跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 19:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林昶聿
研究生(外文):Lin, Chang-Yu
論文名稱:魚菜共生系統中不同介質對於萵苣生長之影響
論文名稱(外文):The Effects of Different Media on the Growth of Lactuca sativa in an Aquaponic System
指導教授:余伍洲余伍洲引用關係
指導教授(外文):Yu, Wu-Chou
口試委員:林正錺胡苔莉
口試日期:2017-07-15
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:135
中文關鍵詞:魚菜共生萵苣溢流虹吸作用
外文關鍵詞:AquaponicLactuca sativaOverflowSiphoning
相關次數:
  • 被引用被引用:2
  • 點閱點閱:673
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:2
隨著台灣經濟的蓬勃發展,民眾生活水準的提升,對於環境生態保護及消費意識的抬頭,進而改變農業生產的型態。而魚菜共生是將水產養殖與水耕栽培結合,利用水體中魚隻糞便經由硝化作用反應後,供給植物吸收營養鹽,養殖漁業廢水不需換水,種菜也不用在大量施肥,對於環境非常友善,具有未來永續發展之趨勢。
本研究目的為探討魚菜共生系統之流量對植株影響,以及不同栽種模式下,培育植株並觀察生長最佳生長數值,一個為室外溢流式之介質栽培床與深水栽培床,另一個為室內虹吸式介質床與發光二極體(Light-emitting diode,LED)人工光源。
室外魚菜共生對於水體中氨氮與亞硝酸鹽氮都有明顯改善,種植前氨氮平均0.12mg/L,亞硝酸鹽氮平均8mg/L,實驗一之氨氮平均0.01mg/L,亞硝酸鹽氮平均4mg/L;實驗二之氨氮平均0.01mg/L,亞硝酸鹽氮平均3mg/L;實驗三之氨氮平均0.01mg/L,亞硝酸鹽氮平均3mg/L;實驗四之氨氮平均0.09mg/L,亞硝酸鹽氮平均2mg/L。而植株所需要硝酸鹽氮營養有提升作用,種植前硝酸鹽氮平均1.8mg/L,實驗一之硝酸鹽氮平均2.5mg/L;實驗二之硝酸鹽氮平均2.8mg/L;實驗三之硝酸鹽氮平均3.0mg/L;實驗四之硝酸鹽氮平均3.0mg/L。
由實驗一至實驗四的結果來看在此次植株產量效果最好的為溢流深水式栽培,其與赤玉土搭配下植株總重皆比較於介質式栽培和一般土壤耕作更高,尤其是在當栽培入水口為2,000mL/min產量最多。
With the vigorous development of Taiwan's economy, the improvement of people's living standards, the rise of environmental protection and consumer awareness, and then change the type of agricultural production. The aquaponic is symbiotic aquaculture and aquaculture cultivation, the use of fish with the fish feces by nitrification reaction, the supply of plants to absorb nutrients, aquaculture fishery wastewater without changing the water, vegetables do not have a lot of fertilization, for the environment is very friendly, with the future sustainable development trend.
The aim of this study was to investigate the effects of the flow rate of the aquaponic system on the plants, and to cultivate the plants under the different planting patterns and to observe the best growth of the growth values, one for the outdoor overflow medium cultivation beds and deep water cultivation beds, and the other for the indoor Siphon medium culture bed and light-emitting diode artificial light source.
Outdoor aquaponic in ammonia and nitrite nitrogen in water were significantly improved, before planting, the average ammonia nitrogen was 0.12mg/L, the nitrite nitrogen was 8mg/L, experiment 1 of ammonia nitrogen average 0.01mg/L, nitrite nitrogen average 4mg/L; experiment 2 of ammonia nitrogen average 0.01mg/L, nitrite nitrogen average 3mg/L; experiment 3 of ammonia nitrogen average 0.01mg/L, nitrite nitrogen average 3mg/L; experiment 4 of ammonia nitrogen average 0.09mg/L, nitrite nitrogen average 2mg/L. While the main plant nitrate nitrogen nutrition to enhance the role, nitrate nitrogen before planting experiment of average 1.8mg/L, experiment 1 of nitrate nitrogen average 2.5mg/L; experiment 2 of nitrate nitrogen average 2.8mg/L; experiment 3 of nitrate nitrogen average 3.0mg/L; experiment 4 of nitrate nitrogen average 3.0mg/L.
