(3.238.186.43) 您好!臺灣時間:2021/02/26 12:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張瑀珊
研究生(外文):Chang, Yu-Shan
論文名稱:飼糧中水解大豆蛋白對紅羽土雞生長性能、腸道性狀及血液生化值之影響
論文名稱(外文):Effects of dietary hydrolyzed soya protein on growthperformance, intestinal characteristics and blood biochemistry of red-feathered Taiwan country chickens
指導教授:余祺余祺引用關係
指導教授(外文):Yu Chi
口試委員:盧金鎮林義福
口試日期:2017-07-21
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:動物科學與畜產系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:86
中文關鍵詞:血液生化值生長性能水解大豆蛋白腸道性狀紅羽土雞
外文關鍵詞:Blood biochemistryGrowth performanceHydrolyzed soya proteinIntestinal characteristicsred-feathered Taiwan country chickens
相關次數:
  • 被引用被引用:1
  • 點閱點閱:123
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本試驗目的旨在探討,飼糧中水解大豆蛋白(hydrolyzed soya protein, HSP)對紅羽土雞生長、腸道性狀以及血液生化值之影響。試驗採用320隻一日齡紅羽土雞,公母各半,共分5飼糧處理組進行試驗。五處理組分別為A:基礎飼糧組;B:3.0%魚粉組;C:2.5% 水解大豆蛋白+G;D: 2.5% 水解大豆蛋白;E:5.0% 水解大豆蛋白組。試驗使用之水解大豆蛋白係經嗜乳酸桿菌(Lactobacillus acidophilus)發酵而得之水解產物,添加物G則為酵素混和物。試驗全期之飼糧及飲水皆採任食。於試驗進行時,每星期雞隻個別秤重並記錄採食量,試驗開始後之第4、8及12週,每處理組逢機選取公、母各6 隻進行土雞犧牲採樣以及分析。試驗結果顯示,飼糧添加水解大豆蛋白或魚粉,顯著較基礎飼糧組(A組)增加84日齡公雞之體重,而C組顯著較A組增加84日齡母雞之體重。全期採食量於各處理組間無顯著差異,D和C組顯著較A組改善公雞全期之飼料轉換率。由臟器重量百分比結果顯示,飼糧添加HSP顯著較A組降低84日齡公雞之胰臟重量百分比。由營養份消化率結果顯示,D組於84日齡,公雞之粗蛋白消化率顯著最高,而C組母雞之蛋白質消化率顯著較A組高。由菌相結果顯示,E組顯著較A組增加28日齡母雞空腸中乳酸桿菌之數量。於試驗期56日,D 和E組顯著較A組增加公雞空腸及母雞迴腸中乳酸桿菌之數量;C組顯著較A組降低母雞空腸及公雞迴腸中大腸桿菌之數量。於試驗期84日,飼糧添加HSP顯著較A組降低公雞空腸和迴腸中腸球菌之數量,而C 和D組顯著較A組降低公雞迴腸中大腸桿菌之數量。由血液生化值之結果顯示,C 和D組顯著較A組增加28日齡母雞血清中總蛋白含量,以及分別增加母雞和公雞血清中白蛋白含量,而D組顯著降低血清中總膽固醇之含量;C組顯著較A組增加56日齡母雞血清中總蛋白和白蛋白之含量、降低丙胺酸轉胺酶之含量,而D組顯著降低總膽固醇之含量;C組顯著較A組降低84日齡母雞血清中膽固醇之含量,且飼糧添加HSP可降低血清中尿素氮之含量。綜合上述,飼糧中添加水解大豆蛋白,可改善紅羽土雞之生長性能,增加蛋白質消化率,增加腸道中乳酸桿菌及抑制大腸桿菌之數量,提升血清中總蛋白、白蛋白之含量及降低血中尿素氮之含量,因此水解大豆蛋白可取代魚粉,作為飼糧中蛋白質來源。
The objective of this study was to evaluate the effects of dietary hydrolyzed soya protein on growth performance, intestinal characteristics and blood biochemistry of red-feathered Taiwan country chickens. Three hundred and twenty day-old red-feathered Taiwan country chickens were randomly divided into 5 treatments. The five treatment groups were: A (basal diet), B (3.0% fish meal), C (2.5% HSP + G ), D (2.5% hydrolyzed soya protein, HSP) and E (5.0% HSP). The hydrolyzed soya protein used for present study was fermented by Lactobacillus acidophilus. The experiment lasted for 12 weeks; during experiment feed and water were provided ad libitum. Birds were weighed individually; feed consumption and feed conversion ratio (F/G) were recorded weekly. Birds were randomly selected from each treatment and were sacrificed on week 4, 8 and 12 for sample collection and analysis. The results showed that body weight of male chickens in the HSP group were significantly higher than that of the A group at 84 days of age, and body weights of female chickens was significantly higher in C group than A group at 84 days of age. Feed intake was not significantly different among treatments. Comparison with A group, feed conversion ratio of male chickens was improved during 1-84 days of age, when HSP was supplemented in diets. For organ weights ratio, the relative pancreas weight of male chickens in HSP groups was significantly decreased than that of the A group at 84 days of age. For nutrients digestibility, crude protein digestibility of male chickens in D group was significantly increased than that of the other groups at 84 days of age. For microorganism counts, the