(44.192.10.166) 您好!臺灣時間:2021/03/06 20:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳亞聖
研究生(外文):Chen, Ya-Sheng
論文名稱:酪梨(Persea americana Mill.)生育習性及果實品質提升之研究
論文名稱(外文):Studies on Growth Characteristics and Fruit Quality Improvement in Avocado (Persea americana Mill.)
指導教授:顏昌瑞
指導教授(外文):Yen, Chung-Ruey
口試委員:邱祝櫻梁佑慎
口試委員(外文):Chiou, Chu-YingLiang, Yu-Shen
口試日期:2017-05-02
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:農園生產系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:81
中文關鍵詞:酪梨激勃素二氧化碳果實發育植株生育
外文關鍵詞:AvocadoGibberellinsCarbon dioxideFruit developmentPlant growth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:344
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
酪梨(Persea americana Mill.)為樟科(Lauraceae)常綠果樹,起源於中美洲、南美洲北部及墨西哥。酪梨含有豐富的不飽和脂肪酸,膳食纖維,蛋白質,維生素,抗氧化劑及礦物質,被認為是營養最豐富的水果之一。本試驗以瑞昌農場栽種高屏地區常見酪梨品種‘清進二號’、‘清進一號’及‘章安’進行生育調查及果實品質之測定,以瞭解品種間生育習性及果實品質之差異建立相關資料,以利往後栽培及研究發展參考,並於小果期噴施生長調節劑或進行二氧化碳處理觀察果實生長情形,分析果實品質觀察是否有品質提升之效用,達到獲得更高經濟效益之目的。

在‘清進二號’、‘清進一號’及‘章安’ 等品種植物生育調查及果實品質方面,‘章安’1月至3月為開花期,4至7月中旬為果實生長期,6月下旬即可採收,枝條的生長期主要在1至4月及9月至11月;‘清進一號’在10月下旬至2月為開花期,3至6月中旬為果實生長期,5月下旬即可採收,枝條的生長期主要在12至4月及8月至10月;‘清進二號’開花期為1月至3月,4至7月中旬為果實生長期,6月中旬即開始採收,枝條的生長期主要在2至5月及9月至11月。在本試驗中,三品種‘清進一號’、‘清進二號’及‘章安’,單以果實品質表現,以‘清進二號’果實品質較佳,具有較高的可溶性固形物(7.6 °Brix)與可滴定酸(0.22%)。若以果實重量來看,‘清進一號’有較大的果重(503.1 g)。

激勃素顯著影響果實品質及重量,除了速勃+豪大果混合液(SH) 500 ppm處理的果重較低為318.2 g之外,所有激勃素處理的果重均高於對照組之334.7 g。在果肉率方面,所有處理果肉率除了S 1000 ppm處理為79.9%外,其他處理皆高於80%,其中SH 500 ppm處理果肉率達84.3%。在本試驗中,除了H 500 ppm及SH 500 ppm處理可溶性固形物含量為4.2 °Brix及4.8 °Brix之外,所有處理在可溶性固形物含量都有提升。在果肉率及種子大小方面,以SH 500 ppm處理的結果最為理想,有較高的果肉率為84.3%及較小的種子重為35.2 g,但在果實大小卻是所有處理之中最小的。綜合試驗結果,在所有激勃素處理中,SH 1000 ppm處理在果實大小及果實品質方面是表現較好,其果重達459.3 g,果肉率82.2%,雖然種子重量仍然較大為58.8 g,但在品質方面亦不差,其可溶性固形物含量為5.8 °Brix,可滴定酸含量為0.14%。因此推薦使用SH 1000 ppm處理來增加酪梨產量及果實品質。

