(54.236.58.220) 您好!臺灣時間:2021/03/05 06:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:馬彩妮
研究生(外文):Ratchaneegorn Mapanao
論文名稱:酪胺酸羥化酶 (TH) 調控南美白蝦生理及免疫反應之研究
論文名稱(外文):Regulation of tyrosine hydroxylase (TH) on physiological and immunological responses in Litopenaeus vannamei
指導教授:鄭文騰鄭文騰引用關係
指導教授(外文):Winton Cheng
口試委員:黃榮富潘志弘王俊順鄭達智鄭文騰
口試委員(外文):Jung-Fu HuangChih-Hung PanChun-Shun WangPhilip T. ChengWinton Cheng
口試日期:2017-06-21
學位類別:博士
校院名稱:國立屏東科技大學
系所名稱:熱帶農業暨國際合作系
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:180
中文關鍵詞:關鍵字:南美白蝦、酪胺酸羥化酶、兒茶酚胺、原位雜交、基因靜默、 免疫抗病南美白蝦酪胺酸羥化酶兒茶酚胺原位雜交基因靜默免疫抗病
外文關鍵詞:Keywords: Litopenaeus vannameityrosine hydroxylasecatecholaminein situ hybridizationgene silencingdiseases resistanceLitopenaeus vannameityrosine hydroxylasecatecholaminein situ hybridizationgene silencingdiseases resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:82
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
酪胺酸羥化酶 (Tyrosine hydroxylase,TH) 屬於生物蝶呤依賴性芳香族胺基酸羥化酶家族,當無脊椎動物和脊椎動物處於緊迫環境中,酪胺酸羥化酶為合成生理和免疫過程中所需要的兒茶酚胺中的第一個限速酵素。本研究目的為利用cDNA末端快速擴增方法 (RACE) 選殖南美白蝦酪胺酸羥化酶基因全長,並分析在低溫緊迫下組織中的酪胺酸羥化酶基因表現量以及受到低溫緊迫和溶藻弧菌攻擊試驗後酪胺酸羥化酶基因表現量及其活性;此外,利用原位雜交技術探討南美白蝦血球細胞和組織間酪胺酸羥化酶基因轉錄分佈變化。南美白蝦經注射酪胺酸羥化酶雙股核醣核酸(LvTH-dsRNA)後,分析其對血球細胞及組織間特異性及有效抑制力;並藉由評估免疫反應和免疫相關基因表現量,以釐清酪胺酸羥化酶與兒茶酚胺合成間的關係。研究結果顯示,由南美白蝦的腦組織選殖出全長1699 bp酪胺酸羥化酶基因 (GenBank accession no::KU379701)。其中包含1500 bp的可轉譯區、54 bp的5端非轉譯區、145 bp的3端非轉譯區、終止密碼子 (TGA) 和多腺核苷酸尾。可轉譯成500個胺基酸,預測其分子量為57.38 kDa,等電點 (pl) 為5.95。另外,具有與脊椎動物及昆蟲之酪胺酸羥化酶基因結構相似之短鏈α螺旋結構域、催化核心、調節結構域、磷酸化位點和兩個潛在的N-連接的醣基化位點、胺基末端不具酸性區域和訊號肽切割位點。與無脊椎動物和脊椎動物的酪胺酸羥化酶相似度分別為60.0-61.2%和45.0-47.0%。經由原位雜交技術發現酪胺酸羥化酶基因在鰓和血球細胞中數量最多。然而,南美白蝦以溶藻弧菌 (105 cfu shrimp-1) 攻擊後顯示,血球細胞和腦組織分別在30-120分鐘和15-30分鐘時酪胺酸羥化酶基因表現量皆顯著性增加。另外,蝦子暴露於18℃低溫試驗中,分別在30-60分鐘和15-60分鐘內其血球細胞和腦組織之酪胺酸羥化酶基因表現量也顯著性增加。而在經溶藻弧菌攻擊及低溫緊迫試驗後,酪胺酸羥化酶活性分別在120分鐘及30-60分鐘顯著性增加;同樣分別在60分鐘及30分鐘時偵測到血淋巴中葡萄糖 (無血球細胞)顯著增加。透過原位雜交技術,在神經組織 (腦和圍咽結締組織) 和血球細胞 (透明細胞) 中偵測到陽性細胞存在。南美白蝦經注射酪胺酸羥化酶雙股核醣核酸(5µg shrimp-1) 靜默後第3天,顯示神經系統和血球細胞 (透明細胞) 中的酪胺酸羥化酶基因表現量以及血漿中的酪胺酸羥化酶活性顯著性降低,同時,利用原位雜交技術也可偵測到減弱訊號。在總血球細胞計數 (THC)、顆粒血球、半顆粒血球、超氧陰離子、超氧化物歧化酶 (SOD) 活性、吞噬活性和清除效率等免疫因子都具有顯著性增加;脂多醣、β-1,3-葡聚醣蛋白 (LGBP)、過氧化物蛋白 (PE)、超氧化物歧化酶、Crustin和溶菌酶等免疫相關基因表現量也顯著性上升。此外,每顆顆粒血球的酚氧化酵素 (PO) 活性、血淋巴中葡萄糖和乳酸皆顯著性降低;多巴胺-β羥化酶 (DBH) 和甲殼類高血糖激素 (CHH) 等基因表現量也顯著性降低。同樣在南美白蝦酪胺酸羥化酶經靜默後以溶藻弧菌攻擊,實驗發現酪胺酸羥化酶基因靜默的組別與注射焦碳酸二乙酯水(DEPC-H2O)的組別、陰性對照組等組別相較下有較高的存活率。綜合研究結果,酪胺酸羥化酶是一種神經型酵素且參與南美白蝦的生理和免疫反應,其包含在免疫-神經內分泌網絡中,並意味著受緊迫刺激時,腦衍生的酪胺酸羥化酶表現調控機制可能在如行動免疫腦的免疫血球中發生。酪胺酸羥化酶的減少可以提升特異性免疫因子與降低碳水化合物代謝物來增強南美白蝦的抗病力。
Tyrosine hydroxylase belongs to the biopterin-dependent aromatic amino acid hydroxylase enzyme family, is the rate-limiting step in synthesis of catecholamines (CAs) that are required for physiological and immune process in invertebrates and vertebrates under stressful conditions. The aim of this study is to clone the full length cDNA of TH gene in the pacific whiteleg shrimp, Litopenaeus vannamei (abbreviated LvTH) by 3´ and 5´ rapid amplification of cDNA ends (RACE) methods, investigate the LvTH gene expression in various tissues under hypothermal stress as well as