number of Lactobacilli in jejunum of female chickens in the E group was significantly increased than that of the A group at 28 days of age. In 56 days old broilers, the number of Lactobacilli in jejunum of male chickens and ileum of female chickens in the D and E groups were significantly increased than those of the A group, the number of Coliforms in jejunum of female chickens and ileum of male chickens in the C group were significantly decreased than those of the A group. In 84 days old broilers, the number of Enterococci in jejunum and ileum of male chickens in the HSP group was significantly lower than that of the A group, the number of Coliforms in the ileum of male chickens in C group was significantly lower than that of the A group. For blood biochemistry, in 28 days old broilers, the total protein concentration in sera of female chickens in C and D group were significantly higher than those of the A group. The albumin concentration in sera of female chickens in D and male chickens in C group were significantly higher than those of the A group. The total cholesterol concentration in sera of female chickens in D group was significantly lowered than that of the A group. In 56 days old broilers, compared with the A group, the total protein and albumin concentration in sera of female chickens were significantly higher than those of the C group, the alanine aminotransferase concentration in sera of female chickens was significantly lowered in the C group. The total cholesterol concentration in sera of female chickens was significantly lowered in the D group. In 84 days old broilers, the total cholesterol concentration in sera of female chickens was significantly lowered in the C group, the blood urea nitrogen concentration of female chickens in HSP groups was significantly lowered than that of A group. In summary, dietary HSP supplementation had improved growth performances, increased crude protein digestibility, increased Lactobacilli counts and decreased Coliforms counts in the intestine, increased total protein and albumin concentration in sera of chickens, and decreased blood urea nitrogen concentration in sera of chickens.
摘要 I
Abstract II
謝誌 IV
目錄 V
圖表目錄 VII
壹、前言 1
貳、文獻探討 2
一、大豆之介紹 2
(一)簡介及生產概況 2
(二)組成及營養特性 2
(三)主要用途 5
二、大豆粕之利用及生產概況 6
三、大豆中之抗營養因子 7
四、去除豆類之抗營養因子 11
五、益生菌之介紹 15
(一)益生菌之定義 15
(二)益生菌之種類 15
(三)益生菌之作用機制 16
六、乳酸菌之介紹 17
(一)乳酸菌之定義及特性 17
(二)乳酸菌對家禽之影響 18
參、材料方法 20
一、試驗動物及試驗設計 20
二、試驗基礎飼糧 20
三、飼養管理 21
四、測定項目及分析方法 26
(一)原料及飼料之成分分析 26
(二)生長性能與臟器重量百分比 28
(三)營養分消化率實驗 28
(四)腸道菌相測定 29
(五)血液生化值 29
五、統計分析 29
肆、結果與討論 30
一、水解大豆蛋白對生長性能之影響 30
(一)體重及體增重 30
(二)採食量及飼料轉換率 31
(三)死亡率 37
(四)臟器重及臟器重量百分比 38
二、水解大豆蛋白對營養分消化率之影響 46
三、水解大豆蛋白對腸道菌相之影響 49
(一)空腸 49
(二)迴腸 49
四、水解大豆蛋白對血液生化值之影響 55
五、水解大豆蛋白對經濟效益之影響 68
伍、結論 71
陸、參考文獻 73
作者簡介 86
王偉杰。2010。探討兩種發酵條件之大豆粕取代魚粉對白肉雞生長與腸
道性狀影響。國立中興大學動物科學系碩士學位論文。第33-37頁。台中。台灣。
王彥智。2012。複合乳酸桿菌對白肉雞與離乳仔豬生長、腸道性狀與免
疫力之影響。國立中興大學動物科學系碩士學位論文。第65-82頁。台中。台灣。
王聖、李紹鈺。2013。家禽腸道黏膜形態結構及其調控的研究進展。動
物營養學報。25(4):699-704。
白火城、黃森源、林仁壽。1996。家畜臨床血液生化學。立宇出版社。台南市。
艾曉杰。2004。家禽日糧抗營養因子的危害及對策。中國家禽。26(1):5-8。
李育才、陳添福、潘金木、林誠一、黃加成。1997。籠飼產蛋菜鴨有效
磷之需要。畜產研究 30(2):143-152。
吳洪梅、劉寶林。1998。淺談大豆磷脂在醫療保健中的作用及開發前景。
大豆通報。1:26-27。
吳莉芳、秦貴信、孫玲、朱丹。2007。大豆凝集素及其對動物健康的影
響。大豆科學。26(2):259-264。
林威孝。2014。戴奧辛汙染飼糧對產蛋期紅羽土雞生長與產蛋性能及組
織戴奧辛濃度之影響。國立屏東科技大學碩士學位論文。第27-30頁。屏東。台灣。
施柏齡、林義福、徐阿里。2003。台灣種母土雞產蛋期有效磷需要量之
研究。畜產研究。36(3):193-201。
胡文琴、王維軍、程宗佳。2005。大豆磷脂在家禽飼料生產中的應用。
飼料廣角。5: 19-20.
