跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 07:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王怡馨
研究生(外文):Wang, Yi-Hsin
論文名稱:應用葉綠素螢光評估 Bacillus amyloliquefaciens 提升阿拉 伯芥之植物免疫反應的動態變化
論文名稱(外文):Evaluation of dynamic changes of chlorophyll fluorescence on plant immunity intensified by Bacillus amyloliquefaciens in Arabidopsis thaliana
指導教授:林宜賢林宜賢引用關係賴宜鈴賴宜鈴引用關係
指導教授(外文):Lin, Yi-HsinLai, I-Ling
口試委員:黃姿碧
口試委員(外文):Huang, Tzu-Pi
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:植物醫學系所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:69
中文關鍵詞:植物免疫PFLP (Plant-ferredoxin like protein)葉綠素螢光Bacillus amyloliquefaciensETR (Electron Transport Rate)  
外文關鍵詞:Photosynthesischlorophyll fluorescenceplant immunityElectron transport rate (ETR)
相關次數:
  • 被引用被引用:3
  • 點閱點閱:437
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
目前已有研究利用甜椒上發現之 PFLP (Plant-ferredoxin like protein)蛋白及有益微生物提升植物免疫達到抗病效果。然而植物免疫反應的發生常與光合作用系統的效能有關,可造成光合作用效率的改變。葉綠素螢光分析為一種檢測快速且非破壞之技術,且已有研究發現鞭毛蛋白 flg22 可在誘導植物免疫發生時造成葉綠素螢光值的改變。為了進一步探討提升植物免疫反應發生時之各項葉綠素螢光變化,本研究首先利用植物病原細菌誘引物與可提升植物免疫之 PFLP 蛋白進行葉綠素螢光之變化。結果顯示僅有 Electron Transport Rate (ETR) 這項參數於 2 、4 與24小時在 PFLP 與 flg22Pst 共同處理中此參數均顯著下降。且與以軟腐病菌 (Pectobacterium carotovorum subsp. carotovorum) 本身做為誘引物時之趨勢一致。以上結果推測欲分析植物免疫之提升,可應用ETR 值在第 2 與4 小時進行快速分析。為了進一步探討拮抗微生物是否有類似於 PFLP 之效果,利用 flg22Pst 及已證明可強化植物免疫反應之Bacillus amyloliquefaciens PMB05 菌株處理後分析各項螢光數值,結果顯示 PMB05 菌株亦可使 ETR 於第 2 與 4 小時之數值顯著低於flg22Pst 單獨處理組及以 Tris buffer 處理之對照組。再以 PMB05 菌株及軟腐病菌共同處理之 ETR 也與前述 flg22Pst 為誘導物之結果一致。此外,可利用葉綠素螢光系統 ETR 之影像進行觀察植物免疫反應提升的變化情形。同時以 B. amyloliquefaciens PMB05 菌株進行免疫訊號激活化氧及癒傷葡聚醣累積與植物抗病性之分析,結果顯示 PMB05 確實可提升阿拉伯芥上 flg22Pst 所誘導激活化氧產生與癒傷葡聚醣累積及對軟腐病的抗病性。此外, PMB05 菌株亦可增強軟腐細菌另一種誘引物 HrpN 誘引物所誘導之免疫訊號。進一步以其他土壤分離具有良好拮抗特性之 Bacillus spp. 菌株處理後進行免疫訊號、 ETR 參數變化及對軟腐病之抗病性分析。結果顯示,在免疫訊號上僅 PMB03菌株與 PMB05 菌株同樣可顯著提升 HrpN 所誘導之激活化氧產生及癒傷葡聚醣累積,推測 PMB03 亦為具提升植物免疫之微生物。進一步在光照強度PAR 611與701 (μmol m-2 s-1) 時分析 ETR參數之結果顯示,僅 PMB03 菌株與 PMB05 菌株的 ETR 數值較 HrpN 單獨處理顯著下降。最後以上述 Bacillus spp. 菌株對軟腐病的抗病性分析結果顯示,僅有 PMB03菌株與 PMB05 菌株可顯著降低軟腐病之發生。綜合上述,本研究已建立出利用葉綠素螢光之變化分析拮抗微生物所強化植物對細菌性軟腐病病原誘引物辨識後之植物免疫反應發生,可作為提升植物免疫之微生物快速篩選平台的基礎模式。
