(3.237.97.64) 您好!臺灣時間:2021/03/03 04:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳源森
研究生(外文):Chen, Yuan-Sen
論文名稱:環境溫度與經營模式對蛋雞生產性能之影響
論文名稱(外文):Effects of Ambient Temperature and Operating Strategy on The Performance of Laying Hens
指導教授:翁瑞奇
指導教授(外文):Weng, Ruey-Chee
口試委員:李德南李嘉偉
口試委員(外文):Lee, Der-NanLee, Joey
口試日期:2017-07-29
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:動物科學與畜產系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:109
中文關鍵詞:水簾雞舍高床雞舍開放雞舍環境溫度蛋雞生產
外文關鍵詞:Force ventilation with wet pad laying hen housing systemOpening laying hen housing systemElevated with fully mesh floor laying hen housing systemAmbient temperatureLaying hen production
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
摘要
學號:N9926002
論文題目:環境溫度與經營模式對蛋雞生產性能之影響
總頁數:109頁
學校名稱:國立屏東科技大學 系(所):動物科學與畜產系
畢業時間及摘要別:105學年度第2學期碩士學位論文摘要
研究生:陳源森 指導教授:翁瑞奇 博士
論文摘要內容:
目前台灣蛋雞飼養的畜舍型態大致分為三種:開放式、高床式及密閉式水簾式雞舍。有關畜舍的基本功能的研究都已經很詳盡,但是利用各種雞舍配合管理方式的成績比較資料並不多,因此,本次研究目的主要在觀察比較三種畜舍型態對蛋雞生產性能之影響,並且能將結果提供未來極端氣候的高環境溫度下改善蛋雞生產性能之參考。蛋雞的最佳環境溫度在介於19-22°C 的範圍,當溫度高於這個範圍時與熱效應有關的緊迫開始導致母雞產蛋性能開始降低。當環境溫度達到25°C以上母雞開始產生熱緊迫,同時表現產蛋率降低和生產性能變差。從台南區氣候資料統計的結果顯示,每年的4月開始蛋雞就開始產生熱緊迫,直到11月份氣溫逐漸降低生產成績才有可能恢復。提供適當的飼養環境及畜舍可以改善雞隻生產成績降低熱緊迫,而預防熱緊迫的主要飼養管理策略為減少動物產熱或增加熱的散失,此可藉由適當的畜舍設計及環境的改善來解決。本次研究調查結果發現,農民可能基於商業考量,採用不同換羽及淘汰更新方式來取代環境改善所能提升的改善效率。例如,傳統式及高床式雖然隻舍產蛋率都比水簾式低,但是這兩種經營模式隨時都有雞蛋產出,也很可能是因為農民有契約或銷售市場限制必須隨時保有銷售市場。本次研究結果顯示,不同商業經營模式及不同環境溫度對生產成績都沒有交互作用。隻舍產蛋率成績分別受到不同商業經營模式及不同環境溫度個別影響。日攝食量及破蛋率主要受到不同商業經營模式的影響。水簾畜舍加上統進統出的經營方式的日攝食量成績無論在熱季或是涼季都比其他兩組高(水簾熱季︰水簾涼季︰傳統熱季︰傳統涼季︰高床熱季︰高床涼季=104.3克︰103.8克︰81.6克︰88.9克︰86.5克︰86.6克;處理P<0.0001,溫度P=0.018)。因此,水簾畜舍加上統進統出的經營方式的隻舍產蛋率成績無論在熱季(82.0%)或是涼季(95.6%)都比其他兩組高(67.9%、77.9%及69.6%、69.6%;處理P<0.0001);水簾畜舍加上統進統出的經營方式的攝食量無論在熱季或是涼季都是三組中最高的(P<0.0001) ;破蛋率成績無論在熱季或是涼季都是三組中最低的(P<0.0001)。強迫換羽的作業方式雖然可以調節各種經營模式的產能,配合提供適當環境才能使調節的效能提升。本次研究結果顯示,三組不同商業經營模式初產及第二產次均以水簾畜舍加上統進統出的經營方式生產成績最高。

關鍵詞:水簾雞舍、高床雞舍、開放雞舍、環境溫度、蛋雞生產
Abstract
Student ID: N9926002
Title of Thesis: Effects of Ambient Temperature and Operating Strategy on The Performance of Laying Hens
Total Page: 109
Name of Institute: Department of Animal Science, National Pingtung University of Science and Technology
Graduate Date: July, 2017 Degree Conferred: Master
Name of Student: Yuan-Sen Chen Adviser: Ruey-Chee Weng, Ph. D.
The Contents of Abstract in This Thesis:

There are mainly three types of the laying housing systems accepted in Taiwan which are opening system (O), Jacked with fully mesh floor system (E) and force ventilation with wet pad housing system (W). The basic functions of these systems were well defined, however,the application on management still need to be investigated. Therefore the purpose of this study is to compare three housing pattern and management effect on performances of laying hens, and to provide the results for future improvement reference in the performances of laying hen production under extreme weather high ambient temperature.
The optimum ambient temperature oflayer is in the range of 19-22°C, when the temperature is above this range and heat start leads to decrease the laying hens’ performance. When the ambient temperature is above 25°C hens began to gainthe heat stress, while egg production rate and performance tended to beworse. According to Tainan’s climate data, every year laying hens began to face the heat stress in April, until November the temperature gradually reducing then production can be resume.