郝涤非。2007。大豆抗營養因子及其在食品加工中的消除。食品科技。
12:235-238。
姜樹興。2009。動物營養學原理。華香園出版社。第184-185頁。台北。
徐淑玲、梁海平、熊智輝。2006。不同豆類飼料原料中大豆異黃酮含量
的測定。養殖與飼料。9:16-19。
馬治宇。2008。乳酸菌及其培養液對肉雞生產性能、腸道菌群及腸道結
構的影響。西北農林科技大學博士學位論文。第19-40頁。陝西省。中國。
孫建新、安娟、連軍。2009。影響實驗動物臟器重量及臟器係數因素分
析。實驗動物科學。26 (1):49-5。
郭元晟。2011。乳酸桿菌對肉雞生產性能、免疫機能及腸道群的影響。
內蒙古農業大學博士學位論文。第9頁。蒙古自治區。中國。
郭元晟、閆素梅、張和平、付果花、史彬林。2011。發酵乳酸桿菌對肉
雞胰腺和小腸消化酶活性及營養物質消化率的影響。動物營養學報。23(7):1225-1232。
連逸韻。2006。利用兩階段固態發酵模式製備發酵豆粕以去除寡糖暨過
敏性蛋白質。國立中興大學食品暨應用生物科技學系所碩士學位論文。第6-8頁。台中。台灣。
許麗惠、祁瑞雪、王長康、王全溪、謝麗曲、林麗花、陳慶達。2013。
發酵豆粕對黃羽肉雞生長性能、血清生化指標、腸道黏膜免疫功能及微生物菌群的影響。動物營養學報。25(4):840-848。
曾秋隆。1991。獸醫臨床病理學綱要。必中出版社。台中市。台灣。
黃啓和。2012。飼糧中添加瘤胃細菌素對白肉雞生長性能與脂質代謝之
影響。國立屏東科技大學碩士學位論文。第37-42頁。屏東。台灣。
傅薰平、謝依伶、林景淳、謝豪晃。2013。飼糧中添加竹醋液對白肉雞
生長性能、腸道性狀及屠體品質之影響。中國畜牧學會會誌。42(4):305-317。
裴成江。2009。動物體內血糖濃度變化研究。飼料與畜牧:新飼料。
8:51-52。
楊玉芬、許道光、王長康、喬建國、鍾燕萍。2014。不同含量的發酵豆
粕對仔豬生長性能和血液指標的影響。江西農業大學學報。36(3)619-625。
楊玉娟、姚怡莎、秦玉昌、邱靜、李軍國、李俊、谷旭。2016。豆粕與
發酵豆粕中主要抗營養因子調查分析。中國農業科學。49(3):573-580。
趙元、秦貴信、王濤、張兵、朱丹。2008。不同大豆加工製品中主要抗
營養因子免疫及抑制活性的比較。大豆科學。26(6):930-934。
趙東、徐桂芳、鄒曉平。2012。益生菌的作用機制。國際消化病雜誌。
32(2):71-73。
趙娜、楊雪海、陳芳、郭萬正、黃少文、張巍、魏金濤。2016。豆粕酶
解發酵物對仔豬生長性能、血清指標及腸道菌群結構的影響。動物營養學報。28:3962-3969。
蔡文福。1994。雜糧作物各論(Ⅱ)。財團法人臺灣區雜糧發展基金會。
台北市。
劉海燕、邱玉朗、魏炳棟、陳群、秦貴信。2012。發酵酶解豆粕對仔豬
生長性能、日糧營養物質消化率和血液指標的影響。吉林農業大學學報。34(6):655-660。
謝來安、吳國維。1992。微電腦飼料配技術。藝軒出版社。台北市。
權靜、盧定強、張筱、李暉。2004。大豆功能性成分的研究現狀。大豆
通報。3:27-29。
Anderson, J. W., B. M. Johnstone, and M. L. Cook-Newell. 1995. Meta -
analysis of the effects of soy protein intake on serum lipids. N. Engl. J. Med. 333:276.