二氧化碳處理可顯著增加葉片上之總醣含量。二氧化碳處理與對照組在果重、果長、果寬、果肉重、果肉率、種子重、種子長及種子寬沒有顯著性差異。果實可溶性固形物含量方面,處理組(6.3 °Brix)顯著高於對照組(5.5 °Brix),而可滴定酸含量也顯著比對照組增加0.11%。二氧化碳處理能提高酪梨果實可溶性固形物及可滴定酸含量,因此增進果實的品質,但對於果實外觀並沒有太大影響。但本試驗之處理方法,其一原因為包覆枝條造成袋中成為小空間,而微氣候卻難以控制,不僅會累積水蒸氣,更會使枝條受傷,另一原因為葉片採樣造成果樹供源(source)的減少而導致的結果,雖然有達到實驗預期的效果,但在實踐方面還需要更進一步改良。
Avocado (Persea americana Mill.) is an evergreen fruit tree of Lauraceae, originated in Central America, South America and Mexico. Avocado is rich of unsaturated fatty acids, dietary fiber, protein, vitamins, antioxidants and minerals and considered to be one of the most nutritious and potential fruits. The growth characteristics and the fruit quality of Avocado cultivars ‘Cing-Jin NO.2’, ‘Cing-Jin NO.1’ and ‘Jhang-An’ which grew in Ruey-Chung farm in Pingtung, were studied for reference of future cultivation and research. Gibberellin and carbon dioxide were treated during young fruit period to observe their effects on fruit growth and quality.

Study of growth characteristics showed that variety ‘Jhang-An’ flowered during January to March, fruit growth from April to the mid-July and ready for harvest in June. Branch growth was mainly in January to April and September to November; Variety ‘Cing-Jin NO.1’ flowered during late October to February, fruit growth from March to mid-June, ready for harvest after late May. Branch growth was mainly in December to April and August to October; Variety ‘Cing-Jin NO.2’ flowered during January to March, fruit growth from April to mid-July, ready for harvest in June. Branch growth was mainly in February to May and September to November. In this experiment, in terms of total soluble solids (TSS) (7.6 °Brix) and titratable acid (TA) (0.22%), ‘Cing-Jin NO.2’ fruit quality is the best among three varieties studied. For the fruit weight, ‘Cing-Jin NO.1’ was the largest (503.1 g).

Gibberellin treatment significantly increased fruit weight. Most treatments higher than control 334.7 g, except the mixture of Su-Bo and Hau-Da-Guo(SH) 500 ppm was 318.2 g. Flesh rate of most treatments were higher than 80% beside S 1000 ppm treatment was 79.9%. Flesh rate of SH 500 ppm could reach 84.3% and was the highest. Gibberellin treatment increased TSS than control, except H 500 ppm and SH 500 ppm were 4.2 °Brix and 4.8 °Brix. Flesh rate (84.3%) and seed size (35.2 g) of SH 500 ppm was desirable, however, the fruit size was the smallest among GA treatments. The results showed fruit size and quality of SH 1000 ppm treatment was best. Fruit weight and flesh rate of could reach 459.3 g and 82.2%. Although the seed weight 58.8 g was still large, but the quality (TSS and TA content were 5.8 °Brix and 0.14% respectively) was still accepted. In this experiment showed S 1000 ppm was suggested to increase the yield and fruit quality in avocado.