Providing appropriate management and housing system can improve layer’s performance and lower the stress from ambient temperature. To prevent the heat stress is mainly using feeding strategy to reduce animal heat production and increase the heat loss.This can then be used by appropriate housing design and improvement of the environment to address. Findings of this study found that farmers may be based on commercial considerations, they used the different moult and replace policy to replace the environmental improvements which can improve the efficiency. For example, egg production in opening system and Jacked with fully mesh floor systemwere worse thanwet pad system, but those two operating systems always produce egg at any time, may be because those farmers have contracts or marketing restrictions must always retain the sales market
The results show that different treatments and different ambient temperature have no interaction with production performance. The results of egg production performances were individually influenced by different treatments and different ambient temperatures. Daily feed intake and braked egg ratio are mainly affected by different treatment. The daily feed intake for the wet pad system with all in all out management is higher than that of the other two groups during hot season and cool season (WH︰WC︰OH︰OC︰EH︰EC = 104.3 g︰103.8 g︰81.6 g︰88.9 g︰86.5 g︰86.6 g;Treatment p<0.0001, Temperature p = 0.018). Thehen house egg production rate of the wet pad system with all in all out management were higher in both hot (82.0%) and the cold temperature (95.6%) and were both higher than those in the other two treatments (67.9%, 77.9%, 69.6%, 69.6%, respectively;Treatment, p<0.0001).The daily feed intake for the wet pad system with all in all out management was the highest among the three groups (P <0.0001) in the hot season or the cold season. The braked egg ratio was the lowest among the three groups in the hot season or the cold season (P <0.0001). The practice of forced moulting can regulate the performance of various modes of operation and improve the effectiveness of the regulation by providing the appropriate environment. The results of this study show that the three groups of different commercial business model of the first generation and the second production were the wet pad system with all in all out management had the highest performance.

Keywords: Force ventilation with wet pad laying hen housing system, Opening laying hen housing system, Jacked with fully mesh floor laying hen housing system, Ambient temperature, Laying hen production
目錄
摘要…………………………………………………………………… Ⅰ
Abstract………………………………………………………………. Ⅳ
謝誌…………………………………………………………………… Ⅶ
目錄…………………………………………………………………… Ⅷ
圖表目錄……………………………………………………………… ⅩⅠ
壹、前言……………………………………………………………… 1
貳、文獻探討…………………………………………………………... 5
一、熱緊迫與雞隻攝食及免疫之關係…………………………… 5
(一)環境溫度與蛋雞產能………………………………….... 5
(二) 熱緊迫與蛋雞攝食量………………………………… 6
(三)、熱緊迫與蛋雞免疫……………………………………. 8
(四)、熱緊迫與血液礦物質及酸鹼平衡……………………. 10
(五)、熱緊迫與飲水…………………………………………. 11
二、熱緊迫對蛋品質之影響……………………………………… 13
(一)、產蛋率與蛋殼品質…………………………………….. 13
(二)、蛋重與蛋內容物……………………………………….. 15
(三)、蛋殼厚度……………………………………………….. 16
三、減緩及預防熱緊迫…………………………………………… 17
(一)、飼糧中添加脂肪………………………………………... 17
(二)、高營養濃度飼糧………………………………………... 18
(三)、碳酸氫鈉………………………………………………... 20
(四)、飼糧中磷的含量……………………………………… 20
(五)、維生素………………………………………………… 21
1. 維生素 C……………………………………………. 21
2. 維生素 A……………………………………………. 23
3. 維生素E……………………………………………. 23
四、飼養環境與熱緊迫…………………………………………… 26
參、材料與方法……………………………………………………… 29
一、試驗動物……………………………………………………. 29
(一)、水簾式蛋雞場………………………………………….. 29
(二)、開放式蛋雞場………………………………………….. 33
(三)、開放式高床蛋雞場…………………………………….. 37
二、資料收集……………………………………………………… 41
三、統計與分析…………………………………………………… 42
肆、結果與討論……………………………………………………… 43
一、觀察期間氣候變化…………………………………………. 43
二、不同畜舍對產蛋成績的影響………………………………… 46
(一)、水簾式畜舍H字型直立式飼養成績………………….. 46
(二)、開放式蛋雞場H字型直立式飼養成績……………….. 47
(三)、開放式高床蛋雞場生產成績………………………… 49
三、畜舍規劃對產蛋成績的影響………………………………. 50
(一)不同經營模式對蛋雞生產成績的影響………………… 50
(二)不同環境度及不同經營模式對蛋雞生產成績的影響… 57
(三)不同經營模式對蛋雞產蛋週期生產成績的影響……… 60
伍、結論……………………………………………………………… 64
參考文獻……………………………………………………………… 65
附錄…………………………………………………………………… 78

附件1台南觀察站氣象資料……………………………………. 78
附件2 開放式蛋雞場生產成績週報表(第1區)……………… 80
附件3 開放式蛋雞場生產成績週報表(第2區)………………. 85
附件4 水簾式蛋雞場生產成績週報表………………………... 89
附件5開放式高床蛋雞場生產成績……………………………. 92
附件6開放式高床蛋雞場各區生產成績………………………. 99
附件7不同商業模式條件比較…………………………………. 106
附件8冬夏季飼料營養成分表…………………………………. 107
附件9換羽………………………………………………………. 108
作者簡介……………………………………………………………… 109


圖表目錄

圖1 水簾式雞舍全景…………………………………………
Figure 1 Force ventilation with wet pad laying hen house over view 30
圖2 水簾式雞舍雞籠…………………………………………
Figure 2 Cage system in force ventilation with wet pad laying hen house 31
圖3 水簾式雞舍飼養密度……………………………………
Figure 3 Stocking density in force ventilation with wet pad laying hen house 32
圖4 開放式雞舍………………………………………………
Figure 4 Opening laying hen house over view 34
圖5 開放式雞舍雞籠1………………………………………
Figure 5 Cage system 1 in opening laying hen house 35
圖6 開放式雞舍雞籠2……………………………………….