From the results of experiment 1 to experiment 4, the best effect of this plant yield was the deep-water cultivation of overflow, the total weight of the plant under the deep-water cultivation of overflow and the Akadama soil was higher than that of the medium cultivation and the general soil tillage, especially when the cultivated inlet was 2,000 mL / min yield the most.
摘要 I
ABSTRACT III
目錄 VI
表目錄 IX
圖目錄 X
第1章 前言 1
1.1 研究緣起 1
1.2研究動機 2
1.3研究目的 3
1.4研究架構 4
第2章 文獻回顧 4
2.1 無土栽培 5
2.1.1無土栽培歷史 5
2.1.2無土栽培分類 5
2.1.3固體介質栽培 6
2.1.4非固體介質栽培 8
2.2水耕栽培 10
2.2.1營養液各元素對植物體生長之重要性 10
2.2.2營養液的管理 22
2.2.3水耕與土耕之比較 24
2.2.4植物工廠 27
2.2.5蕹菜與萵苣短期葉菜類生育與營養元素含量特性 31
2.3魚菜共生歷史與發展 32
2.3.1魚菜共生 33
2.3.2魚菜共生形式架構 35
2.3.3硝化作用 36
第3章 材料與方法 37
3.1實驗儀器 37
3.2實驗材料 39
3.3實驗設施 46
3.4實驗架構 51
3.4.1實驗流程 51
3.4.2魚菜共生系統建構 52
3.5水質之參數分析 54
3.6實驗方法 56
第4章 結果與討論 62
4.1室外魚菜共生水質基本性質分析 62
4.2室外魚菜共生系統之探討與分析 64
4.2.1實驗一 64
4.2.2實驗二 72
4.2.3實驗三 80
4.2.4實驗四 90
4.3室內魚菜共生水質基本性質分析 98
4.4室內魚菜共生系統之探討與分析 102
4.4.1實驗五 102
4.4.2實驗六 110
第5章 結論與建議 117
參考文獻 123
作者簡介 135
1. 黃璋如,1997,「中德兩國有機農業之發展」,國立宜蘭技術學院應用經濟系,行政院農業委員會委託研究計畫報告,第1-2頁。
2. 林譽紘,2006,高價值有機稻米創新利潤鏈模式之研究,碩士論文,私立南華大學,管理科學研究所,嘉義。
3. 黃志彬、吳蕙如、鄭昕維、趙淑如、郭修齊,2014,台灣南部地區水產養殖業水資源永續發展對策-綠色水產養殖池及水循環回收系統之研發(計畫編號NSC 101-2119-M-009-004-),國立交通大學環境工程研究所,第1-2頁。
4. 鍾瑞貞,2004,台灣有機農業發展的趨勢,碩士論文,國立台灣大學,農業經濟學研究所,台北。
5. 林慈鈺,2015,LED、硒及硫酸鉀處理對水耕油菜生長及硝酸根離子含量之影響,碩士論文,國立中興大學,園藝學系所, 台中。
6. 高德錚,1989,國內外各種養液栽培法特性之比較,行政院農業委員會養液栽培技術講習會專刊第二輯,第17-43頁。
7. 李金龍、傅季郁 ,1988, 本省養液栽培之發展方向與重點,養液栽培技術講習會專刊第一輯,行政院農業委員會,第1-7頁。
8. 李金龍、侯鳳舞 ,1989,養液栽培之發展方向與展望,養液栽培技術講習會專刊第二輯,行政院農業委員會,第1-3頁。
9. 張祖亮,1998,養液栽培之應用技術,種苗生產自動化技術通訊,種苗生產自動化技術服務團,第3期,第1-12頁。
10. 高德錚,1991,動態浮根式水耕系統之開發與利用,台灣省台中區農業改良場出版,第71頁。
11. 徐志豪、張德威、季鷹、王汝祥,1994,改善水培作物根際氧氣供給的原理和實踐,浙江農業學報,第6期,第44- 48頁。
12. 丘應模,2000,清潔疏菜,渡假出版社有限公司,台北。
13. 高德錚,1986,水耕栽培-精緻蔬菜生產技術之開發,台中區農推專訊第56期,第22-31頁。
14. 邱德峻,2009,大家樂-水耕栽培,國立大安高工,臺北。
15. 高德錚,2007,無土栽培,台中區農業改良場。
