(3.238.186.43) 您好!臺灣時間:2021/03/05 22:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭甲良
研究生(外文):Jheng, Jia-Liang
論文名稱:界面活性劑淋洗含重質油土壤之探討
論文名稱(外文):The removal of tar oil from soils by surfactant flushing
指導教授:葉桂君葉桂君引用關係
指導教授(外文):Yeh, Kuei-Jyum
口試委員:葉桂君鄭志鴻顏丞凱
口試委員(外文):Yeh, Kuei-Jyum
口試日期:2017-06-20
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:63
中文關鍵詞:界面活性劑淋洗Triton X-100DNAPL時間效應溫度效應
外文關鍵詞:surfactant flushingTriton X-100DNAPLTime effectTemperature effect
相關次數:
  • 被引用被引用:1
  • 點閱點閱:96
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  DNAPL主要以兩種型態自由相及殘留相等存留於地下環境中。利用界面活性劑的特性來改變污染物傳輸的兩種機制為增溶作用和移動作用移除DNAPL。本研究主要目的為模擬地下水層之淋洗情形,實驗主軸分成兩大部分。首先選擇以哪種種類及濃度界面活性劑在水-土壤系統中溶解效果佳且又省成本作為後續研究。其次找尋移除Tar oil溶解效果之因子(如:時間效應、溫度等)。來獲得土壤淋洗技術溶解污染物之最佳效益。
  TX-100比SDS能在土壤中能溶解更多TPH,因此本研究選擇TX-100當此試驗之淋洗液。土壤淋洗試驗結果考慮對於四種濃度之摻配土壤依平均之溶解效率且經濟可行之濃度,故以2% TX-100進行後續之時間效應試驗。而後續時間效應結果顯示水溶液中TX-100量越多,亦即所溶解的Tar oil量也高。換句話說溶液中所測得TX-100含量就代表著微胞有與Tar oil相互作用。
  溫度效應結果顯示低濃度土壤部分3%及5% TX-100溶解效果相近(相差約 2000~4000 mg/kg ),至於高濃度土壤部分5% TX-100溶解效果最佳,隨溫度增加較室溫增加近1倍(濃度從17866提升至30178 mg/kg)。土壤淋洗之溫度效應試驗證實,若高O/W(高油水比)時適合用5% TX-100溶解,經多次溶解而降至低O/W(低油水比)時,再以2%或3% TX-100溶解剩下的Tar oil。時間效應之溫度試驗裡四種Tar oil濃度之污染土壤的溶解效率中,在30、45℃時最佳溶解效率依序為20485>10055>31611>88598 mg/kg之污染土壤,但在60℃時最佳溶解效率順序卻變為88598>31611>20485>10055 mg/kg之污染土壤。
  不論是震盪或浸泡試驗本研究都可以發現溫度的提升有效的增加了溶解的效果,溫度試驗的結果相同都是以10055、20485 mg/kg之Tar oil土壤溶解效果較31611、88598 mg/kg佳。以上結果表示,TX-100溶解效率雖然會隨著溫度與Tar oil濃度提升而提升,但是當土壤中含高濃度Tar oil時,DNPAL相會使TX-100與油之作用機制由溶解(Winsor I)轉換成移動(Winsor II)。當界面活性劑微胞分散在油中,改變Tar oil移動性。故在現地淋洗土壤中,不論是高濃度或是低濃度地區,皆可增加污染物的移動性及溶解性,進而溶解大量Tar oil。
The dense non aqueous phase liquid (DNAPL) mainly exists in free and/or residual forms in the underground environment. Surfactants can increase DNAPL mobility or solubility. Cost or time benefit is important for the design and operation of surfactant flushing. The main purpose of this work is to simulate surfactant flushing in lab-scale batch soil systems. The experiments include two major parts. Two surfactants, TX-100 and SDS, were compared. First, the Tar oil removal efficiencies at different surfactant concentrations were tested. Because the results show that both surfactants can remove Tar oil DNAPL in the tested soil by the mobilization and dissolution mechanisms. However, TX-100 is more efficient than SDS in dissolving Tar oil. Therefore, the second portion of test focuses on the enhancement of Tar oil by TX-100 from the soil containing 4 TPH-spiked concentrations.