Awad, W. A., K. Ghareeb, S. Abdel-Raheem, and J. Böhm. 2009. Effects of
dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult. Sci. 88(1):49-56.
Bai, S. P., A. M. Wu, X. M. Ding, Y. Lei, J. Bai, K. Y. Zhang, and J. S. Chio.
2013. Effects of probiotic-supplemented diets on growth performance and intestinal immune characteristics of broiler chickens. Poult. Sci. 92(3): 663-670.
Bermudez-Brito, M., J. Plaza-Díaz, S. Muñoz-Quezada, C. Gómez-Llorente,
and A. Gil. 2012. Probiotic mechanisms of action. Anim. Nutr. Metab. 61:160-174.
Carroll, K. K., and E. M. Kurowska. 1995. Soy consumption and cholesterol
reduction:review of animal and human studies. J. Nutr. (suppl.) 125 (3S):594S-597S.
Chang, C. J., T. D. Tanksley, D. A. Knabe, and T. Zebrowska. 1987. Effects
of different heat treatments during processing on nutrient digestibility of soybean meal in growing swine. J. Anim. Sci. 65:1273-1282.
Chernick, S. S., S. S. Lepkovsky, and I. L. Chaikoff. 1948. A dietary factor
regulating the enzyme content of the pancreas: changes induced in size and proteolytic activity of the chick pancreas by the ingestion of raw soybean meal. Am. J. Physiol. 155:33.
Chi, C. H., and S. J. Cho. 2016. Improvement of bioactivity of soybean meal
by solid-state fermentation with Bacillus amyloliquefaciens versus, Lactobacillus spp. and Saccharomyces cerevisiae. LWT-Food Sci. and Technol. 68:619-625.
Coon, C., O. Akavanichan, and T. Cheng. 1988. The effect of
oligosaccharides on the nutritive value of soybean meal. Page 203-214 in Proceedings of Soybean Utilization Alternatives. L. McCann, ed. University of Minn. St. Paul, MN.
Donatucci, D. A. 1983. The role of lectins in the nutritional toxicity of raw
legumes. Ph. D. dissertation, University of Minnesota, St. Paul, MN.
Dilger, R. N., E. M. Onyango, J. S. Sands, and O. Adeola. 2004. Evaluation
of microbial phytase in broiler diets. Poul. Sci. 83(6):962-970.
Faber, J. L., and D. R. Zimmerman. 1973. Evaluation of infrared-roasted and
extruder-processed soybeans in baby pig diets. J. Anim. Sci. 36 (5):902-907.
Fathi, M. 2013. Effects of Lactobacillus cultures as probiotic on blood
parameters, plasma enzymes activities and mortality in broiler chicken. Res. J. Anim. Sci. 7:78-81.
FAS-USDA. 2015. FAS-USDA (Foreign Agricultural Service-United States
Department of Agriculture). World Agricultural Production. Available: https://apps. fas. usda.gov/psdonline/circulars/production. pdf .
Food and Agricultural Oragnizaiton-World Health Organization. 2001.
Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Cordoba, Argentina 1-4 October.
Feng, J., X. Liu, Z. R. Xu, Y. Y. Liu, and Y. P. Lu. 2007a. Effects of
Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim. Feed Sci. Technol. 134:235-242.
Feng, J., X. Liu, Z. R. Xu, Y. Z. Wang, and J. X. Liu. 2007b. Effects of
fermented soybean meal on digestive enzyme activities and intestinal morphology in broilers. Poult. Sci. 86:1149-1154.
Feng, J., X. Liu, Z. R. Xu, Y. P. Lu, and Y. Y. Liu. 2007c. Effect of fermented
soybean meal on intestinal morphology and digestive enzyme activities in weaned piglets. Digest. Dis. Sci. 52(8):1845.