The total sugar content in leaves was significant increased by CO2 treatment, but there were no significant differences in fruit weight, fruit length, fruit width, flesh weight, flesh rate, seed weight, seed length and seed width between CO2 treatment and the control. The TSS of fruit of CO2 treatment (6.3 °Brix) was significantly higher than the control (5.5 °Brix). The TA of CO2 treatment (0.11%) was higher than control. It showed that CO2 treatment during fruit development did not affect the fruit appearance, however it could improve fruit quality through increase TSS and TA content of fruit. However, the treatment in this experiment was applied by covering the branches with plastic bag in a small space and becoming micro-climate condition difficulty to control. It might be difficult to practice in the orchard and need further improvement.
目錄
頁次
中文摘要..............................................................................................I
Abstract.................................................................................................III
誌謝......................................................................................................V
目錄......................................................................................................VI
圖表目錄..............................................................................................VIII
壹、前言..............................................................................................1
貳、前人研究......................................................................................3
一、酪梨生育習性....................................................................3
二、激勃素(gibberellins, GA)對果實生長及品質之影響.......7
三、增加碳源對果實生長及品質之影響.................................8
參、不同品種酪梨生育習性及果實品質之比較...............................12
摘要.............................................................................................12
一、前言.....................................................................................13
二、材料與方法.........................................................................15
三、結果.....................................................................................19
四、討論.....................................................................................21
肆、激勃素對酪梨果實之影響...........................................................33
摘要.............................................................................................33
一、前言.....................................................................................34
二、材料與方法.........................................................................36
三、結果.....................................................................................40
四、討論.....................................................................................43
伍、二氧化碳處理對酪梨果實品質之影響.......................................53
摘要.............................................................................................53
一、前言.....................................................................................54
二、材料與方法.........................................................................56
三、結果.....................................................................................60
四、討論.....................................................................................62
陸、結論...............................................................................................71
頁次
柒、參考文獻.......................................................................................72
作者簡介...............................................................................................81
參考文獻

朱長志 (1957) 中國果樹分類學。初版。台灣省立農學院出版委員會。pp.67-69。

安寶貞、王姻婷、張福祈、蔡志濃、石信德 (2006) 台灣之酪梨疫病。台灣農業研究55:13-24。

林玉茹、葉文彬、張致盛 (2010) 植物生長調節劑對‘巨峰’葡萄冬果果實品質之影響。台中區農業改良場研究彙報108:45-56。

張振宙 (1979) 酪梨。經濟果樹(下冊)。初版。財團法人豐年社附設出版社。pp.198-209。

廖玉婉、徐善德譯 (2009) 植物生理學。初版2刷。偉明圖書有限公司。pp.66-150。

蔡惠文、張哲瑋、鐘志明 (2016) 幸福之果-酪梨。科學發展526:38-44。

歐錫坤 (2003) 酪梨(幸福果)品種介紹。農業試驗所技術服務。53:12-17。

劉耕宏、石正中 (2015) 國產酪梨有機酸、葉黃素、α-生育酚及D-甘露庚酮糖含量分析。宜蘭大學生物資源期刊11:2-12。

鍾志明 (1993) 酪梨耐根腐病砧木之無性繁殖。中華農業研究42:46-52。

鍾志明 (1996) 酪梨與人的營養 一、從人體健康方面了解酪梨。中國園藝42:184-194。

鍾志明 (1997) 台灣酪梨品種改良。提升果樹產業競爭力研討會專輯。I:127-140。

Achard, P., A. Gusti, S. Cheminant, M. Alioua, S. Dhondt, F. Coppens, G. T. S. Beemster, and P. Genschik (2009) Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr. Biol. 19:1188-1193.

Alcaraz, M. L., and J. I. Hormaza (2009) Selection of potential pollinizers for ‘Hass’ avocado based on flowering time and male–female overlapping. Sci. Hortic. 121:267-271.

Alcaraz, M. L., and J. I. Hormaza (2014) Optimization of controlled pollination in avocado (Persea americana Mill., Lauraceae). Sci. Hortic. 180:79-85.

Alcaraz, M. L., M. Montserrat, and J. I. Hormaza (2011) In vitro pollen germination in avocado (Persea americana Mill.): Optimization of the method and effect of temperature. Sci. Hortic. 130:152-156.

Alcaraz, M. L., T. G. Thorp, and J. I. Hormaza (2013) Phenological growth stages of avocado (Persea americana) according to the BBCH scale. Sci. Hortic. 164:434-439.

Band, L. R., S. Ubeda-Tomas, R. J. Dyson, A. M. Middleton, T. C. Hodgman, M. R. Owen, O. E. Jensen, M. J. Bennett, and J. R. King (2012) Growth-induced hormone dilution can explain the dynamics of plant root cell elongation. Proc. Natl. Acad. Sci. 109:7577-7582.