The mixing and no-mixing systems were conducted to evaluate the impact of poor contacts in the subsurface between surfactants and the DNAPL on tar oil removal. In addition, the influence of flushing temperature and the contact time between 2% TX-100 and Tar oil was tested to enhance the dissolution efficiency.
The results indicate that at room temperature, the best TX-100 concentration for tar oil dissolution is 2%. In the temperature experiment, the dissolution efficiencies of Tar oil by 3% and 5% TX-100 are similar for the soil of low TPH contents. For the soil of high TPH concentrations, 5% TX-100 obtains better dissolution efficiencies. The tar oil dissolution was enhanced form 17866 to 30178 mg/kg for high TPH soil when increasing the flushing temperature. At flushing temperature of 30 and 45℃¸ the dissolution efficiencies varies with the initial soil TPH concentration: 20485>10055>31611>88598 mg TPH/kg soil. At flushing temperature of 60℃¸ the dissolution efficiencies are: 88598>31611>20485>10055 mg TPH/kg soil. Similar temperature effects are found in both mixing and no-mixing systems. Thus, it is suggested that for the plume of high Tar oil DNAPL, TX-100 concentration of 5% is applied and then, reduced to 2~3% when the soil TPH concentration was decreased.
In inclusion, increased flushing temperature can enhance the dissolution of Tar DNAPL by TX-100 (Winsor I). Nevertheless, the major removal mechanism for soils of high TPH contents by 2% TX-100 is still mobilization (Winsor II).
摘要 I
Abstract III
目錄 V
表目錄 VIII
圖目錄 IX
第1章 前言 1
1.1 研究起緣 1
1.2 研究目的 3
1.3 預期效益 3
第2章 文獻回顧 4
2.1 TPH對土壤與地下水造成之污染 4
2.1.1 油品概況 4
2.1.2 SEAR整治方法相關研究及介紹 6
2.1.3 界面活性劑應用案例之介紹 8
2.2 界面活性劑之介紹 20
2.2.1 界面活性劑基本性質及結構 20
2.2.2 界面活性劑種類 21
2.2.3 界面活性劑對與油品之作用 23
2.3 影響效果之因素 24
第3章 實驗材料與方法 26
3.1 實驗材料與設備 26
3.1.1 污染物 26
3.1.2 界面活性劑 26
3.1.3 供試土壤 27
3.2 實驗架構與流程 28
3.3 實驗方法 29
3.3.1 淋洗濃度對土壤中不同濃度Tar oil之溶解效果(批次試驗) 29
3.3.2 時間效應試驗(批次試驗) 29
3.3.3 溫度試驗(批次試驗) 30
3.4 萃取與分析測定 30
3.4.1 水樣萃取 30
3.4.2 土樣萃取 31
3.4.3 儀器分析 31
3.4.4 圖譜判斷 32
第4章 結果與討論 33
4.1 淋洗濃度對土壤中不同濃度Tar oil之溶解效果(批次試驗) 33
4.2 時間效應(批次試驗) 36
4.3 溫度效應 40
4.3.1 淋洗濃度對土壤中不同濃度Tar oil之溶解效果(30℃、45℃、60℃) 40
4.3.2 時間效應(30℃、45℃、60℃) 43
第5章 結論 51
參考文獻 53
作者簡介 63
王鳳英,1993,界面活性劑的原理與應用,高立圖書有限公司,五版。
行政院環保署,2007,土壤中總石油碳氫化合物檢測方法-氣相層析儀/火焰離子化偵測法(NIEA S703.61B),行政院環保署環境檢驗所。
陳藹然,2010,解析化學清潔劑,泰宇出版社,http://sub.nhsh.tp.edu.tw/~chem/chem%20%20up/97998-10.pdf
國家教育研究院,2002,雙語詞彙、學術名詞暨辭書資訊網。
張梓瑢,2013,現地界面活性劑淋洗含油土壤之時間效應探討,國立屏東科技大學環境工程研究所,碩士論文。
張豐志,2003,應用高分子手冊,五南出版社。
賴亭吟、陳藹然,石油分餾及其主要產物的用途,2010,科學Online。http://highscope.ch.ntu.edu.tw/wordpress/?p=14199
環保署,油品類儲槽系統土壤及地下水污染整治技術選取、系統設計要點與注意事項參考手冊,2006。
魏羽俊,2017,界面活性劑移除重質油品作用條件及機制之探討,國立屏東科技大學環境工程研究所,碩士論文。
Aichner, B., Glaser, B., Zech, W., 2007, "Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in urban soils from Kathmandu," Nepal. Organic Geochemistry, Vol. 38, pp. 700-715.