the expression of LvTH and TH activity subjected to hypothermal stress and Vibrio alginolyticus challenges. In addition, profile the change in the distribution of LvTH transcripts in haemocytes and tissues in L. vannamei were examined. TH double-stranded (ds) RNA (LvTH-dsRNA) injected L. vannamei was used to examine specifically and effectively suppressed in haemocytes and tissues of shrimp. The RT-PCR and real-time RT-PCR as well as in situ hybridization were used in this study. Furthermore, the relationship between LvTH to catecholamine synthesis, immune response and immune related gene expression were evaluated by using LvTH-dsRNA. In present study, the full-length cDNA of TH gene was cloned from the brain of L. vannamei consists of 1699 bp (GenBank accession no: KU379701). It contained an open reading frame (ORF) of 1500 bp, 54 bp of the 5´-untranslated region (UTR), and 145 bp of the 3´-UTR, including a stop codon (TGA) and a poly A tail. The ORF is predicted to encode a protein of 500 amino acid (aa) with a predicted molecular mass of 57.38 kDa and a theoretical isoelectric point (pl) of 5.95. In addition, containing a short alpha helix domain, a catalytic core, a regulatory domain, a phosphorylation site and two potential N-linked glycosylation sites as presented in vertebrate and insect THs without acidic region and signal peptide cleavage sites at the amino-terminal, exhibited a similarity of 60.0-61.2% and 45.0-47.0% to that of invertebrate and vertebrate THs respectively. LvTH expression was abundant in gill and haemocytes. The expression of LvTH was significantly increased in haemocytes and brain within 30-120 min and 15-30 min respectively, after L.vannamei challenged with Vibrio alginolyticus at 105 cfu shrimp-1. Shrimp exposed to hypothermal stress at 18 °C significantly increased LvTH gene expression in haemocytes and brain within 30-60 and 15-60 min, respectively. The TH activity and haemolymph glucose level (haemocyte-free) significantly increased in pathogen challenged shrimp at 120 min and 60 min, and in hypothermal stressed shrimp at 30-60 min and 30 min, respectively. Using in situ hybridization, the TH positive hybridization signatures were observed in the nervous tissues (brain and circumesophageal connective) and haemocyte (hyaline cells). Shrimp received LvTH-dsRNA at 5 μg/shrimp after 3 days post injection showed significantly decreased LvTH gene expression in nervous system and haemocytes (hyaline cells) determined by real-time PCR as well as TH activity in plasma, and meanwhile, the weaken signals were detectable with in situ hybridization. The depletion of LvTH by using LvTH-dsRNA injected L. vannamei, revealed a significant increase in total haemocyte count (THC), granular cells; semigarnular cells; respiratory bursts (RBs release of superoxide anion); superoxide dismutase (SOD) activity; phagocytic activity and clearance efficiency; and the expression of lipopolysaccharide and β-1,3-glucan-bingding protein (LGBP) and peroxinectin (PE), SOD, crustin, and lysozyme