Recently, PFLP (plant ferredoxin-like protein) found in peppers and beneficial microorganisms enhances plant resistance against diseases. This disease resistance is associated with the intensification of PAMPs-triggered immunity. Activation of plant immune response is affected by the effectiveness of photosynthetic system. To assay this parameter, Chlorophyll fluorescence is a rapid and non-invasive method. This method has been found that flagellin flg22 changes chlorophyll fluorescence during the activation of plant immunity. To gain more insight of this response, we use elicitor of flagellin and PFLP which could enhance plant immunity to investigate the changes of chlorophyll fluorescence. As a result, ETR was significantly decreased at 2, 4, and 24 hours post-infiltration of flg22Pst and PFLP. Moreover, the use of Pectobacterium carotovorum subsp. carotovorum strain Ecc17 as an elicitor showed a similar result. It suggests that we can use ETR to analyze the promotion of plant immune response by PFLP upon the inoculation of the strain Ecc17 at 2 or 4 h post-infiltration. Furthermore, we found that PMB05 affects ETR at 2 and 4 h post infiltration. In addition, we found the changes in the imaging of chlorophyll fluorescence as well. Furthermore, PMB05 was used to assay the rapid H2O2 generation, callose deposition, and the plant resistance to soft rot disease. Results showed that the strain PMB05 enhanced rapid H2O2 generation and callose deposition, and suppressed the disease severity. In addition, the strain PMB05 also can enhance plant immunity that induced by another elicitor, HrpN. Other Bacillus species strains such as PMB03 and PMB05 that have antagonistic effect were further used to analyze plant immunity, ETR of chlorophyll fluorescence parameter, and plant resistance against soft rot disease. The results revealed that strain PMB03 and PMB05 enhanced H2O2 generation and callose deposition. In the same time, the ETR in the light of 611 and 701 (μmol m-2 s-1) and disease severity which induced by HrpN were decreased. In conclusion, this study provided evidence that chlorophyll fluorescence can be used as an indicator to demonstrate that antagonistic microorganisms can enhance plant immunity through the recognition of the elicitors derived from P. carotovorum subsp. carotovorum. Moreover, chlorophyll fluorescence can be used as a basic model for rapid screening platform for the selection of microbes that enhance plant immunity.
摘要 I
Abstract III
致 謝 V
目錄 VII
圖表目錄 XI
壹、前言 1