Amos, B. K., Daprato, R. C., Hughes, J. B., Pennell, K. D., Loffler, F. E., 2007, "Effects of the nonionic surfactant Tween 80 on microbial reductive dechlorination of chlorinated ethenes," Environ. Sci. Technol, Vol. 41, pp. 1710-1716.
Arukwe, A., Celius, T., Walther, B. T., Goksoyr, A., 2000, "Effects of xenoestrogen treatment on zona radiata protein and vitellogenin expression in Atlantic salmon(Salmo salar)," Aquatic Toxicol, Vol. 49, pp. 159-70.
Atay, N. Z., Yenigun, O., Asutay, M., 2002, "Sorption of anionic surfactants SDS, AOT and cationic surfactant hyamine 1622 on natural soils," Water Air Soil Pollut, Vol. 136, pp. 55-67.
Bera, A., Kumar, T., Ojha, K., Mandal, A., 2013, "Adsorption of surfactants on sand surface in enhanced oil recovery: isotherms, kinetics and thermodynamic studies," Appl Surf. Sci., Vol. 284, pp. 87-99.
Cermak, J. H., Stephenson, G. L., Birkholz, D., Wang, Z., Dixon, D. G., 2010, "Toxicity of petroleum hydrocarbon distillates to soil organisms," Environmental Toxicology and Chemistry, Vol. 29, pp. 2685-2694.
Chong, Z. Y., LIAO, X. Y., Yan, X. L., Sun, L., Zhao, D.,Ling, T., 2014, "Enhanced Desorption of PAHs from Manufactured Gas Plant Soils Using Different Types of Surfactants," Pedosphere, Vol. 24, No. 5, pp. 209-219.
Clément, T., Emmanuel, M., Yoan, P., David, H., Eric, D. H., Giovanni, E., Mehmet, A. O., 2016, "Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review," Journal of Hazardous Materials, Vol. 306, pp. 149-174.
Cornelissen, G., P. C. M. van Noort, and H. A. J. Grovers, 1998a, "Mechanisms of slow desorption of organic compounds from sediments: a study using model sorbents," Environ. Sci. Technol, Vol. 32, pp. 3124-3131.
Couto, M. N. P. F. S., Basto, M. C. P., Vasconcelos, M. T. S. D., 2012, "Suitability of Scirpus maritimus for petroleum hydrocarbons remediation in a refinery environment," Environ. Sci. Pollut. Res., Vol. 19, pp. 86-95.
Cserháti, T., Forgács, E., Oros, G., 2002, "Biological activity and environmental impact of anionic surfactants," Envrion. Int., Vol. 28, pp. 337-348.
Daverey, A., and Pakshirajan, K., 2011, "Recent advances in bioremediation of contaminated soil and water using microbial surfactants," In Ahmad, I., Ahmad, F. and Pichtel, J. (eds.) Microbes and Microbial Technology: Agricultural and Environmental Applications. Springer, New York. pp. 207-228.
Deshpande, S., Shiau, B. J., Wade, D., Sabatini, D. A., Harwell, J. H., 1999, "Surfactant selection for enhancing ex situ soil washing," Water Res, Vol. 33, pp. 351-360.
Dodziuk, H., 2006, "Cyclodextrins and Their Complexes: Chemistry, Analytical Methods and Applications," Wiley-VCH Gmbh & Co. KGaA, Weinheim.
Elgh-Dalgren, K., Arwidsson, Z., Camdzija, A., Sjöberg, R., Ribé, V., Waara, S., Allard, B., Kronhelm, T. V., Hees, P. A. W. V., 2009, "Laboratory and pilot scale soil washing of PAH and arsenic from a wood preservation site: changes in concentration and toxicity," J. Hazard. Mater., Vol. 172, pp. 1033-1040.