genes. In addition, the reduction of TH gene expression and activity was accompanied by a decline of phenoloxidase (PO) activity per granulocyte, lower glucose and lactate levels and significantly low expression of dopamine-β dydroxilase (DBH) and crustacean hyperglycemic hormone (CHH) expression. The survival ratio of LvTH-silenced shrimp was significantly higher than that of shrimp injected with diethyl pyrocarbonate-water and nontargeting dsRNA when challenged with Vibrio alginolyticus. In conclusion, LvTH is a neural TH enzyme appears to be involved in the physiological and immune response of pacific whiteleg shrimp, L. vannamei suffering stressful stimulation which might be involved in the immune-neuroendocrine network. TH expression may happen in immune haemocytes as mobile-immune-brain during stress stimuli. The depletion of LvTH can enhance disease resistance in shrimp by upregulation specific immune parameters and downregulating the level of carbohydrate metabolites.
Abstract III
Acknowledgements VI
List of Tables XIII
List of Figures XIV
Chapter 1 1
Introduction 1
1.1 Background 1
1.2 Objectives 5
Chapter 2 7
Literature review 7
2.1 Taxonomy and ecology of the Pacific white-leg shrimp, Litopenaeus vannamei 7
2.2 Global Pacific white-leg Shrimp Production 9
2.3 Diseases problem in shrimp culture industry 10
2.4 The immune system of shrimp 12
2.5 Shrimp defense mechanisms 15
2.5.1 Pattern recognition proteins 17
2.5.2 Phagocytosis, Encapsulation and Nodule Formation 18
2.5.3 Coagulation system 21
2.5.4 Prophenoloxidase (proPO) activation system 21
2.5.5 Peroxinectin 23
2.5.6 Antimicrobial peptides 24
2.6 The Effects of stress on the immune function of shrimp 25
2.7 Stress response and catecholamines (CAs) hormones 26
2.8 The biosynthesis and releasing of catecholamine 28
2.9 The effects of catecholamines on immune response 32
2.10 Tyrosine hydroxylase 33
2.11 RNA Interference (RNAi) 35
Chapter 3 37
Cloning and characterization of tyrosine hydroxylase (TH) from the pacific white leg shrimp Litopenaeus vannamei, and its expression following pathogen and hypothermal stress 37
3.1 Abstract 37
3.2 Introduction 38
3.3 Materials and methods 40
3.3.1. Shrimp culture 40
3.3.2 Preparation of Vibrio alginolyticus 41
3.3.3. Sampling treatments 41
3.3.4. PCR and subcloning of LvTH cDNA 42
3.3.5. Nucleotide Sequence analysis of LvTH 43
3.3.6. Phylogenetic analysis 43
3.3.7. Tissue specific TH gene expression analysis 44
3.3.8 TH gene expression and TH activity checkup in V. alginolyticus-injected shrimp 44
3.3.9. Quantification of TH gene expression by real-time RT-PCR 45
3.3.10. TH activity, glucose and lactate assay 46
3.3.11. Statistical analysis 47
3.4. Results 47
3.4.1 Cloning and sequence analysis of LvTH gene 47
3.4.2. Tissue specific expression of LvTH 48
3.4.3. LvTH expression and TH activity in the haemolymph of V. alginolyticus-injected shrimp 49
3.4.4. LvTH expression and TH activity in shrimp subjected to hypothermal stress 49