Figure 6 Cage system 2 in opening laying hen house 36
圖7 高床式蛋雞舍……………………………………………
Figure 7 Jacked with fully mesh floor laying hen system over view 38
圖8 高床式蛋雞舍雞籠………………………………………
Figure 8 Cage system in Jacked with fully mesh floor laying hen system 39
圖9 高床式蛋雞舍飼養密度…………………………………
Figure 9 Stocking density in Jacked with fully mesh floor laying hen system 40

圖10台南區月平均溫度(℃) ……………………………………
Figure10 The average monthly temperature of year 98, 99, 100 and 101 in Tainan area(℃)
45
圖11水簾式蛋雞舍生產成績(%)…………………………….
Figure 11 Hen house egg production rate in force ventilation with wet pad laying hen house (%) 46
圖12開放式蛋雞場生產成績(%)(第1區)……………………
Figure 12 Hen house egg production rate in opening hen house (%) (Area 1) 47
圖13開放式蛋雞場生產成績圖(%)(第2區)…………………..
Figure 13 Hen house egg production rate in opening hen house (%) (Area 2) 48
圖14開放式高床蛋雞場生產成績(%)………………………..
Figure 14 Hen house egg production rate in Jacked with fully mesh floor hen house (%) 49
圖15 不同經營模式下隻舍產蛋率(%)的分布………………..
Figure 15 Effects of operation system on hen house egg production rate (%) 51
圖16不同經營模式下日攝食量(公克/天)的分布……………
Figure 16 The effects of operation system on daily feed intake (g/day/bird) 53
圖17不同經營模式下破蛋率(%)的分布……………………..
Figure 17 The effects of operation system on braked egg ratio (%) 55
圖18不同環境度及不同經營模式對隻舍產蛋率的影響(%)…
Figure 18 The interaction effect of treatment and ambient temperature on hen house egg production rate (%) 58
圖19不同環境度及不同經營模式對日攝食量的影響………..
Figure 19 The interaction effect of treatment and ambient temperature on daily feed intake (g/day) 59
圖20不同環境度及不同經營模式對破蛋率的影響…………..
Figure 20 The interaction effect of treatment and ambient temperature on monthly braked egg ratio (%) 59
圖21不同環境度及不同經營模式對破蛋率的影響…………..
Figure 21 The effect of treatment on the first batch production performance 60
圖22不同經營模式對蛋雞第二產蛋週期生產成績的影響…..
Figure 22 The effect of treatment on the second batch production performance 61



表1 台南區98、99、100及101年月平均溫度(℃)………..
Table 1 The average monthly temperature of year 98, 99, 100 and 101 in Tainan area(℃) 44
表2不同經營模式下隻舍產蛋率(%)的差異……………………
Table 2 The effects of operation system on hen house egg production rate (%) 51
表3不同經營模式下日攝食量(公克/天)的差異………………..
Table 3 The effects of operation system on daily feed intake (g/day/bird) 52
表4不同經營模式下破蛋率(%)的差異………………………..
Table 4 The effects of operation system on braked egg ratio (%) 54
表5 不同商業經營模式下對蛋雞生產成績……………………
Table 5 The interaction effect of operation system and time on production performance 56
表6不同環境度及不同經營模式對蛋雞生產成績的影響……..
Table 6 The interaction effect of treatment and ambient temperature on production performance 57
參考文獻
丁崇原。1995。育成期飼糧熱能和蛋白質含量對臺灣種母土雞生長發育及產蛋性能之影響。碩士論文。國立中興大學。台中。
吳和光。2001。禽舍及養禽設備。畜牧要覽家禽篇,第 639-656 頁。中國畜牧學會編印。
李淑娟。1993。環境溫度與飼糧中添加抗壞血酸對臺灣種母土雞生產性能之影響。碩士論文。國立中興大學。台中。
邱文石、余碧。1987。對產蛋母雞生長性狀的影響。飼料營養。8:30-35。
林炳宏、盧金鎮。1997。不同飼糧營養分濃度及添加抗壞血酸對本省熱劑蛋雞產蛋性能、蛋殼品質及血液性狀之影響。中國畜牧學會會誌26:395-408。
馬春祥。1980。家禽學。國立編譯館。台北市。
葉力子。2001。蛋雞的飼養與管理。畜牧要覽家禽篇,第 281-312 頁。中國畜牧學會編印。
Abidin, Z., and A. Khatoon, 2013. Heat stress in poultry and the beneficial effects of ascorbic acid (vitamin C) supplementation during periods of heat stress. World’s Poult. Sci. J. 69(01):135-152.
Ahmad, M. M., R. E. Moreng, and H. D. Mueller. 1967. Breed responses in body temperature to elevated environmental temperature and ascorbic acid. Poult. Sci. 46:6-15.
Allahverdi, A., A. Feizi, H. A. Takhtfooladi, and H. Nikpiran. 2013. Effects of Heat Stress on Acid-Base Imbalance, Plasma Calcium Concentration, Egg Production and Egg Quality in Commercial Layers. Global Veterinaria 10(2):203-207
Anjun, M. S., A. Z. Rahman, S. Ali, and M. A. Sandhu. 2002. Egg quality characteristics influenced by various heat combating systems during summer. Archiv. Fur. Geflukellkunde 66:136.