16. 劉宜姍,2016,家庭式魚菜共生系統設備改善之研究,碩士論文,國立勤益科技大學,資訊管理系研發科技與資訊管理碩士在職專班,台中。
17. 張仲民譯、麻生末雄、麻生昇平、松崎敏英,1981,作物之營養與肥料,徐氏基金會,第188頁。
18. 柯勇,2002,植物生理學,藝軒圖書出版社。
19. 蔡素蕙、黃山內、楊秋忠,1992,有機及化學肥料對小白菜之生長、硝酸態氮及維生素含量之影響,中華農學會報新158,第77-85頁。
20. 鍾仁賜,2012,施肥管理與植物病害,農業推廣手冊,第68輯,第7-9頁。
21. 陳清義,1988,植物營養學,國立中興大學,第261頁。
22. 廖玉婉、徐善德、林美華、謝永祥、吳弘達、鍾仁彬譯,Hopkims, W. G.原著,2006,植物生理學,啟英文化事業有限公司,第602頁。
23. 陳玟瑾,2012,元素鉀與植物營養及植物病害之關係,台中區農業改良場,一○一年專題討論專集,第103-107頁。
24. 張淑賢,2012,「營養要素缺乏、過多或毒害徵狀」,植物保護圖鑑系列9 (電子書)-柑橘保護,行政院農業委員會動植物防疫檢疫局,第282-297頁。
25. 蔡智賢,2010,第四章植物與無機營養,植物生理學,國立嘉義大學園藝學系。http://web.ncyu.edu.tw/~jstsay/physiol/textbook/outline/plant%20and%20inorganic%20nutrients.htm
26. 蕭政弘,2013,植物硫元素代謝與調控因子,台中區農業改良場特刊,第122期 ,第321-331頁。
27. 郭孚燿,無機鹽類與蔬菜營養及人體健康(五),台中區農業改良場。https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiY_Nuk8J7VAhWByrwKHZVMAhgQFggnMAE&url=http%3A%2F%2Fkmweb.coa.gov.tw%2FCategory%2Fd.aspx%3FdocumentId%3D18339%26fileName%3D%25E7%2584%25A1%25E6%25A9%259F%25E9%25B9%25BD%25E9%25A1%259E%25E8%2588%2587%25E8%2594%25AC%25E8%258F%259C%25E7%2587%259F%25E9%25A4%258A%25E5%258F%258A%25E4%25BA%25BA%25E9%25AB%2594%25E5%2581%25A5%25E5%25BA%25B7%25EF%25BC%2588%25E4%25BA%2594%25EF%25BC%2589.doc%26ver%3D2&usg=AFQjCNEGNj1pEBGhnrZbGoanbJ0tPtD1MA
28. 郭鵬程,1996,植物硫營養,中國農業百科全書,農業化學卷,第430頁。
29. 賴文龍,2004,果樹營養診斷,台中區農情月刊,第53期,新知專欄。
30. 陳仁炫,1994b,作物營養障礙的目識診斷技術,興農雜誌,第308期,第53-61頁。
31. 郭孚燿,無機鹽類與蔬菜營養及人體健康(六),台中區農業改良場。https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiPoNPu857VAhUBzLwKHcp-BHQQFggnMAE&url=http%3A%2F%2Fkmweb.coa.gov.tw%2FCategory%2Fd.aspx%3FdocumentId%3D18338%26fileName%3D%25E7%2584%25A1%25E6%25A9%259F%25E9%25B9%25BD%25E9%25A1%259E%25E8%2588%2587%25E8%2594%25AC%25E8%258F%259C%25E7%2587%259F%25E9%25A4%258A%25E5%258F%258A%25E4%25BA%25BA%25E9%25AB%2594%25E5%2581%25A5%25E5%25BA%25B7%25EF%25BC%2588%25E5%2585%25AD%25EF%25BC%2589.doc%26ver%3D2&usg=AFQjCNHOzUM6hhWVnfJOq7ugFuObaorDTA
32. 賴文龍,2006,微量元素缺乏對植株的影響,豐年第56卷,第8期,第62-65頁。