貳、前人研究 3
一、細菌性軟腐病 3
二、植物免疫反應 3
三、PFLP 重組蛋白提升植物抗病之機制研究 4
四、葉綠素螢光於植物逆境檢測技術原理與應用 5
五、生物防治 6
參、材料方法 8
一、供試植物之生長條件 8
二、軟腐病菌株之生長條件 8
三、flg22Pst 之製備 8
四、PFLP重組蛋白之製備 8
五、HrpN誘引蛋白之製備 9
六、 HrpN 誘引蛋白與 PFLP 重組蛋白質含量之測定 10
七、阿拉伯芥葉片過敏性反應之分析 10
八、葉綠素螢光參數之分析 10
九、 供試拮抗微生物 Bacillus species 菌株來源與培養 11
十、Bacillus species 菌株提升 flg22Pst 與 HrpN 所誘導植株之免疫反應情形 11
十一、重組蛋白與 Bacillus spp. 對細菌性軟腐病於阿拉伯芥植株防治之罹病度分析 12
十二、 Bacillus species 對軟腐細菌拮抗圈之測試 13
十三、統計分析 13
肆、結果 14
一、重組蛋白 PFLP 提升過敏性反應之分析 14
二、重組蛋白 PFLP 強化 flg22pst 所誘導植物免疫之葉綠素螢光分析 14
三、重組蛋白 PFLP 提升阿拉伯芥抗病性之研究 15
四、重組蛋白 PFLP 強化 Pectobacterium carotovorum subsp. carotovorum Ecc17 所誘導植物免疫時之葉綠素螢光分析 15
五、應用Bacillus amyloliquefaciens PMB05 為模式評估植物免疫訊號 16
六、Bacillus amyloliquefaciens PMB05 提升過敏性反應之分析 17
七、Bacillus amyloliquefaciens PMB05強化 flg22pst 所誘導植物免疫之葉綠素螢光分析 17
八、Bacillus amyloliquefaciens PMB05 提升阿拉伯芥抗病性之研究 18
九、 Bacillus amyloliquefaciens PMB05 對 Pectobacterium carotovorum subsp. carotovorum Ecc17 所誘導植物免疫之葉綠素螢光分析 18
十、重組蛋白 PFLP 或 Bacillus amyloliquefaciens PMB05 菌株提升植物免疫之葉綠素螢光影像變化分析 19
十一、應用Bacillus amyloliquefaciens PMB05菌株於HrpN 所誘導之植物免疫訊號評估 20
十二、應用其他 Bacillus species 菌株於 HrpN 所誘導葉綠素之 ETR 螢光值與影像變化分析 21
十三、應用其他 Bacillus spp. 菌株於 HrpN 所誘導之植物免疫訊號評估 21
十四、應用其他 Bacillus spp. 菌株於 HrpN 所誘導之抗病性評估 22
十五、應用其他 Bacillus spp. 菌株對細菌性軟腐病之拮抗分析 23
伍、討論 24
陸、參考文獻 28
柒、圖表 36
作者簡介 69


圖表目錄

表 一、本實驗所使用菌株與質體 41
圖 一、PFLP 重組蛋白於阿拉伯芥野生株提升 flg22Pst 所誘導之過敏性反應及葉片變化圖。 45
圖 二、阿拉伯芥野生株處理flg22Pst與PFLP之綠素螢光參數Fv/Fm變化。 46
圖 三、阿拉伯芥野生株處理flg22Pst與PFLP之綠素螢光參數ETR變化。 47
圖 四、阿拉伯芥野生株處理flg22pst與PFLP之綠素螢光參數Y(NPQ)變化。 48
圖 五、阿拉伯芥野生株處理flg22Pst與PFLP之綠素螢光參數Y(NO)變化。 49
圖 六、PFLP阿拉伯芥野生株提升對細菌性軟腐病之抗病性影響及葉片病徵變化圖。 50
圖 七、阿拉伯芥野生株處理Pectobacterium carotovorum subsp. carotovorum與PFLP之綠素螢光參數Fv/Fm變化。 51
圖 八、阿拉伯芥野生株處理Pectobacterium carotovorum subsp. carotovorum與PFLP之綠素螢光參數ETR變化。 52
圖 九、阿拉伯芥野生株處理Pectobacterium carotovorum subsp. carotovorum與PFLP之綠素螢光參數Y(NPQ) 變化。 53
圖 十、阿拉伯芥野生株處理Pectobacterium carotovorum subsp. carotovorum與PFLP之綠素螢光參數Y(NO)變化。 54
圖 十一、Bacillus amyloliquefaciens PMB05於阿拉伯芥上強化flg22pst所誘導之激活化氧快速產生。 55
圖 十二、Bacillus amyloliquefaciens PMB05於阿拉伯芥上強化flg22Pst所誘導之癒傷葡聚醣的累積。 56
圖 十三、Bacillus amyloliquefaciens PMB05 於阿拉伯芥野生株提升 flg22pst 所誘導之過敏性反應及葉片變化圖。 57
圖 十四、Bacillus amyloliquefaciens PMB05在阿拉伯芥上對flg22Pst 誘導之葉綠素螢光參數Fv/Fm的改變。 58
圖 十五、Bacillus amyloliquefaciens PMB05在阿拉伯芥上對flg22pst 誘導之葉綠素螢光參數ETR的改變。 59