Arad, Z., and J. Marder. 1984. Strain differences in heat resistance to acute heat stress, between the Bedouin desert fowl, the white Leghorn and their crossbreeds. Comp. Biochem. Physiol. 72:191-193.
Arad, Z., J. Marder, and U. Eylath. 1983. Serum electrolyte and enzyme responses to heat stress and dehydration in the fowl (Gallus domesticus). Comp. Biochem. Physiol. 74:449-453.
Balnave, D., and Brake, J. (2005). Nutrition and management of heat-stressed pullets and laying hens. World’s Poult. Sci. J. 61(3):399-406.
Balnave, D. 2004. Challenges of accurately defining the nutrient requirements of heat-stressed poultry. Poult. Sci. 83:5-14.
Balnave, D., and S. K. Muheereza. 1997. Improving eggshell quality at high temperatures with dietary sodium bicarbonate. Poult. Sci. 76:588-593.
Balnave, D., and S. K. Muheereza. 1998. Intermittent lighting and dietary sodium bicarbonate supplementation for laying hens at high temperatures. Aust. J. Agric. Res. 49:279-284.
Beker, A., and R. G. Teeter. 1994. Drinking water temperature and potassium chloride supplementation effects on broiler body temperature and performance during heat stress. J. Appl. Poult. Res. 3:87-92.
Bharat, R., Bhagwat, S., Pawar, M., Kulkarni, R., Srivastava, A., Chahuan, H., and Makwana, R. 2013. Nutritional Strategies to Combat the Effect of Heat Stress in Chicken. J. of Anim. Fee. Sci. and Tech. 1(2):122.
Bogin, E., Y. Weisman, and Y. Friedman. 1981. The effect of heat stress on the levels of certain blood constituents in chickens. Refuah Vet. 38:98-104.
Bollengier-Lee, S., M. A. Mitchell, D. B. Utomo, P. E. V. Williams, and C. Whttehead. 1998. Influence of a high dietary vitamin E supplementation on the egg laying response of hens subjected to heat stress. Br. Poult. Sci. 39:106-112.
Bollengier-Lee, S., P. E. V. Williams, and C. C. Whitehead. 1999. Optimal dietary concentration of vitamin E for alleviating the effect of heat stress on egg production in laying hens. Br. Poult. Sci. 40:102-107.
Bonnet, S., P. A. Geraert, M. Lessire, B. Carre, and S. Guillaumin. 1997. Effect of high ambient temperature on feed digestibility in broilers. Poult. Sci. 76:857-863.
Boshouwers, F. M. G., and E. Nicaise. 1987. Physical activity and energy expenditure for laying hens as affected by light intensity. Br. Poult. Sci. 28:155-163.
Bottje, W. G., and P. C. Harrison. 1985. The effect of tap water, carbonated water, sodium bicarbonate, and calcium chloride on blood acid-base balance in cockerels subjected to heat stress. Poult. Sci. 64:107-113.
Branton, S. L., F. N. Reece, and J. W. Deaton. 1986. Use of ammonium chloride and sodium bicarbonate in acute heat exposure. Poult. Sci. 65:1659-1663.
Bray, D. J., and J. A. Gesell. 1961. Studies with corn-soya laying diets. 4. Environmental temperature- a factor affecting performance of pullets fed diets suboptimal in protein. Poult. Sci. 40:1328-1335.
Charles, O. W., and S. Duke. 1981. The productive response of Leghorn hens to temperature and phosphorus level. Poult. Sci. 60:1638 (Abstr.).
Cheng, T. K., C. Cook, and M. L. Hamre. 1990. Effect of environmental stress on the ascorbic acid requirement of laying hens. Poult. Sci. 69:774-780.
Cheville, N. F. 1979. Environmental factors affecting the immune response of birds- a review. Avian Dis. 23:166-170.
Coenen, A. M. L., E. M. T. J. Wolters, E. L. J. M. Van Luijtelaar, and H. Blokhuis. 1988. Effects of intermittent lighting on sleep and activity in the domestic hen. Appl. Anim. Behav. Sci. 20:309-318.
Ciftci, M., Ertas, O. N., and Guler, T. 2005. Effects of vitamin E and vitamin C dietary supplementation on egg production and egg quality of laying hens exposed to a chronic heat stress. Rev. Med. Vet, 156(2):107-111.
Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner, 2013. Long-term climate change: projections, commitments and irreversibility. in: climate change 2013: The physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Corradino, R. A., R. H. Wasserman, M. H. Pubols, and S. I. Chang. 1968. Vitamin D3 induction of a calcium-binding protein in the uterus of the laying hen. Arch. Biochem. Biophys. 125:378-380.
Daghir, N. J. 1973. Energy requirements of laying hens in a semi-arid continental climate. Br. Poult. Sci. 14:451-459.
Daghir, N. J. 1987. Nutrient requirements of laying hens under high temperature conditions. Zootec.ca Inter.. May. 36-39.
Daghir, N. J. 2008. Replacement pullet and layer feeding and management in hot climates. pp. 261-293 in Poultry Production in Hot Climates. N. J. Daghir, ed. CABI.
Davis, C. Y., and J. L. Sell. 1983. Effect of all-trans retinol and retinoic acid nutriture on immune system of chicks. J. Nutr. 113:1914-1919.