33. 郭孚燿,無機鹽類與蔬菜營養及人體健康(七),台中區農業改良場。https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwiks8_S9Z7VAhULi7wKHeTRDr8QFggrMAI&url=http%3A%2F%2Fkmweb.coa.gov.tw%2FCategory%2Fd.aspx%3FdocumentId%3D18337%26fileName%3D%25E7%2584%25A1%25E6%25A9%259F%25E9%25B9%25BD%25E9%25A1%259E%25E8%2588%2587%25E8%2594%25AC%25E8%258F%259C%25E7%2587%259F%25E9%25A4%258A%25E5%258F%258A%25E4%25BA%25BA%25E9%25AB%2594%25E5%2581%25A5%25E5%25BA%25B7%25EF%25BC%2588%25E4%25B8%2583%25EF%25BC%2589.doc%26ver%3D2&usg=AFQjCNGShbFl4JSBPN26Maq2arTz5jnd9Q
34. 史瑞和,1996,植物硼營養,中國農業百科全書,農業化學卷,第435頁。
35. 饒立華,1993,植物礦質營養及其診斷,北京市:農業出版社,第30-35頁。
36. 史瑞和,1996,植物錳營養,中國農業百科全書,農業化學卷,第432頁。
37. 郭孚燿,無機鹽類與蔬菜營養及人體健康(十),台中區農業改良場。https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwjhtfj99Z7VAhVFgLwKHX0gDPwQFggpMAI&url=http%3A%2F%2Fkmweb.coa.gov.tw%2FCategory%2Fd.aspx%3FdocumentId%3D18335%26fileName%3D%25E7%2584%25A1%25E6%25A9%259F%25E9%25B9%25BD%25E9%25A1%259E%25E8%2588%2587%25E8%2594%25AC%25E8%258F%259C%25E7%2587%259F%25E9%25A4%258A%25E5%258F%258A%25E4%25BA%25BA%25E9%25AB%2594%25E5%2581%25A5%25E5%25BA%25B7%25EF%25BC%2588%25E5%258D%2581%25EF%25BC%2589.doc%26ver%3D2&usg=AFQjCNFygYQ6_9ulYC4_iwMcl5XsCw3xLg
38. 羅秋雄,2003,作物營養障礙診斷與防治手冊,行政院農業委員會桃園區農業改良場,第48頁。
39. 郭孚燿,無機鹽類與蔬菜營養及人體健康(十一),台中區農業改良場。https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwje6eOy957VAhWHJ5QKHc49Cz8QFggsMAI&url=http%3A%2F%2Fkmweb.coa.gov.tw%2FCategory%2Fd.aspx%3FdocumentId%3D18334%26fileName%3D%25E7%2584%25A1%25E6%25A9%259F%25E9%25B9%25BD%25E9%25A1%259E%25E8%2588%2587%25E8%2594%25AC%25E8%258F%259C%25E7%2587%259F%25E9%25A4%258A%25E5%258F%258A%25E4%25BA%25BA%25E9%25AB%2594%25E5%2581%25A5%25E5%25BA%25B7%25EF%25BC%2588%25E5%258D%2581%25E4%25B8%2580%25EF%25BC%2589.doc%26ver%3D2&usg=AFQjCNF1PHlpRS-lWTcHNjMRuV3enzD7eA
40. 趙靜、白清云、戴曉華、帕尼古麗,2001,鉬對降低蔬菜硝酸鹽積累的效應研究農業環境保護,第20卷,第4期,第238-239頁。
41. 陳龍正、陳洁、梁亮、徐海、宋波、蘇小俊、袁希漢,2009,鉬錳對不結球白菜硝酸還原酶活性及主要營養品質之影響,中國蔬菜第 12期,第15-18頁。