Fava, F., Bertin, L., Fedi, S., Zannoni, D., 2002, "Methyl-b-cyclodextrin enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils," Biotechnology and Bioengineering, Vol. 81, pp. 1-10.
Gao, Y., Zeng, Y., Shen, Q., Ling, W., Han, J., 2009, "Fractionation of polycyclic aromatic hydrocarbon residues in soils," Journal of Hazardous Materials, Vol. 172, pp. 897-903.
Giannis, A., Gidarakos, E., Skouta, A., 2007, "Application of sodium dodecyl sulfate and humic acid as surfactants on electrokinetic remediation of cadmium-contaminated soil," Desalination, Vol. 211, pp. 249-260.
Intera Inc. and Naval Facilities Engineering Service Center (NFESC)., 2003, Surfactant-Enhanced Aquifer Remediation (SEAR) Implementation Manual, Naval Facilities Engineering Command, Washington, DC.
Ishiguro, M., Song, K. C., Yuita, K., 1992, "Ion-transport in an allophanic andisol under the influence of variable charge," Soil Sci. Soc Am J, Vol. 56, pp. 1789-1793.
Ishiguro, M., Koopal, L. K., 2016, "Surfactant adsorption to soil components and soils," Advances in Colloid and Interface Science, Vol 231, pp. 59-102.
Iwata, S., Tabuchi, T., Warkentin, B. P., 1995, "Soil-water interactions: mechanisms and applications," New York: Marcel Dekker.
Iturbe, R., Flores, C., Chavez, C., Bautista, G., Tortes, L. G., 2004, "Remediation of contaminated soil using soil washing and biopile methodologies at a field level," J. Soils Sediments, Vol. 4, pp. 115-122.
Jiao, W., Lu, Y., Li, J., Han, J., Wang, T., Luo, W., Shi, Y., Wang, G., 2009, "Identification of sources of elevated concentrations of polycyclic aromatic hydrocarbons in an industrial area in Tianjin, China," Environmental Monitoring and Assessment, Vol. 158, pp. 581-592.
Khalladi, R., Benhabiles, O., Bentahar, F., Moulai-Mostefa, N., 2009, "Surfactant remediation of diesel fuel polluted soil," Journal of Hazardous Materials, Vol. 164, pp. 1179-1184.
Khalladia, R., Benhabilesa, O., Bentahara, F., Moulai-Mostefa, N., 2009, "Surfactant remediation of diesel fuel polluted soil," J. Hazard. Mater., Vol. 164, pp. 1179-1184.
Lee, D. H., Chang, H. W., Kim, C., 2008, "Mixing effect of NaCl and surfactant on the remediation of TCB contaminated soil," Geosci. J., Vol. 12, pp. 63-68.
Lee, M., Kang, H., Do, W., 2005, "Application of nonionic surfactant-enhanced in situ flushing to a diesel contaminated site," Water Res., Vol. 39, pp. 139-146.
Li, X., Xue, Q., Zhu, L., Jin, Y., Wu, T., Guo, Q., Zheng, H., Lu, S., 2016, "How to select an optimal surfactant molecule to speed up the oildetachment from solid surface: A computational simulation," Chemical Engineering Science, Vol. 147, pp. 47-53.
Mao, X., Jiang, R., Xiao, W., Yu, J., 2015, "Use of surfactants for the remediation of contaminated soils: A review," Journal of Hazardous Materials, Vol. 285, pp. 419-435.
Moret, S., Purcaro, G., Conte, L. S., 2007, "Polycyclic aromatic hydrocarbon (PAH) content of soil and olives collected in areas contaminated with creosote released from old railway ties," Science of the Total Environment, Vol. 386, pp. 1-8.
Morillo, E., Sánchez-Trujillo, M. A., Moyano, J. R., Villaverde, J., Gómez-Pantoja, M. A., Pérez-Martínez, J. I., 2012, "Enhanced solubilisation of six PAHs by three synthetic cyclodextrins for remediation applications," Molecular modelling of the inclusion complexes.