De Andrade, A. N., J. C. Rogler, and W. R. Featherston. 1976. Influence of constant elevated temperature and diet on egg production and shell quality. Poult. Sci. 55:685-693.
De Andrade, A. N., J. C. Rogler, W. R. Featherston, and C. W. Alliston. 1977. Interrelationships between diet and elevated temperatures (cyclic and constant) on egg production and shell quality. Poult. Sci. 56:1178-1188.
Deaton, J. W., F. N. Reece, J. L. McNaughton, and B. D. Lott. 1981. Effect of differing temperature cycles on eggshell quality and layer performance. Poult. Sci. 60:733-737.
Deaton, J. W., J. L. McNaughton, and B. D. Lott. 1982. Effect of heat stress on laying hens acclimated to cyclic versus constant temperatures. Poult. Sci. 61:875-878.
Degen, A. A., and K. Michael. 1998. Roosters prefer cool drinking water in both summer and winter. J. Appl. Poult. Res. 7:258-262.
Donoghue, D. J., B. F. Krueger, B. M. Hargis, A. M. Miller, and M. E. El Halawani. 1989. Thermal stress reduces serum luteinizing hormone and bioassayable hypothalamic content of luteinizing hormone-releasing hormone in hens. Biol. Repro. 41:419-424.
Eberhart, D. E., and Washburn, K. W. (1993). Variation in Body Temperature Response of Naked Neck and Normally Feathered Chickens to Heat Stress. Poult. Sci. 72(8):1385-1390. doi: 10.3382/ps.0721385
Emery, D. A., P. Vohra, and R. A. Ernst. 1984. The effect of cyclic and constant ambient temperatures on feed consumption, egg production, egg weight, and shell thickness of hens. Poult. Sci. 63:2027-2035.
Ernst, R. A., F. R. Frank, F. C. Price, R. E. Burger, and H. R. Halloran. 1975. The effect of feeding low chloride diets with added sodium bicarbonate on egg shell quality and other economic traits. Poult. Sci. 54:270-274.
Etches, R. J., T. M. John, and A. M. V. Gibbins. 2008. Behavioral, physiological, neuroendocrine and molecular responses to heat stress. pp.49-51 in Poultry Production in Hot Climates. N. J. Daghir, ed. CABI.
Felver-Gant, J., Dennis, R., Zhao, J., and Cheng, H. 2014. Effects of dietary antioxidant on performance and physiological responses following heat stress in laying hens. Intern. J. of Poult. Sci. 13(5):260.
Ferket, P. R., and M. A. Qureshi. 1992. Performance and immunity of heat-stressed broilers fed vitamin- and electrolyte- supplemented drinking water. Poult. Sci. 71:88-97.
Francis, C. A., M. G. Macleod, and J. F. M. Anderson. 1991. Alleviation of acute heat stress by food withdrawal or darkness. Br. Poult. Sci. 32:219-225.
Franco-Jimenez, D. J., Scheideler, S. E., Kittok, R. J., Brown-Brandl, T. M., Robeson, L. R., Taira, H., and Beck, M. M. 2007. Differential Effects of Heat Stress in Three Strains of Laying Hens. J. of Appl. Poul. Res. 16(4):628-634.
Freidman, A., A. Meidovaky, G. Leitner, and D. Sklan. 1991. Decreased resistance and immune response to Escherichia coli infection in chicks with low or high intakes of vitamin A. J. Nutr. 121:395-400.
Froning, G. W., B. Sackett, F. J. Strowe, and S. Lowry. 1982. Effect of dietary vitamin E, egg storage and age of bird on yolk membrane strength. Poult. Sci. 61:1467-1468.
Fuller, H. L., and M. Rendon. 1977. Energetic efficiency of different dietary fats for growth of young chicks. Poult. Sci. 56:549-557.
Glatz, P. C. 2001. Effect of cool drinking water on production and shell quality of laying hens in summer. Asian-Aust. J. Anim. Sci. 14:850-854.
Gross, W. B., and H. S. Siegel. 1983. Evaluation of the heterophil to lymphocyte ratio as a measure of stress in chickens. Avian Dis. 27:972-978.
Guo, Y. M., C. N. Liu, and Y. P. Zhou. 1998. Impact of heat stress on broilers and effects of supplemental yeast chromium. Acta Vet. Zootech. Sinica. 29:339-344.
Heywang, B. W. 1952. The level of vitamin A in the diet of laying and breeding chickens during hot weather. Poult. Sci. 31:294-301.
Hurwitz, S., M. Weiselberg, U. Eisner, I. Bartov, G. Riesenfeld, M. Sharvit, A. Niv, and S. Bornstein. 1980. The energy requirements and performance of growing chickens and turkeys as affected by environmental temperature. Poult. Sci. 59:2290-2299.
Jackson, D. W., G. R. Law, and C. F. Nockels. 1978. Natural vitamin E alteration of passively acquired immunity of chicks. Poult. Sci. 57:70-73.
Jones, J. E., B. L. Hughes, and B. D. Barnett. 1976. Effect of changing dietary energy of environmental temperatures on feed consumption and egg production of Single Comb White Leghorns. Poult. Sci. 55:274-277.
Kadymov, R. A., and Z. A. Aleskerov. 1988. Immunological reactivity of poultry organism under high temperature conditions. Dokl. Vses. Akad. S-Kh. Nauk Im. V. I. Lenina. 5:33-35.