42. 陳葦玲、周書緯、李品瑩、邱瑜君、張雅文,2010,氮肥及鉬離子對油菜及青梗白菜硝酸鹽累積量之影響,臺中區農業改良場研究彙報,第106期,第11-22頁。
43. 林浩潭,2005,重金屬及微量元素對植物之影響,台灣農家要覽(三)農作篇,第557-560頁。
44. 林浩潭,2004,重金屬及微量元素對作物之影響,農家要覽:農作篇植物保護章-公害(三) 。
45. 沈再發,2009,培養液組成之理論和實際(上),農業試驗所技術服務 78期。
46. 沈再發,2009,培養液組成之理論和實際(下),農業試驗所技術服務 78期。
47. 高德錚,2007,水耕營養液調配與管理,台中區農業改良場,第1-22頁。
48. 王銀波,1989,培養液的化學性及其管理,行政院農業委員會養液栽培技術講習會專刊第二輯,第60-68頁。
49. 沈再發,1997,養液的配置與管理,設施園藝技術,第182-190頁。
50. 王銀波、吳正宗,1990,培養液之理論與實際,行政院農業委員會養液栽培技術講習會專刊第三輯,第14-26頁。
51. 蔡尚光,2004,水耕栽培的經營,三刷,淑馨出版社,台北。
52. 吳正宗,2015,無土栽培的發展,中興大學土壤環境科學系,無土栽培之營養管理。https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi7gqv3_J7VAhWCVZQKHeRzBrkQFggmMAA&url=http%3A%2F%2Fweb.nchu.edu.tw%2Fpweb%2Fusers%2Fjtwu%2Flesson%2F139.doc&usg=AFQjCNED2_OghCDkTZNOVWfdlYR926riMQ
53. 方煒,2003,自動化植物工廠,設施栽培自動化專輯。
54. 粟安琪,2011,植物工廠創業初期評估準則之研究,碩士論文,國立交通大學,管理學院經營管理學程,新竹。
55. 高德錚,2013,「臺灣發展蔬菜植物工廠之契機」,刊於趙佳鴻主編,《台中區農業改良場一○一年專題討論專集》,行政院農業委員會台中區農業改良場,第119-122頁。
56. 張孝安,2014,虹吸式半水耕種植系統應用在植物工廠之可行性研究,碩士論文,國立臺灣海洋大學,河海工程學系,基隆。
57. 劉政道、林麗玉,2005,蕹菜,行政院農業委員會臺灣農家要覽,第403-408頁。
58. 許秀惠、許苑培、馮永富、黃晉興、廖君達、徐玲明,2002,植物保護技術專刊系列4-蕹菜篇,行政院農業委員會動植物防疫檢疫檢驗局。
59. 楊秀珠、余思葳、黃裕銘,2012,萵苣之病蟲害發生與管理,行政院農委會農業藥物毒物試驗所,第1-2頁。
60. 行政院衛生署衛生福利部食品藥物管理署,http://www.fda.gov.tw/TC/index.aspx
61. 李昕升、王思明,2014,江蘇稻田養魚的發展歷史及生物多樣性分析,華社農業大學學報(社會科學版)總109期,第1期,第139-140頁。
62. 楊清富、江汶錦、王瓊慧、許涵鈞、鄭安秀,2016,魚菜共生系統試作,臺南區農業改良場研究彙報 67號,第73-89頁。
63. 劉啟祥,1993,根溫處理對水耕小白菜生理之影響,碩士論文,國立中興大學,園藝學系所,台中。
64. Aghajanian, A., 2007, Chinampas: Their Role in Aztec Empire-Building and Expansion. Indo-European publishing.
65. Brune, D. E., Schwartz, G., Eversole, A. G., Collier, J. A.,Schwedler, T. E., 2003, Intensification of pond aquaculture and high rate photosynthetic systems. Allacultural Engineering, Vol28, pp. 65-86.
66. Bumell, J. N., 1988, The biochemistry of manganese in plants. Manganese In Soil and Plants. Derdrecht-Boston-London. Kluwer Academic Publishers, pp. 125-137.