圖 十六、Bacillus amyloliquefaciens PMB05在阿拉伯芥上對flg22Pst 誘導之葉綠素螢光參數Y(NPQ)的改變。 60
圖 十七、Bacillus amyloliquefaciens PMB05在阿拉伯芥上對flg22Pst 誘導之葉綠素螢光參數Y(NO)的改變。 61
圖 十八、Bacillus amyloliquefaciens PMB05於阿拉伯芥野生株提升對細菌性軟腐病之抗病性影響。 62
圖 十九、Bacillus amyloliquefaciens PMB05在阿拉伯芥上對Pectobacterium carotovorum subsp. carotovorum 誘導之葉綠素螢光參數Fv/Fm的改變。 63
圖 二十、Bacillus amyloliquefaciens PMB05在阿拉伯芥上對Pectobacterium carotovorum subsp. carotovorum 誘導之葉綠素螢光參數ETR的改變。 64
圖 二十一、 Bacillus amyloliquefaciens PMB05在阿拉伯芥上對Pectobacterium carotovorum subsp. carotovorum 誘導之葉綠素螢光參數Y(NPQ) 的改變。 65
圖 二十二、 Bacillus amyloliquefaciens PMB05在阿拉伯芥上對Pectobacterium carotovorum subsp. carotovorum 誘導之葉綠素螢光參數Y(NO) 的改變。 66
圖 二十三、PFLP 在阿拉伯芥對誘引物所誘導之葉綠素ETR螢光影像的變化。 67
圖 二十四、Bacillus amyloliquefaciens PMB05 在阿拉伯芥對誘引物所誘導之葉綠素ETR螢光影像的變化。 68
圖 二十五、Bacillus amyloliquefaciens PMB05於阿拉伯芥上強化HrpN所誘導之之激活化氧快速產生。 69
圖 二十六、Bacillus amyloliquefaciens PMB05於阿拉伯芥上強化HrpN所誘導之癒傷葡聚醣的累積。 70
圖 二十七、Bacillus spp. 在阿拉伯芥對HrpN 誘導之葉綠素螢光參數ETR的動態及影像變化。 71
圖 二十八、Bacillus spp. 菌株於阿拉伯芥上對HrpN誘導激活化氧快速產生之影響。 72
圖 二十九、Bacillus spp. 菌株於阿拉伯芥上對HrpN誘導癒傷葡聚醣累積之影響。 73
圖 三十、Bacillus spp. 菌株於阿拉伯芥野生株對細菌性軟腐病之抗病性影響。 74
圖 三十一、Bacillus spp. 菌株於NA培養基上對細菌性軟腐病菌之拮抗圈。 75


1. 吳意眉。2016。利用 Bacillus spp. 防治草莓炭疽病及其可能機制探討。屏東科技大學植物醫學系碩士論文。屏東。61頁。
2. 張俊傑。2016。藉由Bacillus amyloliquefaciens啟動西瓜內源之免疫反應於果斑病之防治。屏東科技大學植物醫學系碩士論文。屏東。56頁。
3. 黃㯖昌、曾國欽、呂昀陞。2007。細菌性軟腐病之診斷與鑑定。植物重要防疫檢疫病害診斷鑑定技術研習會專刊 (六)。第109-116頁。
4. 劉敏麗。2011。葉綠素螢光在作物耐熱性篩選之應用。高雄區農業改良場研究彙報。第1- 15頁。
5. 謝廷芳、黃鴻章。2009。病害防治與植物健康管理。2009 花卉健康管理研討會。第 91-102頁。
6. Ahn, I. P. 2007. Disturbance of the Ca(2+)/calmodulin-dependent signalling pathway is responsible for the resistance of Arabidopsis dnd1 against Pectobacterium carotovorum infection. Mol. Plant Pathol. 8: 747-759.
7. Anderson, J. M., and Aro, E. M. 1994. Grana stacking and protection of Photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: An hypothesis. Photosynth. Res. 41: 315-326.
8. Asaka, O., and Shoda, M. 1996. Biocontrol of Rhizoctonia solani Damping-Off of Tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62: 4081-4085.
9. Bais, H. P., Fall, R. and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134: 307-319.
10. Baker, K. F., and Cook, R. J. 1974. Biological control of plant pathogens, pp. 32. Biological control of plant pathogens. W.H. Freeman and Company. Univ. San Francisco, USA. 433 pp.