3.4.5. Estimation of glucose and lactate concentrations in the haemolymph of shrimp subjected to pathogen challenge and hypothermal stress 50
3.5. Discussion 50
Chapter 4 68
Tissue distribution of tyrosine hydroxylase in Litopenaeus vannamei and its profiles after being silenced 68
4.1. Abstract 68
4.2. Introduction 69
4.3. Materials and methods 70
4.3.1. Shrimp culture 70
4.3.2. Experimental design 70
4.3.3. TH activity assay 71
4.3.4. Measurement of TH gene expression by real-time RT-PCR 72
4.3.5. In situ hybridization 72
4.3.6. Statistical analysis 74
4.4. Results 74
4.4.1. LvTH gene expression and plasma TH activity in LvTH silenced-shrimp 74
4.4.2 LvTH expression assessment in tissues with in situ hybridization 74
4.5 Discussion 76
Chapter 5 84
The upregulation of immune responses in tyrosine hydroxylase (TH) silenced Litopenaeus vannamei 84
5.1 Abstract 84
5.2 Introduction 85
5.3 Materials and methods 87
5.3.1. Shrimp culture 87
5.3.2. Experimental design 87
5.3.3. V. alginolyticus challenging test 88
5.3.4. Estimation of catecholamine synthesis 88
5.3.5. Evaluation of immune response parameters in LvTH-silenced shrimp 91
5.3.6. Relative quantification of immune-related gene transcripts through real-time polymerase chain reaction 94
5.3.7. Statistical analysis 94
5.4. Results 94
5.4.1. Targeted silencing of LvTH mRNA conferred protection against V. alginolyticus 94
5.4.2. LvTH mRNA depletion and the related effects reduced L-DOPA without interrupting DA and NE levels 95
5.4.3. LvTH mRNA knockdown modulated various immune parameters 96
5.4.4. LvTH mRNA depletion enhanced the transcript levels of immune-related genes 97
5.5.5. LvTH mRNA depletion reduced CHH gene expression and glucose and lactate levels 97
5.6 Discussion 97

Chapter 6 120
Conclusion 120
References 122
Appendix 152
Appendix 1. Solutions and buffers used in the assays 152
Appendix2. Publication from the dissertation 155
Bio-sketch of Author 156
Adamo, S., 2008. Norepinephrine and octopamine: linking stress and immune function across phyla. Invertebrate Survival Journal 5, 12-19.
Adamo, S.A., 2012. The effects of the stress response on immune function in invertebrates: An evolutionary perspective on an ancient connection. Hormones and Behavior 62, 324-330.
Adams, A., 1991. Response of penaeid shrimp to exposure to Vibrio species. Fish & Shellfish Immunology 1, 59-70.
Aguirre-Guzman, G., Sanchez-Martinez, S.M., Campa-Cordova, A.I., Luna-Gonzalez, A., Ascencio, F., 2009. Penaeid Shrimp Immune System The Thai journal of verterinary medicine 39, 205-215.
Amparyup, P., Charoensapsri, W., Tassanakajon, A., 2013. Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish & Shellfish Immunology 34, 990-1001.
Armas-Tizapantzi, A., Montiel-González, A.M., 2016. RNAi silencing: A tool for functional genomics research on fungi. Fungal Biology Reviews 30, 91-100.
Armnow, L.E., 1937. Colorimetric determination of the components of 3,4 dihydroxyphylanine-tyrosine mixture. Journal Biological Chemistry 118, 531-537.
Bachère, E., 2000. Shrimp immunity and disease control. Aquaculture 191, 3-11.