67. Brown, C. S., Schuerger, A. C., Sager, J. C., 1995, Growth and photomorphogenesis of pepper under red light-emitting diodes with supplemental blue or far-red lighting. J Amer Soc Hort Sci 120, pp. 808-13.
68. Cancino Madariaga, B., Hurtado, C. F. and Ruby, R., 2011, “Effect of pressure and pH in ammonium retention for nanofiltration and reverse osmosis membranes to be used in recirculation aquaculture systems (RAS)” Aquacultural Engineering, Vol45, pp.103–108.
69. Colt, J., 2006, Water quality requirements for reuse systems. Aquacultural Engineering, Vol34, pp. 143-156.
70. Crossley, P. L., 2004, Just beyond the eye: Floating gardens in Aztec Mexico. Historical Geography, Vol32, pp. 111-135.
71. Eiichi, O., Cuello, J. L., Jordan, K. A., 1997, Evaluation of high intensity of in vitro propagation system. Hort Sci 22, pp. 751-4.
72. Francis, C., Boyes, E., Qualter, A., & Stanisstreet, M., 1993, Ideas of elementary students about reducing the “greenhouse effect”. Science Education, 77(4), pp. 375-392.
73. Food and Agriculture Organization, http://www.fao.org/home/en/
74. Food and Agriculture Organization, 2012, The State Of World Fisheries And Aquaculture, Rome.
75. Ferguson, I. B. and Drobak, B. K., 1988, Calcium and the regulation of plant growth and senescence. HortScience 23(2), pp. 262-266.
76. Franceschi, V. R., Li, X., Zhang, D., and Okita, T. W., 1993, Calsequestrinlike calcium-binding protein is expressed in calcium-accumlating cells of Pistia stratiotes. Proc. Natl. Acad. Sci. USA 90(15), pp. 6989-6990.
77. Fageria, N. K., Baligar, V. C., and Jones, C. A., 1997, Growth and mineral nutrition of crop plants. Marcel Dekker Inc., New York, pp. 624.
78. FAO Fisheries and Aquaculture Technical Paper No. 589, pp. 11, Rome.
79. Gutierrez-Wing, M. T., Malone, R. F., 2006, Biological filters in aquaculture trends and research directions for freshwater and marine applications. Aquaculture, Vol34, pp. 163-171.
80. Hsu, B. D. and Lee, J. Y., 1988, Toxic effects of copper on photosystem of spinach chloroplasts. Plant Physiology, Vol87, pp. 116-119.
81. Hoenecke, M. E., Bula, R. J., Tibbits, T. W., 1992, Importance of blue photon levels for lettuce seedlings grown under red-light-emitting diodes. Hort Sci 27, pp. 427-30.
82. Itoi, S., Niki, A., Sugita, H., 2006, “Changes in microbial communities associated with the conditioning of filter material in recirculating aquaculture systems of the pufferfish Takifugu rubripes” Aquaculture 256, pp. 287–295.
83. Jones, J. B., Huber, D. M., 2007, Magnesium and plant disease. In: Datnoff L. E., Elmer W. H., Huber D. M. (eds) Mineral nutrition and plant disease. APS Press, St. Paul, pp. 95–100.
84. Jacob, J., Lawlor, D. W., 1991, Stomatal and mesophyll limitations of photosyn thesis in phosphate deficient sunflower, maize and wheat plants. J. Exp. Bot. 42, pp. 1003-1011.

85. Kato, T., 1986, Nitrogen metabolism and utilization in citrus. Hort. Rev. 8, pp. 181-216.
86. Luo, A., Jing, G., Wu, P., Ni, J., Jiang, S., and Zhang, Y., 1997, Rice genotype differences in nutrient status under excessive ferric iron conditions. J.Plant Nutr. 20, pp. 1361-1373.
87. Lidon, F. J. C., 1999, Rice adaptation to excess manganese: nutrients accumulation and implications of the quality of crops. Rice Biotechnol. Quart. 40, pp. 21.