Becker, C., and H. Klaring (2016) CO2 enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations. Food Chem. 199:736-745.

Bekty, K., and Hamin (2009) Physiological responses and fruit retention of Carambola Fruit (Averrhoa carambola L.) induced by 2,4-D and GA3. J. Biosci. 16:9-14.

Bergh, B. O. (1985) Persea americana . p.253-267. In: H. Halvey (ed.). Handbook of flowering vol. 5. CRC Press. Florida.

Bergh, B. O., and E. Lahav (1996) Avocados. p.113-166. In: Janick, J. and J. N. Moore (eds). Fruit breeding volume I: Tree and tropical fruits. John Wiley & Sons, Inc. New York.

Bill, M., D. Sivakumar, L. Korsten, and A. K. Thompson (2014) The efficacy of combined application of edible coatings and thyme oil in inducing resistance components in avocado (Persea americana Mill.) against anthracnose during post-harvest storage. Crop Prot. 64:159-167.

Bindi, M., L. Fibbi, and F. Miglietta (2001) Free Air CO2 Enrichment (FACE) of grapevine (Vitis vinifera L.): II. Growth and quality of grape and wine in response to elevated CO2 concentrations. Eur. J. Agron. 14:145-155.

Chang, J. C., and T. S. Lin (2006) GA3 increases fruit weight in ‘Yu Her Pau’ litchi. Sci. Hortic. 108:442-443.

Chen, P. A., C. L. Lee, S. F. Roan, and I. Z. Chen (2014) Effects of GA3 application on the inflorescence and yield of ‘Yu Her Pau’ litchi. Sci. Hortic. 171:45-50.

Dagar, A., A. Weksler, H. Friedman, and S. Lurie (2012) Gibberellic acid (GA3) application at the end of pit ripening: Effect on ripening and storage of two harvests of ‘September Snow’ peach. Sci. Hortic. 140:125-130.

Deng, H., L. S. Zhang, G. Q. Zhang, B. Q. Zheng, Z. J. Liu, and Y. Wang (2016) Evolutionary history of PEPC genes in green plants: Implications for the evolution of CAM in orchids. Mol. Phylogenet. Evol. 94:559-564.

Garner, L., G. Klein, Y. Zheng, T. Khuong, and C. J. Lovatt (2011) Response of evergreen perennial tree crops to gibberellic acid is crop load-dependent: II. GA3 increases yield and fruit size of ‘Hass’ avocado only in the on-crop year of an alternate bearing orchard. Sci. Hortic. 130:753-761.

Ge, Z. M., X. Zhou, S. Kellomaki, H. Peltola, C. Biasi, N. Shurpali, P. J. Martikainen, and K. Y. Wang (2012) Measured and modeled biomass growth in relation to photosynthesis acclimation of a bioenergy crop (Reed canary grass) under elevated temperature, CO2 enrichment and different water regimes. Biomass Bioenerg. 46:251-262.

Goufo, P., J. Pereira, J. Moutinho-Pereira, C. M. Correia, N. Figueiredo, C. Carranca, E. A.S. Rosa, and H. Trindade (2014) Rice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentration. Environ. Exp. Bot. 99:28-37.

Griffiths, C. A. , M. J. Paul, and C. H. Foyer (2016) Metabolite transport and associated sugar signalling systems underpinning source/sink interactions. Biochim. Biophys. Acta 1857:1715-1725.

Herman, N.C. B., X. Yina, Q. T. Ho, S. M. Driever, M. A. Retta, B. M. Nicolai, and P. C. Struik (2016) Mesophyll conductance and reaction-diffusion models for CO2 transport in C3 leaves; needs, opportunities and challenges. Plant Sci. 252:62-75.