Fuller, R. 1973. Ecological studies on the lactobacillus flora associated with
the crop epithelium of the fowl. J. Appl. Bacteriol. 36(1): 131-139.
Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66(5):
365-378.
Garriga, M., M. Pascual, J. M. Monfort, and M. Hugas. 1998. Selection of
lactobacilli for chicken probiotic adjuncts. J. Appl. Microbiol. 84(1): 125-132.
Gaggìa, F., P. Mattarelli, and B. Biavati. 2010. Probiotics and prebiotics in
animal feeding for safe food production. Int. J. Food Microbiol. 141:S15-S28.
Geary, T. M., P. H. Brooks, J. D. Beal, and A. Campbell. 1999. Effect on
weaner pig performance and diet microbiology of feeding a liquid diet acidified to pH 4 with either lactic acid or through fermentation with Pediococcus acidilactici. J. Sci. Food Agric. 79:633-640.
Gertler, A., Y. Birk, and A. Bondi. 1967. A comparative study of the
nutritional and physiological significance of pure soybean trypsin inhibitors and of ethand-extr acted soybean meds in chickens and rats. J. Nutr. 91:358-370.
Giannenas, I., E. Tsalie, E. Triantafillou, S. Hessenberger, K. Teichmann, and
M. Mohnl. 2014. Assessment of probiotics supplementation via feed or water on the growth performance, intestinal morphology and microflora of chickens after experimental infection with Eimeria acervulina, Eimeria maxima and Eimeria tenella. Avian Pathol. 43:209-216.
Gunal, M., G. Yayli, N. Karahan, and O. Sulak. 2006. The effects of
antibiotic growth promoter, peobiotic or organic acid supplementation on performance, intestinal microflora and tissue of broilers. Int. J. Poult. Sci. 4:777-780.
Harms, R. H., B. L. Damron and P. W. Waldroup. 1965. Influence of high
phosphorus levels in caged layer diets. Poult. Sci. 44:1249-1253.
Herzberg, G. R., and R. Minda. 1988. Hepatic fatty acid synthesis and
triglyceride secretion in rats fed fructose-or glucose-based diets containing corn oil, tallow or marine oil. J. Nutr. 18(9):1061-1067.
Hirabayashi, M., T. Matsui, H. Yano, and T. Nakajima. 1998. Fermentation
of soybean meal with Aspergillus usamii reduces phosphorus excretion in chicks. Poult. Sci. 77:552-556.
Hodgson, J. M., K. D. Croft, I. B. Puddey, T. A. Mori, and L. J. Beilin. 1996.
Soybean isoflavonoids and their metabolic products inhibit in vitro lipoprotein oxidation in serum. Jour. Biochem. 7(12):664-669.
Hong, K. J., C. H. Lee, and S. W. Kim. 2004. Aspergillus oryzae 3.042
GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food. 7(4):430-434.
Huisman, J., and A. J. M. Jansman. 1991. Dietary effects and some analytical
aspects of antinutritional factors in peas (Pisum sativum), common beans (Phaseolus vulgaris) and soyabeans (Glycine max L.) in monogastric farm animals. A literature review. Nutr. Abstr. Rev. Ser. 61:901-921.
Hurburgh, C. R. Jr. 1994. Long-term soybean composition patterns and their
effect on processing. J. Am. Oil Chern. Soc. 71(12):1425-1427.
Jacks, T. J., L. Y. Yatsu, and A. M. Altschul. 1967. Isolation and
characterization of peanut spherosome. Plant Physiol. 42:585-597.
Jayne-Williams, D. J. and D. J. Burgess. 1974. Further observations on the
toxicity of navy beans (Phaseolus vulgaris) for Japanese quail (Coturnix Coturnix Japonica). J. Appl. Bacteriol. 37:149-169.
Jin, L. Z., Y. W. Ho, M. A. Ali, N. Abdullah, K. B. Ong, and S. Jalaludin.
1996. Adhesion of Lactobacillus isolates to intestinal epithelial cells of chicken. Lett. Appl. Microbiol. 22(3):229-232.
Jin, L. Z., Y. W. HO, N. Abdullah, M. A. Ali, and S. Jalaludin. 1998. Effects
of adherent Lactobacillus cultures on growth, weight of organs and intestinal microflora and volatile fatty acids in broilers. Anim. Feed Sci. Technol. 70:197-209.
Jin, L. Z., Y. W. HO, N. Abdullah, and S. Jalaludin. 2000. Digestive and
bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures. Poult. Sci. 79:886-891.
Jongbloed, A. W., P. A. Kemme, Z. Mroz, and H. T. M. Van Diepen. 2000.