88. Migration Watch UK | MW250, 2011, Summary Fact Sheet, https://www.migrationwatchuk.org/briefing-paper/250
89. Merlin-Uribe, Y., Gonzalez-Esquivel, C.E., Contreras-Hernandez, A., Zambrano, L., Moreno-Casasola, P., Astier, M., 2013, Environmental and socio-economic sustainability of chinampas (raised beds) in Xochimilco, Mexico City. Int. J. Agric. Sustain.11, pp. 216–233.
90. Marschner, H., 1995, Mineral nutrition in higher plant. New York, USA, Academic Press.
91. Maynard, D. N., Barker, A. V., Minotti, P. L., and Peck, N. H., 1976, Nitrate accumulation in vegetables. Adv. Agron. 28, pp. 71-118.
92. Mills, H. A., J. B. Jones Jr., 1996, Essemtial nutrients. Plant analysis handbooks II. MicroMacro Publishing., pp. 6-62.
93. National Geographic, 2013, On World Population Day, Unpacking 9.6 Billion by 2050. http://news.nationalgeographic.com/news/2013/13/1307011-population-census-united-nations-un-demographics-world-population-day-birthrate/
94. Nelson, P. V., 1998, Greenhouse operation and management. 5th ed. Prentice Hall, Upper Saddle River, New Jersey.
95. Rakocy, J. E., Bailey, D. S., Shultz, R. C., Thoman E. S., 2004, Update on tilapia and vegetable production in the UVI aquaponic system. Proceedings of the Sixth International Symposium on Tilapia in Aquaculture, Manila, Philippines.
96. Resh, H. M., 1991, Hydroponic food production, 3rd ed. Woodbridge Press Publishing Company, Santa Barbara, California.
97. ScienceAlert, 2016, The World's Population Is Growing Faster Than We Thought. http://www.sciencealert.com/the-world-s-population-is-growing-faster-than-we-thought-new-report-finds
98. Sui, H. K., K. A. Buckle, and M. Wooton., 1983, Determination of nitrate and nitrite in water using high- performance liquid chromatography. J. Chromato. 260, pp. 189-194.
99. Shoji, T., 1991, Import of calcium by tomato fruit in relation to the day-night periodicity. Sci. Hort. 45, pp. 235-243.
100. Shimada, N., 1995, Deficiency and excess of micronutrient elements. Science of the rice plant. Tokyo, Japan, Food and Agricultural Policy Research Center. 2, pp. 412-419.
101. Schuerger, A. C., Brown, C. S., Stryjewski, E. C., 1997, Anatomical features of pepper plants (Capsium annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Annals of botany 79, pp. 273-82.
102. Somerville, C.,Cohen, M., Pantanella, E., Stankus, A. & Lovatelli, A., 2014, Small-scale aquaponic food production. Integrated fish and plant farming.
103. Taiz, L. and E. Zeiger, 2002, Plant Physiology. The Benjamin/Cummings Publishing Company, Inc., pp. 302-307.
104. S. Prabhu, N. K. Fageria, D. M. Huber, F. A. Rodrigues., 2012, Potassium and plant disease. In L. E. Datnoff, W. H. Elmer, D. M. Huber, eds. Mineral Nutrition and Plant Disease, pp. 57-78.
105. Terry, N. and A. Ulrich, 1974, Photosynthetic and respiratory CO2 exchange of sugar beet leaves as influenced by manganese deficiency. Crop Sci. 14, pp. 502-504.
106. Wang, G. L. and Zhang, J. C. H., 2009, Effects of Cu and Zn stress on physiological indications of Ludwigia prostrate Roxb. Journal of Nanjing Forestry University (Natural Sciences Edition), 33, pp. 43-47.
107. Yorio, N.C., Goins, G. D., Kagie, H. R., Wheeler R. M., Sager J.C., 2001, Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation.Hortscience 36(2), pp.380-383.
108. Zhang,Y. L., Y. M. Li., K. Xiao, and X. J. Li, 2004, Effects of N and P rateson photosynthetic characteristics of flag leaves in hybrid wheat. Plant Nutr. Fert. Sci. 10, pp. 231-236.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top