Bachère, E., Destoumieux, D., Bulet, P., 2000. Penaeidins, antimicrobial peptides of shrimp: a comparison with other effectors of innate immunity. Aquaculture 191, 71-88.
Bachère, E., Gueguen, Y., Gonzalez, M., De Lorgeril, J., Garnier, J., Romestand, B., 2004. Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunological Reviews 198, 149-168.
Bailey-Brock, J.H., Moss, S.M., 1992. Chapter 2- Penaeid toxinomy, Biology and Zoogeography A2-Fast, Arlow In: Lester, L.J. (Ed.), Marine Shrimp Culture. Elsevier, Amsterdam, pp. 9-27.
Baines, D., DeSantis, T., Downer, R.G.H., 1992. Octopamine and 5-hydroxytryptamine enhance the phagocytic and nodule formation activities of cockroach (Periplaneta americana) haemocytes. Journal of Insect Physiology 38, 905-914.
Barracco, M.A., de Lorgeril, J., Gueguen, Y., Bachère, E., 2005. Molecular characterization of penaeidins from two Atlantic brazilian shrimp species, Farfantepenaeus paulensis and Litopenaeus schmitti. FEMS Microbiology Letters 250, 117-120.
Barreiro-Iglesias, A., Laramore, C., Shifman, M.I., Anadón, R., Selzer, M.E., Rodicio, M.C., 2010. The sea lamprey tyrosine hydroxylase: cDNA cloning and in situ hybridization study in the brain. Neuroscience 168, 659-669.
Bell, A.T., Lightner, D.V., 1988. A Handbook of normal penaeid shrimp histology. World aquaculture society. Baton, Rouge, Louisiana
Bell, K.L., Smith, V.J., 1993. In vitro superoxide production by hyaline cells of the shore crab Carcinus maenas (L.). Developmental & Comparative Immunology 17, 211-219.
Benson, D.A., Boguski, M., Lipman, D.J., Ostell, J., 1994. GenBank. Nucleic Acids Research 22, 3441-3444.
Birman, S., Morgan, B., Anzivino, M., Hirsh, J., 1994. A Novel and major isoform of tyrosine Hydroxylase in Drosophila is generated by alternative RNA processing. The journal of biological chemistry 269, 26559-26567.
Blalock, J.E., Smith, E.M., 1985. The immune system: our mobile brain? Immunology Today 6, 115-117.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254.
Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J., Wittwer, C.T., 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical chemistry 55, 611-622.
Cerenius, L., Lee, B.L., Söderhäll, K., 2008. The proPO-system: pros and cons for its role in invertebrate immunity. Trends in Immunology 29, 263-271.
Chang, C.-C., Hung, M.-D., Cheng, W., 2011. Norepinephrine depresses the immunity and disease-resistance ability via α1- and β1-adrenergic receptors of Macrobrachium rosenbergii. Developmental & Comparative Immunology 35, 685-691.
Chang, C.-C., Jiang, J.-R., Cheng, W., 2015a. A first insight into temperature stress-induced neuroendocrine and immunological changes in giant freshwater prawn, Macrobrachium rosenbergii. Fish & Shellfish Immunology 47, 528-534.

Chang, C.-C., Lee, P.-P., Cheng, W., 2012. Norepinephrine regulates prophenoloxidase system-related parameters and gene expressions via α- and β-adrenergic receptors in Litopenaeus vannamei. Fish & Shellfish Immunology 33, 962-968.
Chang, C.-C., Tsai, W.-L., Jiang, J.-R., Cheng, W., 2015b. The acute modulation of norepinephrine on immune responses and genes expressions via adrenergic receptors in the giant freshwater prawn, Macrobrachium rosenbergii. Fish & Shellfish Immunology 46, 459-467.
Chang, C.-C., Wu, Z.-R., Kuo, C.-M., Cheng, W., 2007. Dopamine depresses immunity in the tiger shrimp Penaeus monodon. Fish & Shellfish Immunology 23, 24-33.
Chang, C.C., Yeh, M.S., Cheng, W., 2009. Cold shock-induced norepinephrine triggers apoptosis of haemocytes via caspase-3 in the white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology 27, 695-700.