Page 111-129 in Efficacy, use and application of microbial phytase in pig production: a review. In Biotechnology in the Feed Industry. Nottingham Univ. Press, Nottingham, UK.
Kabir, S. M. L., M .M. Rahman, M. B. Rahman, M. M. Rahman, and S. U.
Ahmed. 2004. The dynamics of probiotics on growth performance and immune response in broilers. J. Poult. Sci. 3:361-364.
Kennedy, A. R. 1993. Overview: anticarcinogenic activity of protease
inhibitors. Page 9-64 in protease inhibitors as cancer chemopreventive agents. Springer US.
Kennedy, A. R. 1994. Prevention of carcinogenesis by protease inhibitors.
Cancer Res. Suppl. 54:1999S-2005S.
Khan, N. 1994. Phosphorus-The essential element. Page 4-7 in feed mix
special issue on phosphates. Shiny International Ltd. Hong Kong.
Kinney, A. J. 1996. Soybean biotechnology: improving soybean seed quality
by genetic engineering. No. 21A. presented at 87th American Oil Chemists' Society Annual Meeting & Expo, Indianapolis, IN. April 28-May 1.
Kies, A. K., W. J. Gerrits, J. W. Schrama, M. J. Heetkamp, K. L. van der
Linden, T. Zandstra, and M. W. Verstegen. 2005. Mineral absorption and excretion as affected by microbial phytase, and their effect on energy metabolism in young piglets. J. Nutr. 135(5):1131-1138.
Kim, S. S., V. E. Ruiz, J. D. Carroll, and S. F. Moss. 2011. Helicobacter
pylori in the pathogenesis of gastric cancer and gastric lymphoma. Cancer Lett. 305(2):228-238.
Lanza-Jacoby, S. 1986. Effect of continuous and discontinuous intravenous
or intragastric total parenteral nutrition in rats on serum lipids, liver lipids and liver lipogenic rates. J. Nutr. 116(5):733-741.
LeBlane, J. G., A. Silvestroni, C. Connes, V. Juillard, G. S. de Giori, J. C.
Piard, and F. Sesma. 2004. Reduction of non-digestible oligosaccharides in soymilk: application of engineered lactic acid bacteria that produce α-galactosidase. Genet. Mol. Res. 3:432-440.
Li, C. Y., J. J. Lu, C. P. Wu, and T. F. Lien. 2014. Effects of probiotics and
bremelain fermented soybean meal replacing fish meal on growth performance, nutrient retention and carcass traits of broilers. Livestock Sci. 163:94-101.
Li, M. H. 2011. Effects of fish meal replacement by fermented soybean meal
in diet on growth and immune responses of sea bass Lates calcariera. Master Thesis, National Pingtung University of Science and Technology.
Liener, I. E. 1981. Factors affecting the nutritional quality of soya products.
J. Am. Oil Chem. Soc. 58:406-415.
Liener, I. E., R. L. Goodale, A. Deshmukh, T. L. Satterberg, G. Ward, C. M.
DiPietro, and J. W. Borner. 1988. Effect of a trypsin inhibitor from soybeans (Bowman-Birk) on the secretory activity of the human pancreas. Gastroenterology. 94(2): 419-427.
Liener, I. E. 1994. Implications of antinutritional components in soybean
foods. CRC Crit. Rev. Food Sci. Nutr. 34(1):31-67.
Liu, K., F. Orthoefer, and E. A. Brown. 1995. Association of seed size with
genotypic variation in the chemical constituents of soybeans. J. Am. Oil Chem. Soc. 72(2):191.
Liu, J. R., B. Yu, F. H. Liu, K. J. Cheng, and X, Zhao. 2005. Expression of
rumen microbial fibrolytic enzyme genes in probiotic Lactobacillus reuteri. Appl. Environ. Microb. 71(11):6769-6775.
Liu, K. 2012. Soybeans: chemistry, technology, and utilization. Springer.
Lin, M. Y., and T. W. Chen. 2000. Reduction of cholesterol by Lactobacillus
acidophilus in culture broth. J. Food and Drug Anal. 8(2).
Martin, M., S. Hulley, W. Browner, L. Kuller, and D. Wentworth. 1986.
Serum cholesterol, blood pressure. and mortality: implications from a cohort of 361,662 men. The Lancet. 328(8513):933-936.
Marteau, P. R., M. de Vrese, C. J. Cellier, and J. Schrezenmeir. 2001.
Protection from gastrointestinal diseases with the use of probiotics. Am. J. Clin. Nutr. 73(2):430S-436S.