11. Baz, M., Lahbabi, D., Samri, S., Val, F., Hamelin, G., Madore, I., Bouarab, K., Beaulieu, C., Ennaji, M. M., and Barakate, M. 2012. Control of potato soft rot caused by Pectobacterium carotovorum and Pectobacterium atrosepticum by Moroccan actinobacteria isolates. World J. Microbiol. Biotechnol. 28: 303-311.
12. Berger, S., Benediktyova, Z., Matous, K., Bonfig, K., Mueller, M. J., Nedbal, L. and Roitsch, T. 2007. Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. J. Exp. Bot. 58: 797-806.
13. Bonfig, K. B., Schreiber, U., Gabler, A., Roitsch, T., and Berger, S. 2006. Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta 225: 1-12.
14. Campos, M. L., Kang, J. H., and Howe, G. A. 2014. Jasmonate-triggered plant immunity. J. Chem. Ecol. 40: 657-675.
15. Chaerle, L., Lenk, S., Hagenbeek, D., Buschmann, C., and Straeten, D. V. D. 2007. Multicolor fluorescence imaging for early detection of the hypersensitive reaction to tobacco mosaic virus. J. Plant Physiol. 164: 253-62.
16. Chakravarthy, S.,Velásquez, A.C., Ekengren, S.K., Collmer, A., and Martin, G.B. 2010. Identification of Nicotiana benthamiana genes involved in pathogen-associated molecular pattern–triggered immunity. Mol. Plant-Microbe Interact. 23: 715-726.
17. Chang, H., Huang, H. E., Cheng, C. F., Ho, M. H. and Ger, M. J. 2017. Constitutive expression of a plant ferredoxin-like protein (pflp) enhances capacity of photosynthetic carbon assimilation in rice (Oryza sativa). Transgenic Res. 26: 279-289.
18. Collmer, A., and Keen, N. T. 1986. The role of pectic enzymes in plant pathogenesis. Ann. Rev. Phytopathol. 24: 383-409.
19. Cook, R. J. 1984. Biological control of plant pathogens: theory to applocation, pp. 25-29. In: D. F. Williams [eds.], 1993 Presidential Address, 76th Annual Meeting, Florida Entomological Society: Entomology: The Next Generation, December, 1993, Florida Entomological Society, USA.
20. Cronin, D., Moënne-Loccoz, Y., Fenton, A., Dunne, C., Dowling, D. N., and O'Gara, F. 1997. Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiol. Ecol. 23: 95-106.
21. Davidson, M., Berger, M., Moya, I., Moreno, J., Laurila, T., Stoll, M., and Miller, J. 2003. Mapping photosynthesis from space - A new vegetation-fluorescence technique. ESA bulletin, European Space Agency, European, 34-37.
22. Dodds, P. N., and Rathjen, J. P. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11: 539-548.
23. Doumbou, C. L., Salove, M. K. H., Crawford, D. L., and Beaulieu, C. 2001. Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82: 85-102.
24. Emmert, E. A., and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. Lett. 171: 1-9.
25. Felix, G., Duran, J.D., Volko, S., and Boller, T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18: 265-276.
26. Fukuyama, K. 2004. Structure and function of plant-type ferredoxins. Photosynth. Res. 81: 289-301.
27. Göhre, V., Jones, A. M., Sklenář, J., Robatzek, S., and Weber, A. P. 2012. Molecular Crosstalk Between PAMP-Triggered Immunity and Photosynthesis. Mol. Plant-Microbe Interact. 25: 1083-1092.
28. Ger, M. J., Louh, G. Y., Lin, Y. H., Feng, T. Y., and Huang, H. E. 2014. Ectopically expressed sweet pepper ferredoxin PFLP enhances disease resistance to Pectobacterium carotovorum subsp. carotovorum affected by harpin and protease-mediated hypersensitive response in Arabidopsis. Mol. Plant Pathol. 15: 892-906.
29. Gorbe, E., and Calatayud, A. 2012. Applications of chlorophyll fluorescence imaging technique in horticultural research: A review Scientia Horticulturae 138: 24-35.