Hochmal, A. K., S. Schulze, K. Trompelt, and M. Hippler (2015) Calcium-dependent regulation of photosynthesis. Biochim. Biophys. Acta 1847:993-1003.

Junki, I., S. Hasegawa, K. Fujita, S. Ogasawara, and T. Fujiwara (2002) Changes in water relations induced by CO2 enrichment govern diurnal stem and fruit diameters of Japanese pear. Plant Sci. 163:1169-1176.

Kataoka, K., Y. Yashiro, T. Habu, K. Sunamoto, and A. Kitajima (2009) The addition of gibberellic acid to auxin solutions increases sugar accumulation and sink strength in developing auxin-induced parthenocarpic tomato fruits. Sci. Hortic. 123:228-233.

Keeley, J. E. (2014) Aquatic CAM photosynthesis: A brief history of its discovery. Aquat. Bot. 118:38-44.

Kerry, R. E., I. C. Hallett, J. Rees-George, R. W. Chynoweth, and H. A. Pak (2008) Avocado lenticel damage: The cause and the effect on fruit quality. Postharvest Biol. Technol. 48:383-390.

Koteyeva, N. K., E. V. Voznesenskaya, and G. E. Edwards (2015) An assessment of the capacity for phosphoenolpyruvate carboxykinase to contribute to C4 photosynthesis. Plant Sci. 235:70-80.

Lauren, C. G., and J. L. Carol (2016) Physiological factors affecting flower and fruit abscission of ‘Hass’ avocado. Sci. Hortic. 199:32-40.

Li, J., X. Yu, Y. Lou, L. Wang, J. P. Slovin, W. Xu, S. Wang, and C. Zhang (2015) Proteomic analysis of the effects of gibberellin on increased fruit sink strength in Asian pear (Pyrus pyrifolia). Sci. Hortic. 195:25-36.

Maria, A. S., B. Schaffer, P. M. Gil, A. I. Vargas, and F. S. Davies (2014) Pruning after flooding hastens recovery of flood-stressed avocado (Persea americana Mill.) trees. Sci. Hortic. 169:27-35.

Matsuda, R., A. Nakano, D. Ahn, K. Suzuki, K. Yasuba, and M. Takaichi (2011) Growth characteristic and sink strength of fruit at different CO2 concentrations in a Japanese and a Dutch tomato cultivar. Sci. Hortic. 127:528-534.

Michael, V. M., P. W. Robinson, G. Witney, and M. L. Arpaia (2012) ‘Hass’ avocado tree growth on four rootstocks in California. II. Shoot and root growth. Sci. Hortic. 143:205-210.

Ming, R., C. M. Wai, and R. Guyot (2016) Pineapple Genome: A reference for monocots and CAM photosynthesis. Trends Genet. 32:690-696.

Miyamoto, K., E. Ito, H. Yamamoto, J. Ueda, and S. Kamisaka (2000) Gibberellin-enhanced growth and sugar accumulation in growing subhooks of etiolated Pisum sativum seedlings: effects of actinomycin D on invertase activity, soluble sugars and stem elongation. J. Plant Physiol. 156:449-453.

Nakasone, H. Y., and R. E. Paull (1997) Avocado. p.76-102. In: Tropical Fruits. CABI press. UK.

Ollat, N., P. Diakou-Verdin, J. P. Carde, F. Barrieu, J. P. Gaudillere and A. Moing (2002) Grape berry development: a review. J. Int. Sci. Vigne Vin 36:109-131.

Ozkan,Y., M. Ucar, K. Yildiz, and B. Ozturk (2016) Pre-harvest gibberellic acid (GA3) treatments play an important roleon bioactive compounds and fruit quality of sweet cherry cultivars. Sci. Hortic. 211:358-362.

Paula, N. P., E. Purgatto, and H. Mercier (2013) Spatial division of phosphoenolpyruvate carboxylase and nitrate reductase activity and its regulation by cytokinins in CAM-induced leaves of Guzmania monostachia (Bromeliaceae). J. Plant Physiol. 170:1067-1074.