Messina, M. J. 1999. Legumes and soybeans: overview of their nutritional
profiles and health effects. Am. J. Clin. Nutr. 70(3):439S-450S.
McNiven, M. A., B. Grimmelt, J. A. Macleod and H. Voldeng. 1992.
Biochemical characterization of a low trypsin inhibitor soybean. J. food Sci. 57(6):1375-1377.
Mitchell, I. D. E. G., and R. Kenworthy. 1976. Investigations on a metabolite
from Lactobacillus bulgaricus which neutralizes the effect of enterotoxin from Escherichia coli pathogenic for pigs. J. Appl. Microbiol. 41(1):163-174.
Mukai, T., T. Asasaka, E. Sato, K. Mori, M. Matsumoto, and H. Ohori, 2002.
Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri. FEMS Immunol. Med. Mic. 32(2):105-110.
O’Dell, B. L. 1979. Effect of soy protein on trace mineral availability. In Soy
Protein and Human Nutrition. H.L. Wilckc, D.R. Hopkins, and D.H. Waggle, ed. Academic Press, New York.
Olnood, C. G., S. S. Beski, M. Choct, and P. A. Iji. 2015. Novel probiotics:
Their effects on growth performance, gut development, microbial community and activity of broiler chickens. Anim. Nutr. 1(3):184-191.
Olnood, C. G., S. S. Beski, M. Choct, and P. A. Iji. 2015. Use of
Lactobacillus johnsonii in broilers challenged with Salmonella sofia. Anim. Nutr. 1(3):203-212.
Orf, J. H., and T. H. Hymowitz. 1979. Inheritance of the absence of the
Kunitz trypsin inhibitor in seed protein of soybeans. Crop Sci. 19(1):107-109.
Osborne, T. B and L. B. Mendel. 1917. The use of soybean as food. J. Biol.
Chem. 32:369-387.
Ouwehand, A. C., S. Salminen, and E. Isolauri. 2002. Probiotics: an
overview of beneficial effects. A. Van Leeuw. 82:279-289.
Parker, R. B. Probiotic, the other half of antibiotic story. 1974. Anim. Nutr.
Health. 29:4-8.
Pascual, M., M. Hugas, J. I. Badiola, J. M.Monfort, and M. Garriga. 1999.
Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. Appl. Environ. Microb. 65(11):4981-4986.
Parvez, S., K. A. Malik, S. Ah Kang, and H. Y. Kim. 2006. Probiotics and
their fermented food products are beneficial for health. J. Appl. Microbiol. 100(6):1171-1185.
Pereira, M. E. A., E. A. Kaabat, and N. Sharon. 1974. Immunochemical
studieson specificity to soybean agglutinin . J. Carbohyd. Res. 89-102.
Perkins, E. G. 1995. Composition of soybeans and soy products. Page 9-28
in Practical Handbook of Soybean Processing and Utilization, D.R. Erickson, ed. AOCS Press, Champaign, IL.
Perdigon, G., S. Alvarez, M. Rachid, G. Agüero, and N. Gobbato. 1995.
Immune system stimulation by probiotics. J. dairy Sci. 78(7):1597-1606.
Penha Filho, R. A. C., S. J. Acelas Díaz., F. S. Fernando, Y. F. Chang, and R.
L. Andreatti Filoh. 2015. Immunomodulatory activity and control of Salmonella Enteritidisc olonization in the intestinal tract of chickens by Lactobacillus based probiotic. Vet. Immunol. Immunop. (in press).
Pointillart, A., N. Fontaine, and M. Thomasset. 1984. Phytate phosphorus
tilization and intestinal phosphatases in pigs fed low phosphorus: wheat or corn diets [Phosphorus availability]. Nutr. Rep. Int.
Pryde, E. H. 1980. Composition of soybean oil. Ch. 2. Page 13 in Handbook
of Soy Oil Processing and Utilization. S. R. Erickson, E. H. Pryde, O. L. Brekke, T. L. Mounts, and R. A. Falb, ed. American Oil Chemists' Society, Champaign, IL.
Pull, S. P., S. G. Pueppke, T. Hymowitz, and H. H. Orf. 1978. Soybean lines
lacking 120,000-Da seed lectin. Sci. 200:1277.
Pusztai, A. 1989. Biological effects of dietary lectins. In: Recent advances of
research in antinutritional factors in legume seeds. Pudoc Wageningen Neth. 17-29.
Rackis, J. J. 1975. Oligosaccharides of food legumes: alpha-galactosidase
activity and the flatus problem. ACS. Symp. Ser. Amer. Chem. Soc. 13:207-222.