Mulligan, C. N., Yong, R. N., Gibbs, B. F., 2001, "Surfactant-enhanced remediation of contaminated soil: a review," Eng. Geol., Vol. 60, pp. 371-380.
Mulligan, C. N., 2005, "Environmental applications for biosurfactants," Environ. Pollut., Vol. 133, pp. 183-198.
Paria, S., 2008, "Surfactant-enhanced remediation of organic contaminated soil and water," Adv Colloid Interface Sci., Vol. 138, pp. 24-58.
Peng, S., Wu, W. and Chen, J. J. 2011, "Removal of PAHs with surfactant-enhanced soil washing: influencing factors and removal effectiveness," Chemosphere, Vol. 82, pp. 1173-1177.
Pennell, K. D., Abriola, L. M., Weber Jr, W. J., 1993, "Surfactant-enhanced solubilization of residual dodecane in soil columns," 1. Experimental investigation, Environ.Sci. Technol, Vol. 27, pp. 2332-2340.
Pignatello, J. J., 1998, "Soil organic matter as a nanoporous sorbent of organic pollutants," Adv. Colloid Interface Sci., Vol. 76 , pp. 445-467, http://dx.doi.org/ 10.1016/s0001-8686(98)00055-4.
Ramsburg, C. A., Pennell, K. D., Abriola, L. M., Daniels, G., Drummond, C. D., Gamache, M., Hsu, H. I., Petrovskis, E. A., Rathfelder, K. M., Ryder, J. L., Yavaraski, T. P., 2005, "Pilot-scale demonstration of surfactant-enhanced pce solubilization at the bachman road site," Environ. Sci. Technol, Vol. 39, pp. 1791-1801.
Rodriguez-Cruz, M. S., Sanchez-Martin, M. J., Sanchez-Camazano, M., 2005, "A comparative study of adsorption of an anionic and a non-ionic surfactant by soils based on physicochemical and mineralogical properties of soils," Chemosphere, Vol. 61, pp. 56-64.
Sánchez-Trujillo, M. A., Morillo, E., Villaverde, J., Lacorte, S., 2013, "Comparative effects of several cyclodextrins on the extraction of PAHs from an aged contaminated soil," Environmental Pollution, Vol. 178, pp. 52-58.
Sanchez-Martin, M. J., Rodriguez-Cruz, M. S., Sanchez-Camazano, M., 2003, "Study of the desorption of linuron from soils to water enhanced by the addition of an anionic surfactant to soil-water system," Water Res, Vol. 37, pp. 3110-3117.
Schnitzer, M., and Khan, S. U., 1978, "Soil Organic Matter," Elsevier Science Publishers B. V.
Seedher, N., 2000, "In vitro study of the mechanism of interaction of trifuoperazine dihydrochloride with bovine serum albumin," Indian J. Pharm. Sci., Vol. 62, pp. 16-20.
Shiau, B. J. B., Brammer, J. M., Sabatini, D. A., Harwell, J. H., Knox, R. C., 2003, "Recent development of low concentration surfactant flushing for NAPL-impacted site remediation and pollution prevention," in: Petroleum Hydrocarbons and Organic Chemicals in Ground Water/Prevention, Assessment, and Remediation Twentieth Annual Conference and Exposition, Costa Mesa, CA.
Shin, K. H., and Kim, K. W., 2004, "A biosurfactant-enhanced soil flushing for the removal of phenanthrene and diesel in sand," Environ. Geochem. Health., Vol. 26, pp. 5-11.
Shonali, L., Berrin, T., Achara, U., 2009, "Surfactant-soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds:A review," Journal of Environmental Management, Vol. 90, pp. 95-100.
Strbak, L., 2000, "In Situ Flushing with Surfactants and Cosolvents," U.S.
Environmental Protection Agency, Washington, DC, report.
Svab, M., Kubal, M., Müllerova, M., Raschman, R., 2009, "Soil flushing by surfactant solution: pilot-scale demonstration of complete technology," J. Hazard. Mater., Vol. 163, pp. 410-417.