Chang, Z.-W., Chiang, P.-C., Cheng, W., Chang, C.-C., 2015c. Impact of ammonia exposure on coagulation in white shrimp, Litopenaeus vannamei. Ecotoxicology and Environmental Safety 118, 98-102.
Chang, Z.-W., Ke, Z.-H., Chang, C.-C., 2016. Roles of dopamine receptors in mediating acute modulation of immunological responses in Macrobrachium rosenbergii. Fish & Shellfish Immunology 49, 286-297.
Charoensapsri, W., Amparyup, P., Suriyachan, C., Tassanakajon, A., 2014. Melanization reaction products of shrimp display antimicrobial properties against their major bacterial and fungal pathogens. Developmental & Comparative Immunology 47, 150-159.
Chen, Y.-N., Chen, W.-C., Cheng, W., 2014a. The second type of transglutaminase regulates immune and stress responses in white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology 37, 30-37.
Chen, Y., Li, X., He, J., 2014b. Recent advances in researcher on shrimp immune pathway involved in white spot syndrome virus genes regulation. Journal of Aquaculture Research and Development 5, 3-228.
Cheng, W., Chieu, H.-T., Ho, M.-C., Chen, J.-C., 2006. Noradrenaline modulates the immunity of white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology 21, 11-19.
Cheng, W., Chieu, H.-T., Tsai, C.-H., Chen, J.-C., 2005a. Effects of dopamine on the immunity of white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology 19, 375-385.
Cheng, W., Ka, Y.-W., Chang, C.-C., 2016. Dopamine beta-hydroxylase participate in the immunoendocrine responses of hypothermal stressed white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology 59, 166-178.
Cheng, W., Wang, L.-U., Chen, J.-C., 2005b. Effect of water temperature on the immune response of white shrimp Litopenaeus vannamei to Vibrio alginolyticus. Aquaculture 250, 592-601.
Chiu, C.-H., Guu, Y.-K., Liu, C.-H., Pan, T.-M., Cheng, W., 2007. Immune responses and gene expression in white shrimp, Litopenaeus vannamei, induced by Lactobacillus plantarum. Fish & Shellfish Immunology 23, 364-377.

Chiu, H.-T., Yeh, S.-P., Huang, S.-C., Chang, C.-C., Kuo, C.-M., Cheng, W., 2006. Dopamine induces transient modulation of the physiological responses of whiteleg shrimp, Litopenaeus vannamei. Aquaculture 251, 558-566.
Cock, J., Gitterle, T., Salazar, M., Rye, M., 2009. Breeding for disease resistance of Penaeid shrimps. Aquaculture 286, 1-11.
Dantas-Lima, J.J., Tuan, V.V., Corteel, M., Grauwet, K., An, N.T.T., Sorgeloos, P., Nauwynck, H.J., 2013. Separation of Penaeus vannamei haemocyte subpopulations by iodixanol density gradient centrifugation. Aquaculture 408–409, 128-135.
Daubner, S.C., Le, T., Wang, S., 2011. Tyrosine hydroxylase and regulation of dopamine synthesis. Archives of Biochemistry and Biophysics 508, 1-12.
Daubner, S.C., Lohse, D.L., Fitzpatrick, P.F., 1993. Expression and characterization of catalytic and regulatory domains of rat tyrosine hydroxylase. Protein Science : A Publication of the Protein Society 2, 1452-1460.
Davis, A. D., Samocha, T.M., Boyd, C.E., 2004. Acclimating Pacific white shrimp, Litopenaeus vannamei to Inland low-salinity waters. The soutern Regional Aquaculture Center (SRAC) publication No. 2601.
Destuomieux, D., Bulet, P., Loew, D., Van Dorsselaer, A., Rodriguez, J., Bachere, E., 1997. Penaeidins, a new family of antimicrobial peptide isolated from penaeids shrimp (Decapoda). The journal biological chemistry 272, 28398-28406.
Ebbesen, M., Jensen, T.G., Andersen, S., Pedersen, F.S., 2008. Ethical Perspectives on RNA Interference Therapeutics. International Journal of Medical Sciences 5, 159-168.