Reddy, N. R., S. K. Sathe, and D. K. Salunkhe. Phytates in legumes and
cereals. 1982. Advances in food research 28:1-92.
Roy, D. M., and B. O. Schneeman. 1981. Effect of soy protein, casein, and
trypsin inhibitor on cholesterol, bile acids and pancreatic enzymes in mice. J. Nutr. 111:878- 885.
Rouanet, J. M., J. Lafont, M. Chalet, A. Creppy, and P. Besancon. 1985.
Effects of dietary kidney bean (Phaseolus vulgaris) lectins in growing rats. Nutr. Rep. Int. 31:237-244.
Salminen, S., A. Ouwehand, Y. Benno, and Y. K. Lee. 1999. Probiotics:
how should they befined? Trends Food Sci. Tech. 10:107-110.
Salim, H. M., H. K. Kang, N. Akter, D. W. Kim, J. H. Kim, M. J. Kim, J. C.
Na, H. B. Jong, H. C. Choi, O. S. Suh, and W. K. Kim. 2013. Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens. Poult. Sci. 92(8):2084-2090.
Sanjukta, S. and A. K. Rai. 2016. Production of bioactive peptides during
soybean fermentation and their potential health benefits. Trends in Food Sci. and Technol. 50:1-10.
Schiffrin, E. J., and S. Blum. 2002. Interactions between the microbiota and
the intestinal mucosa. Eur. J. Clin. Nutr. 56(S3): S60.
Sharma, M. L., and P. C. Gangar. 1986. Effect of cooling on the plasma
enzymic pattern of broilers during summer. Indian J. Anim. Sci.
Sirtori, C. R., R. Even, and M. R. Lovati. 1993. Soybean protein diet and
plasma cholesterol:from therapy to molecular mechanisms. Ann. N. Y. Acad. Sci. 676:188.
Spencer, M. R. 1976. Effect of shipping on quality of seeds, meals, fats, and
oils. J. Am. Oil Chern. Soc. 53:238.
Taheri, H. R., H. Moravej, F. Tabandeh, M. Zaghari, and M. Shivazad.
2009. Screening of lactic acid bacteria toward their selection as a source of chicken probiotic. Poult. Sci. 88(8):1586-1593.
Teuber, M. 1993. Lactic acid bacteria. Biotechnology Set. Second Edition.
325-366.
Tsien, H. C., M. A. Jack, E. L. Schmidt, and F. Wold. 1983. Lectin in five
soybean cultivars previously considered to be lectin-negative. P1anta. 158:128.
Tuomola, E. M., A. C. Ouwehand, and S. J. Salminen. 1999. The effect of
probiotic bacteria on the adhesion of pathogens to human intestinal mucus. Pathogens and Disease. 26(2):137-142.
Van Eys, J. E., A. Offner, and A. Bach. 2005. Manual of quality analyses for
soybean products in the feed industry. American Soybean Association. USA.
Veldman, A. 1992. Probiotics.Tijdschr Diergeneeskd. 117:345-8.
Wells, J. M. Immunomodulatory mechanisms of lactobacilli. 2011
Microb. cell factories. 10(1):S17.
White, C. L., D. E. Greene, P. W. Waldroup, and E. L. Stephenson. 1967. The
use of unextracted soybeans for chicks. Poult. Sci. 46(5):1180-1185.
Wiriyaumpaiwong, S., S. Soponronnarit, and S. Prachayawarakorn. 2004.
Comparative study of heating processes for full-fat soybeans. J. Food Eng. 65(3):371-382.
Willis, W. L., and L. Reid. 2008. Investigating the effects of dietary
probiotic feeding regimens on broiler chicken production and Campylobacter jejuni presence. Poult. Sci. 87(4):606-611.
Yan, L., J. P. Wang, and I. H. Kim. 2012. Effects of different fermented soy
protein and apparent ileal digestible lysine levels on weaning pigs fed fermented soy protein-amended diets. J. Anim. Sci. 83:403-410.
Yeo, J., and K. I. Kim. 1997. Effect of feeding diets containing an antibiotic,
a probiotic, or yucca extract on growth and intestinal urease activity in broiler chicks. Poult. Sci. 76:381-385.
Yu, B., J. R. Liu, F. S. Hsiao, and P. W. S. Chiou. 2008. Evaluation of
Lactobacillus reuteri Pg4 strain expressing heterologous β-glucanase as a probiotic in poultry diets based on barley. Anim. feed Sci. Tech. 141(1):82-91.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