Key, N., Sneeringer, S., and Marquardt, D. 2014. Climate change, heat stress, and us dairy production. USDA-ERS Economic Res. Rep. (175).
Khan, R. U., Naz, S., Nikousefat, Z., Tufarelli, V., Javdani, M., Rana, N., and Laudadio, V. 2011. Effect of vitamin E in heat-stressed poultry. World’s Poult. Sci. J. 67(3), 469-477.
Kilic, I., and Simsek, E. 2013. The Effects of Heat Stress on Egg Production and Quality of Laying Hens. J. of Anim. and Vet. Adv. 12(1):42-47.
Kirunda, D. F. K., S. E. Scheideler, and S. R. Mckee. 2001. The efficacy of vitamin E (DL-α-tocopheryl acetate) supplementation in hen diets to alleviate egg quality deterioration associated with high temperature exposure. Poult. Sci. 80:1378-1383.
Koelkebeck, K. W., and T. W. Odom. 1994. Laying hen responses to acute heat stress and carbon dioxide supplementation. I. Blood gas changes and plasma lactate accumulation. Comp. Biochem. Physiol. 107:603-606.
Kohne, H. J., and J. E. Jones. 1975. Acid-base balance, plasma electrolytes and production performance of adult turkey hens under conditions of increasing ambient temperature. Poult. Sci. 54:2038-2045.
Kondra, P. A., S. H. Choo, and J. L. Sell. 1968. Influence of strain of chicken and dietary fat on egg production traits. Poult. Sci. 47:1290-1296.
Langhout, P. 2000. New additives for broiler chickens. World. Poult. 3:22-28.
Larbier, Z. M., A. M. Chagneau, and P. A. Geraert. 1993. Influence of ambient temperature on true digestibility of protein and amino acids of rapeseed and soybean meals in broilers. Poult. Sci. 72:289-295.
Leeson, S., and J. D. Summers. 1989. Response of Leghorn pullets to protein and energy in the diet when reared in regular or hot-cyclic environments. Poult. Sci. 68:546-557.
Leeson, S., and J. D. Summers. 1991. Commercial Poultry Nutrition. University Books Publisher, Guelph, Ontario, Canada. pp. 58-59.
Leeson, S., and L. J. Caston. 1991. Growth and development of Leghorn pullets subjected to abrupt changes in environmental temperature and dietary energy level. Poult. Sci. 70:1732-1738.
Lin, H., L. F. Wang, J. L. Song, Y. M. Xie, and Q. M. Yang. 2002. Effect of dietary supplemental levels of vitamin A on the egg production and immune responses of heat-stressed laying hens. Poult. Sci. 81:458-465.
Lorcher, K., and R. D. Hodges. 1969. Some possible mechanisms of formation of the carbonate fraction of eggshell calcium carbonate. Comp. Biochem. Physiol. 28:119-128.
Mack, L. A., Felver-Gant, J. N., Dennis, R. L., and Cheng, H. W. 2013. Genetic variations alter production and behavioral responses following heat stress in 2 strains of laying hens. Poult. Sci. 92(2):285-294. doi: 10.3382/ps.2012-02589
MacLeod, M. G., T. R. Jewitt, and J. E. M. Anderson. 1988. Diurnal variation in the metabolic rate and physical activity of domestic fowl kept on standard and interrupted lighting patterns. Br. Poult. Sci. 29:231-244.
Mahmoud, K. Z., Beck, M. M., Scheideler, S. E., Forman, M. F., Anderson, K. P., and Kachman, S. D. (1996). Acute High Environmental Temperature and Calcium- Estrogen Relationships in the Hen. Poult. Sci. 75(12):1555-1562.
Makled, M. N., and O. W. Charles. 1987. Eggshell quality as influenced by sodium bicarbonate, calcium source and photoperiod. Poult. Sci. 66:705-712.
Mashaly, M. M., G. L. Hendricks, M. A. Kalama, A. E. Gehad, A. O. Abbas, and P. H. Patterson. 2004. Effect of heat stress on production parameters and immune responses of commercial laying hens. Poult. Sci. 83:889-894.
Mateos, G. G., and J. L. Sell. 1981. Influence of fat and carbohydrate source on rate of food passage of semi-purified diets for laying hens. Poult. Sci. 60:2114-2119.
May, J. D., and B. D. Lott. 1992. Feed consumption patterns of broilers at high environmental temperatures. Poult. Sci. 71:331-336.
McFarlane, J. M., and S. E. Curtis. 1989. Multiple concurrent stressors in chicks. 3. Effects on plasma corticosterone and the heterophil:lymphocyte ratio. Poult. Sci. 68:522-527.
McFarlane, J. M., S. E. Curtis, R. D. Shanks, and S. G. Carmer. 1989. Multiple concurrent stressors in chicks. 1. Effect on weight gain, feed intake, and behavior. Poult. Sci. 68:501-509.
Melesse, A., Maak, S., Pingel, H., and vonLengerken, G. (2013). Assessing the thermo- tolerance potentials of five commercial layer chicken genotypes under long- term heat stress environment as measured by their performance traits. J. Anim. Prod. Adv. 3(8):254-264.
Melesse, A., Maak, S., Schmidt, R., and von Lengerken, G. (2011) Effect of long-term heat stress on some performance traits and plasma enzyme activities in Naked-neck chickens and their F1 crosses with commercial layer breeds. Live. Sci. 141(2):227-231.
Miller, E. R., H. R. Wilson, and R. H. Harms. 1977. Serum calcium and phosphorus levels in hens relative to the time of oviposition. Poult. Sci. 56:1501-1503.
