Machado, E., Michalani, M. L., Freitas, H. S., Okamoto, M. M., Corrêa-Giannella, M. L., & Machado, U. F. 2016. Resveratrol improves glycemic control in insulin-treated diabetic rats: participation of the hepatic territory. Nutrition & Metabolism, 13(1): 44.

Zeinali, F., Homaei, A., & Kamrani, E. 2015. Sources of marine superoxide dismutases: characteristics and applications. International Journal of Biological Macromolecules, 79: 627-637.

Zhao, Z., & Moghadasian, M. H. 2008. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chemistry, 109(4): 691-702.

Zhang, Y., & Liu, D. 2011. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. European Journal of Pharmacology, 670(1): 325-332.

Zhang, Z., Lv, G., Pan, H., Fan, L., Soccol, C. R., & Pandey, A. 2012. Production of powerful antioxidant supplements via solid-state fermentation of wheat (Triticum aestivum Linn.) by Cordyceps militaris. Food Technology and Biotechnology, 50(1): 32-39.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