30. Hanke, G. T., Kimata-Ariga, Y., Taniguchi, I., and Hase, T. 2004. A post genomic characterization of Arabidopsis ferredoxins. Plant Physiol. 134: 255-264.
31. Hauben, L., Moore, E. R., Vauterin, L., Steenackers, M., Mergaert, J., Verdonck, L., and Swings, J. 1998. Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst. Appl. Microbiol. 21: 384-397.
32. Huang, H. E., Ger, M. J., Chen, C. Y., Yip, M. K., Chung, M. C., and Feng, T. Y. 2006. Plant ferredoxin-like protein (PFLP) exhibits an anti-microbial ability against soft-rot pathogen Erwinia carotovora subsp. carotovora in vitro and in vivo. Plant Sci. 171: 17-23.
33. Huang, H. E., Ger, M. J., Yip, M. K., Chen, C. Y., Pandey, A. K., and Feng, T. Y. 2004. A hypersensitive response was induced by virulent bacteria in transgenic tobacco plants overexpressing a plant ferredoxin-like protein (PFLP). Physiol. Mol. Plant Pathol. 64: 103-110.
34. Jones, J. D., and Dangl, J. L. 2006. The plant immune system. Nature 444: 323-329.
35. Kangasjarvi, S., Tikkanen, M., Durian, G., and Aro, E. M. 2014. Photosynthetic light reactions--an adjustable hub in basic production and plant immunity signaling. Plant Physiol. Biochem. 81: 128-134.
36. Kasajima, I. 2017. Difference in oxidative stress tolerance between rice cultivars estimated with chlorophyll fluorescence analysis. BMC Res. Notes 10: 168.
37. Liau, C. H., Lu, J. C., Prasad, V., Hsiao, H. H., You, S. J., Lee, J. T., Yang, N. S., Huang, H. E., Feng, T. Y., Chen, W. H., and Chan, M. T. 2003. The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium Orchid. Transgenic Res. 12: 329-336.
38. Lin, Y. H., Huang, H. E., Chen, Y. R., Liao, P. L., Chen, C. L., and Feng, T. Y. 2011. C-Terminal Region of Plant Ferredoxin-Like Protein Is Required to Enhance Resistance to Bacterial Disease in Arabidopsis thaliana. Phytopathology 101: 741-749.
39. Lin, Y. H., Huang, H. E., Wu, F. S., Ger, M. J., Liao, P. L., Chen, Y. R., Tzeng, K. C., and Feng, T. Y. 2010. Plant ferredoxin-like protein (PFLP) outside chloroplast in Arabidopsis enhances disease resistance against bacterial pathogens. Plant Sci. 179: 450-458.
40. Lin, Y. H., Lee, P. J., Shie, W. T., Chern, L. L., and Chao, Y. C. 2015. Pectobacterium chrysanthemi as the dominant causal agent of bacterial soft rot in Oncidium ''Grower Ramsey''. Eur. J. Plant Pathol. 142: 331-343.
41. Liu, D., Anderson, N. A., and Kinkel, L. L. 1996. Selection and characterization of strains of Streptomyces suppressive to the potato scab pathogen. Can. J. Microbiol. 42: 487-502.
42. Luna, E., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B., and Ton, J. 2011. Callose deposition: a multifaceted plant defense response. Mol. Plant Microbe. Interact. 24: 183-193.
43. Ma, B., Hibbing, M. E., Kim, H. S., Reedy, R. M., Yedidia, I., Breuer, J., Glasner, J. D., Perna, N. T., Kelman, A., and Charkowski, A. O. 2007. Host Range and Molecular Phylogenies of the Soft Rot Enterobacterial Genera Pectobacterium and Dickeya. Phytopathology 97: 1150-1163.
44. Macho, A. P., and Zipfel, C. 2015. Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr. Opin. Microbiol. 23: 14-22.
45. Maxwell, K., and Johnson, G. N. 2000. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51: 659-668.
46. Murchie, E. H., and Lawson, T. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64: 3983-398.
47. Namukwaya, B., Tripathi, L., Tripathi, J. N., Arinaitwe, G., Mukasa, S. B., and Tushemereirwe, W. K. 2012. Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease. Transgenic Res. 21: 855-865.