Miller, L., and M. A. Qureshi. 1992. Induction of heat shock proteins and phagocytic function of chicken macrophage following in vitro heat exposure. Vet. Immunol. Immunopathol. 30:179-191.
Miller, P. C., and M. L. Sunde. 1975. The effects of precise constant and cyclic environments on shell quality and other lay performance factors with Leghorn pullets. Poult. Sci. 54:36-46.
Mongin, P. E. 1968. Role of acid-base balance in the physiology of egg shell formation. World’s Poult. Sci. J. 24:200-230.
Mueller, W. J. 1961. The effect of constant and fluctuating temperature on the biological performance of laying pullets. Poult. Sci. 40:1562-1571.
Muiruri, H. K., and P. C. Harrison. 1991. Effect of peripheral foot cooling on metabolic rate and thermoregulation of fed and fasted chicken hens in a hot environment. Poult. Sci. 70:74-79.
Nathan, D. B., E. D. Heller, and M. Perek. 1976. The effect of short heat stress upon leucocyte count, plasma corticosterone level, plasma and leukocyte ascorbic acid content. Br. Poult. Sci. 17:481-485.
Nir, I. 1992. Optimization of poultry diets in hot climates. Proceedings of the 19th World’s Poultry Congress 2:71-76.
Njoku, P. C., and A. O. U. Nwazota. 1989. Effect of dietary inclusion of ascorbic acid and palm oil on the performance of laying hens in a hot tropical environment. Br. Poult. Sci. 30:831-840.
Novero, R. P., M. M. Beck, E. W. Gleaves, A. L. Johnson, and J. A. Deshazer. 1991. Plasma progesterone, luteinizing hormone concentrations, and granulose cell responsiveness in heat-stressed hens. Poult. Sci. 70:2335-2339.
Odem, T. W., P. C. Harrison, and W. G. Bottje. 1986. Effect of thermal induced respiratory alkalosis on blood ionized calcium levels in the domestic hen. Poult. Sci. 65:570-573.
Odom, T. W., P. C. Harrison, and M. J. Darre. 1985. The effects of drinking carbonated water on the egg shell quality of Single Comb White Leghorn hens exposed to high environmental temperature. Poult. Sci. 64:594-596.
Odom, T. W., P. C. Harrison, B. Maine, and W. G. Bottje. 1982. Changes in blood acid-base balance and blood ionized calcium concentrations of SCWL hens during an acute heat stress. Poult. Sci. 61:1519-1520.
Ogle, C. K., J. F. Valente, X. Guo, B. G. Li, J. D. Ogle, and J. W. Alexander. 1997. Thermal injury induces the development of inflammatory macrophages from nonadherent bone marrow cells. Inflammation. 21:569-582.
Orban, J. I., D. A. Roland, Sr., K. Cummins, and R. T. Lovell. 1993. Influences of large doses of ascorbic acid on performance, plasma calcium, bone characteristics, and egg shell quality in broilers and Leghorn hens. Poult. Sci. 72:691-700.
Pardue, S. L., J. P. Thaxton, and J. Brake. 1985. Role of ascorbic acid in chicks exposed to high environmental temperature. J. Appl. Physiol. 58:1511-1520.
Patterson, P. H., M. L. Sunde, E. M. Schieber, and W. B. White. 1988. Wheat middlings as an alternate feedstuff for laying hens. Poult. Sci. 67:1329-1338.
Payne, C. G. 1966. Practical aspects of environmental temperature for laying hens. World’s Poult. Sci. J. 22:126-139.
Peebles, E. D., and J. Brake. 1985. Relationship of dietary ascorbic acid to broiler breeder performance. Poult. Sci. 64:2041-2048.
Pepper, W. F., C. M. Winget, and S. J. Slinger. 1961. Influence of calcium and ascorbic acid on egg shell quality. Poult. Sci. 40:657-662.
Perek, M., and J. Kendler. 1962. Vitamin C supplementation to hen’s diet in a hot climate. Poult. Sci. 41:677-678.
Perek, M., and J. Kendler. 1963. Ascorbic acid as a dietary supplement for white Leghorn hens under conditions of climatic stress. Br. Poult. Sci. 4:196-200.
Puthgonsiripon, U., S. E. Sheideler, J. L. Sell, and M. M. Beck. 2001. Effects of vitamin E and C supplementation on performance, in-vitro lymphocyte proliferation and antioxidant status of laying hens during heat stress. Poult. Sci. 80:1190-1200.
Reid, B. L. 1979. Nutrition of laying hens. Proceedings Georgia Nutrition Conference. University of Georgia. Athens. 15-18.
Reid, B. L., and C. W. Weber. 1973. Dietary protein and sulfur amino acid levels for laying hens during heat stress. Poult. Sci. 52:1335-1343.
Reid, B. L., and C. W. Weber. 1975. Supplemental dietary fat and laying hen performance. Poult. Sci. 54:422-428.
Reilly, W. M., K. W. Koelkebeck, and P. C. Harrison. 1991. Performance evaluation of heat-stressed commercial broilers provided water-cooled floor perches. Poult. Sci. 70:1699-1703.
Richards, S. A. 1970. Physiology of thermal panting in birds. Annals of Biology, Anim. Biophysi. 10:151-168.
Samara, M. H., Robbins, K. R., and Smith, M. O. 1996. Environmental heat stress does not reduce blood ionized calcium concentration in hens acclimated to elevated temperatures. Poult. Sci. 75(2):197-200.