Periyar, S. S., D. Sivakumar, P. Soundy, and L. Korsten (2013) Essential oil vapours suppress the development of anthracnose and enhance defence related and antioxidant enzyme activities in avocado fruit. Postharvest Biol. Technol. 81:66-72.

Qian, T., J. A. Dieleman, A. Elings, and L. F. M. Marcelis (2012) Leaf photosynthetic and morphological responses to elevated CO2 concentration and altered fruit number in the semi-closed greenhouse. Sci. Hortic. 145:1-9.

Samuel, S. G., E. M. Lord, and C. J. Lovatt (1998) Inflorescence and flower development of the ‘Hass’ Avocado (Persea americana Mill.) during ‘‘On’’ and ‘‘Off’’ crop years. J. Amer. Soc. Hort. Sci. 123:537-544.

Sanchez-Guerrero, M. C., P. Lorenzo, E. Medrano, N. Castilla, T. Soriano , and A. Baille (2005) Effect of variable CO2 enrichment on greenhouse production in mild winter climates. Agr. Forest Meteorol. 132:244-252.

Sarah, C., and J. M. Hibberd (2012) Integrating C4 photosynthesis into C3 crops to increase yield potential. Curr. Opin. Chem. Biol. 23:209-214.

Sedgley, M., and C. M. Annells (1981) Flowering and fruit-set response to temperature in the Avocado cultiver ‘Hass’. Sci. Hortic. 14:27-33.

Sharma, R. R., and R. Singh (2009) Gibberellic acid influences the production of malformed and button berries, and fruit yield and quality in strawberry (Fragaria×ananassa Duch.). Sci. Hortic. 119:430-433.

Shi, W., G. Xiao, P. C. Struik, K. S.V. Jagadish, and X. Yin (2017) Quantifying source-sink relationships of rice under high night-time temperature combined with two nitrogen levels. Field Crops Res. 202:36-46.

Wenzel, C. L., R. E. Williamson, and G. O. Wasteneys (2000) Gibberellin-induced changes in growth anisotropy precede gibberellin-dependent changes in cortical microtubule orientation in developing epidermal cells of barley leaves. Kinematic and cytological studies on a gibberellin-responsive dwarf mutant, M489. 124:813-822.

Xi, W., Q. Zhang, X. Lu, C. Wei, S. Yu, and Z. Zhou (2014) Improvement of flavour quality and consumer acceptance during postharvest ripening in greenhouse peaches by carbon dioxide enrichment. Food Chem. 164:219-227.

Yin, X., and P. C. Struik (2009) C3 and C4 photosynthesis models: An overview from the perspective of crop modelling. NJAS-Wagen. J. Life Sci. 57:27-38.

Yoshida, S., D. A. Forno, J. H. Cock and K. A. Grmez (1976) Laboratory manual for physiological studies of rice. pp. 81-85. In: International Rice Research Institute. Los Banos, Philippines.

Yu, S. M., S. F. Lo, and T. H. D. Ho (2015) Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci. 20:844-857.

Zhang, Z., D. J. Huber, and J. Rao (2013) Antioxidant systems of ripening avocado (Persea americana Mill.) fruit following treatment at the preclimacteric stage with aqueous 1-methylcyclopropene. Postharvest Biol. Technol. 76:58-64.

Zhang, Z., L. Liu, M. Zhang, Y. Zhang, and Q. Wang (2014) Effect of carbon dioxide enrichment on health-promoting compounds and organoleptic properties of tomato fruits grown in greenhouse. Food Chem. 153:157-163.

Zhenming, N., X. Xuefeng, W. Yi, L. Tianzhong, K. Jin, and H. Zhenhai (2008) Effects of leaf-applied potassium, gibberellin and source-sink ratio on potassium absorption and distribution in grape fruits. Sci. Hortic. 115:164-167.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