Svab, M., Kubal, M., Müllerova, M., Raschman, R., 2005, "Soil flushing by surfactant solution: Pilot-scale demonstration of complete technology," Journal of Hazardous Materials, Vol. 163, pp. 410-417.
Tse, K. K. C., and Lo, S. L., 2002, "Desorption kinetics of PCP-contaminated soil: effect of temperature," Water Research, Vol. 36, pp. 284-290.
United States Environmental Protection Agency (USEPA)., 2004, Cleaning Up the Nation’s Waste Sites: Markets and Technology Trends. USEPA, Office of Solid Waste and Emergency Response, Washington, D. C., USA.
Urano, K., Saito, M., Murata, C., 1984, "Adsorption of surfactants on sediments," Chemosphere, Vol. 13, pp. 293-300.
Villaverde, J., Morillo, E., Pérez-Martínez, J. I., Ginés, J. M., Maqueda, C., 2004, "Preparation and characterization of inclusion complex of norflurazon and b-cyclodextrin to improve herbicide formulations," Journal of Agricultural and Food Chemistry, Vol. 52, pp. 864-869.
Villaverde, J., Maqueda, C., Morillo, E., 2005, "Improvement of the desorption of the herbicide norflurazon from soils via complexation with b-cyclodextrin," Journal of Agricultural and Food Chemistry, Vol. 53, pp. 5366-5372.
Villaverde, J., Maqueda, C., Morillo, E., 2006, "Effect of the simultaneous addition of b-cyclodextrin and the herbicide norflurazon on its adsorption and movements in soils," Journal of Agricultural and Food Chemistry, Vol. 54, pp. 4766-4772.
Vreysen, S., and Maes, A., 2005, "Remediation of a diesel contaminated, sandy-loam soil using low concentrated surfactant solutions," J. Soils Sediments, Vol. 5, pp. 240-244.
Westall, J. C., Chen, H., Zhang, W. J., 1999, "Brownawell BJ. Sorption of linear alkylbenzenesulfonates on sediment materials," Environ Sci Technol, Vol. 33, pp. 3110-3118.
Winsor, P.A., 1948, Trans. Faraday Soc., Vol. 44, pp. 376-398.
Yang, G. P., Chen, Q., Li, X. X., Cao, X. Y., 2010, "Study on the sorption behaviors of Tween-80 on marine sediments," Chemosphere, Vol. 79, pp. 1019-1025.
Ying, G. G. F., 2006, "Behavior and effects of surfactants and their degradation products in the environment," Environ Int, Vol. 32, pp. 417-431.
Yushmanov, V. E., Perussi, J. R., Imasato, H., Tabac, M., 1994, "Interaction of papaverine with micelles of surfactants with different charge studied by 1H-NMR," Biochim. Biophys. Acta, Vol. 1189, pp. 74-80.
Zhang, X. X., Cheng, S. P., Zhu, C. J., and Sun, S. L., 2006, "Microbial PAH-degradation in soil: degradation pathways and contributing factors," Pedosphere., Vol. 16, pp. 555-565.
Zheng, Z., Obbard, J. P., 2002, "Evaluation of an elevated non-ionic surfactant critical micelle concentration in a soil/aqueous system," Water Res, Vol. 36, pp. 2667-2672.
Zhou, W. J., and Zhu, L. Z., 2007, "Efficiency of surfactant- enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant-PAHs system," Environ. Pollut., Vol. 147, pp. 66-73.
Zhou, W., and Zhu, L., 2005, "Distribution of polycyclic aromatic hydrocarbons in soil-water system containing a nonionic surfactant," Chemosphere, Vol. 60, pp. 1237-1245.
Zhou, W., and Zhu, L., 2007, "Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant-PAHs system," Environmental Pollution, Vol. 147, pp. 66-73.
Zhou, W. J., and Zhu, L. Z., 2008b, "Influence of surfactant sorption on the removal of phenanthrene from contaminated soils," Environ. Pollut, Vol. 152, pp. 99-105.
Zhu, L. Z., and Zhou, W. J., 2008, "Partitioning of polycyclic aromatic hydrocarbons to solid-sorbed nonionic surfactants," Environ. Pollut., Vol. 152, pp. 130-137.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