Sapolsky, R., C. Rivier, G. Yamamoto, P. Plotsky, and W. Vale. 1987. Interleukin-1 stimulates the secretion of hypothalamic corticotrophin-releasing factor. Sci. 238:522-524.
Scheideler, S. E., and G. W. Froning. 1996. The combined influence of dietary flaxseed variety, level, form, and storage conditions on egg production and composition among vitamin E supplemented hens. Poult. Sci. 75:1221-1226.
Scott, M. L. 1976. Effects of heat on vitamin metabolism. In: Tromps, S. W. (ed.) Progress in Biometeorology. Swets and Zeitinger, Amsterdam, pp. 275-282.
Smith, A. J., and J. Oliver. 1972a. Some nutritional problems associated with egg production at high environmental temperatures. 1. The effect of environmental temperature and rationing treatments on the productivity of pullets fed on diets of different energy content. Rhod. J. Agric. Res. 10:3-21.
Smith, A. J., and J. Oliver. 1972b. Some nutritional problems associated with egg production at high environmental temperatures. 4. The effect of prolonged exposure to high environmental temperatures on the productivity of pullets fed on high-energy diets. Rhod. J. Agric. Res. 10:43-60.
Smith, A. J., and L. Oliver. 1971. Some physiological effects of high temperature on the laying hen. Poult. Sci. 50:912-916.
Snetsinger, D. C., and R. A. Zimmerman. 1974. Limiting the energy intake of laying hens. In: Energy Requirements of Poultry, T. R. Morris and B. M. Freeman. (eds.). Br. Poult. Sci. Ltd.
Sykes, A. H., and A. R. A. Fataftah. 1986b. Effect of a change in environmental temperature on heat tolerance in laying fowl. Br. Poult. Sci. 27:307-316.
Tanaka, Y., and H. F. Deluca. 1973. The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch. Biochem. Biophys. 154:566-574.
Tanor, M. A., S. Leeson, and J. D. Summers. 1984. Effect of heat stress and diet composition on performance of White Leghorn hens. Poult. Sci. 63:304-310.
Teeter, R. G., and M. O. Smith. 1986. High chronic ambient temperature stress effects on broiler acid-base balance and their response to supplemental ammonium chloride, potassium chloride, and potassium carbonate. Poult. Sci. 65: 1777-1781.
Treat, C. M., B. L. Ried, R. E. Davies, and J. R. Couch. 1960. The effect of animal fat and mixtures of animal fat on performance of cage layers. Poult. Sci. 39:1550-1555.
Usayran, N., M. T. Farran, H. H. O. Awadallah, I. R. Al-Hawi, R. J. Asmar, and V. M. Ashkarian. 2001. Effects of added dietary fat and phosphorus on the performance and egg quality of laying hens subjected to a constant high environmental temperature. Poult. Sci. 80:1695-1701.
Van Kampen, M. 1988. Effects of drinking water temperature and leg cooling on heat stress of laying hens (Gallus domesticus). J. Therm. Biol. 13:43-47.
Whitehead, C. C., and T. Keller. 2003. An update on ascorbic acid in poultry. World’s Poult. Sci. J. 59:161-184.
Whitehead, C. C., S. Bollengier-Lee, M. A. Mitchell, and P.E. Williams. 1998. Vitamin E can alleviate the depressed egg production of heat-stressed laying hens. Br. Poult. Sci. 39:544-546.
Wilson, W. O., S. Itoh, and T. D. Siopes. 1972. Production traits of Leghorn pullets in controlled temperatures. Poult. Sci. 51:1014-1023.
Wilson, W. O., T. D. Siopes, D. C. Lowrey, C. F. Petersen, B. L. Reid, and F. B. Mather. 1973. Influence of egg production by pullets in controlled environments on their energy intake. Poult. Sci. 52:2103.
Wolfenson, D., D. Bachrach, M. Maman, Y. Graber, and I. Rozenboim. 2001. Evaporative cooling of ventral regions of the skin in heat-stressed laying hens. Poult. Sci. 80:958-964.
Wolfenson, D., F. E. Frei, N. Snapir, and A. Nerman. 1979. Effect of diurnal or nocturnal heat stress on egg formation. Poult. Sci. 20:167-174.
Wolfenson, D., Y. F. Frei, N. Snapir, and A. Berman. 1981. Heat stress effects on capillary blood flow and its redistribution in the laying hen. Eur. J. Physiol. 390:89-93.
Xin, H., R. S. Gates, M. C. Puma, and D. U. Ahn. 2002. Drinking water temperature effects on laying hens subjected to warm cyclic environments. Poult. Sci. 81:608-617.
Zhou, W. T., M. Fujita, S. Yamamoto, K. Iwasaki, R. Ikawa, H. Oyama, and H. Horikawa. 1998. Effects of glucose in drinking water on the changes in whole blood viscosity and plasma osmolality of broiler chickens during high temperature exposure. Poult. Sci. 77:644-647.
Zulkifi, I., E. A. Dunnington, W. B. Gross, and P. B. Siegel. 1994. Inhibition of adrenal steroidogenesis, food restriction and acclimation of high ambient temperatures in chickens. Br. Poult. Sci. 35:417-426.
Zulkifi, I., M. T. Norma, D. A. Israf, and A. R. Omar. 2000. The effect of early age feed restriction on subsequent response to high environmental temperatures in female broiler chickens. Poult. Sci. 79:1401-1407.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