48. Nicaise, V., Roux, M., and Zipfel, C. 2009. Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol. 150: 1638-1647.
49. Ongena, M., and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16: 115-25
50. Oslizlo, A., Stefanic, P., Vatovec, S., Beigot Glaser, S., Rupnik, M., and Mandic-Mulec, I. 2015. Exploring ComQXPA quorum-sensing diversity and biocontrol potential of Bacillus spp. isolates from tomato rhizoplane. Microb. Biotechnol. 8: 527-540.
51. Pérombelon, M. C. M. 2002. Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol. 51: 1-12.
52. Pereira, F. M. V., Milori, D. M. B. P., Pereira-Filho, E. R., Venâncio, A. L., Russo, M. d. S. T., Cardinali, M. C. d. B., Martins, P. K., and Freitas-Astúa, J. 2011. Laser-induced fluorescence imaging method to monitor citrus greening disease. Computers and Electronics in Agriculture 79: 90-93.
53. Qin, J. 2008. Detecting citrus canker by hyperspectral reflectance imaging and spectral information divergence, pp. 1-15. 2008 ASABE Annual International Meeting Sponsored,June 29- July 2, 2008, Rhode Island Convention Center, Providence, Rhode Island , USA.
54. Sahin, N. 2005. Antimicrobial activity of Streptomyces species against mushroom blotch disease pathogen. J. Basic Microbiol. 45: 64-71.
55. Sharga, B. M., and Lyon, G. D. 1998. Bacillus subtilis BS 107 as an antagonist of potato blackleg and soft rot bacteria. Can. J. Microbiol. 44: 777-783.
56. Singh, D., Yadav, D. K., Chaudhary, G., Rana, V. S., and Sharma, R. K. 2016. Potential of Bacillus amyloliquefaciens for Biocontrol of Bacterial Wilt of Tomato Incited by Ralstonia solanacearum. J. Plant Pathol. Microbiol. 7: 1-6.
57. Song, X., Zhou, G., Xu, Z., Lv, X., and Wang, Y. 2016. Detection of Photosynthetic performance of Stipa bungeana seedlings under climatic change using chlorophyll fluorescence imaging. Front. Plant Sci. 6: 1254.
58. Studier, F. W., and Moffattf, B. A. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. MoZ. Biol. 189: 113-130.
59. Su, Y.-H., Hong, C.Y., and Lin, Y.-H. 2014. Plant ferredoxin-like protein enhances resistance to bacterial soft rot disease through PAMP-triggered immunity in Arabidopsis thaliana. Eur. J. Plant Pathol. 140: 377-384.
60. Taiz, L., and Zeiger, E. 2003. Photosynthesis: The light reactions. pp. 111-143. Plant Physiology. Sinauer Associates, Sunderland. 675 pp.
61. Tang, K., Sun, X., Hu, Q., Wu, A., Lin, C., Lin, H., Twyman, R. M., Christou, P. and Feng, T. 2001. Transgenic rice plants expressing the ferredoxin-like protein (AP1) from sweet pepper show enhanced resistance to Xanthomonas oryzae pv. oryzae. Plant Sci. 160: 1035-1042.
62. Thomson, N. R., Thomas, J. D., and Salmond, G. P. C. 1999. 12 Virulence Determinants in the Bacterial Phytopathogen Erwinia. 29: 347-426.
63. Toth, I. K., Bell, K. S., Holeva, M. C., and Birch, P. R. 2003. Soft rot erwiniae: from genes to genomes. Mol. Plant Pathol. 4: 17-30.
64. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52: 487-511.
65. Xu, G. W., Gross, D. C. 1986. Selection of fluorescence Pseudomonads antagonistic to Erwinia carotovora and supressive of potato seed piece decay. Phytopathology 76: 414-422.
66. Xu, Z. Z., and Zhou, G. S. 2006. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224: 1080-1090.
67. Zipfel, C. 2009. Early molecular events in PAMP-triggered immunity. Curr. Opin. Plant Biol. 12: 414-420.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