Ellis, R.P., Parry, H., Spicer, J.I., Hutchinson, T.H., Pipe, R.K., Widdicombe, S., 2011. Immunological function in marine invertebrates: Responses to environmental perturbation. Fish & Shellfish Immunology 30, 1209-1222.
Elofsson, R., Laxmyr, L., Rosengren, E., Hansson, C., 1982. Identification and quantitative measurements of biogenic amines and DOPA in the central nervous system and haemolymph of the crayfish Pacifastacus leniusculus (crustacea). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 71, 195-201.
Eto, K., Mazilu-Brown, J.K., Henderson-MacLennan, N., Dipple, K.M., McCabe, E.R.B., 2014. Development of catecholamine and cortisol stress responses in zebrafish. Molecular Genetics and Metabolism Reports 1, 373-377.
FAO, 2004. Introduction axnd movement of Penaeus vannamei and Penaeus stylirostris in Asia and the pacific food and aquaculture organization of the united nations reginal office for asia and the pacific Bangkok, 2004.
FAO, 2006-2017. Cultured aquatic species information programme. Penaeus vannamei. Cultured aquatic species information programme. . Text by Briggs, M. In: FAO Fisheries and Aquaculture Department [online]. Rome. Retrieved January 29, 2017 from the World Wide Web: http://www.fao.org/fishery/culturedspecies/Penaeus_vannamei/en.
FAO, 2015. Cultured aquatic species information programme Penaeus vannamei (Boone, 1931). . Text by Briggs, M. In: FAO Fisheries and Aquaculture Department.
Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791.
Fingerman, M., Nagabhushanam, R., 1992. Control of the release of crustacean hormones by neuroregulators. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 102, 343-352.
Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
Fitzpatrick, P.F., 1999. Tetrahydropterin-Dependent Amino Acid Hydroxylases. Annual Review of Biochemistry 68, 355-381.
Flegel, T.W., 2012. Historic emergence, impact and current status of shrimp pathogens in Asia. Journal of Invertebrate Pathology 110, 166-173.
Flierl, M.A., Rittirsch, D., Huber-Lang, M., Sarma, J.V., Ward, P.A., 2008. Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening pandora's box? Molecular medicine (Cambridge, Mass.) 14, 195-204.
Flierl, M.A., Rittirsch, D., Nadeau, B.A., Chen, A.J., Sarma, J.V., Zetoune, F.S., McGuire, S.R., List, R.P., Day, D.E., Hoesel, L.M., Gao, H., Van Rooijen, N., Huber-Lang, M.S., Neubig, R.R., Ward, P.A., 2007. Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449, 721-725.
Forman, H.J., Torres, M., 2002. Reactive Oxygen Species and Cell Signaling. American Journal of Respiratory and Critical Care Medicine 166, S4-S8.
Franssens, V., Simonet, G., Breugelmans, B., Van Soest, S., Van Hoef, V., Vanden Broeck, J., 2008. The role of hemocytes, serine protease inhibitors and pathogen-associated patterns in prophenoloxidase activation in the desert locust, Schistocerca gregaria. Peptides 29, 235-241.
Freestone, P.P., Haigh, R.D., Lyte, M., 2007. Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiology 7, 1-13.
Fu, L.-l., Chen, X., Wang, Y., 2014. Quality evaluation of farmed whiteleg shrimp, Litopenaeus vannamei, treated with different slaughter processing by infrared spectroscopy. Food Chemistry 151, 306-310.
Furukawa, S., Saito, H., Inoue, T., Matsuda, T., Fukatsu, K., Han, I., Ikeda, S., Hidemura, A., 2000. Supplemental glutamine augments phagocytosis and reactive oxygen intermediate production by neutrophils and monocytes from postoperative patients in vitro. Nutrition 16, 323-329.
García-Triana, A., Gómez-Jiménez, S., Peregrino-Uriarte, A.B., López-Zavala, A., González-Aguilar, G., Sotelo-Mundo, R.R., Valenzuela-Soto, E.M., Yepiz-Plascencia, G., 2010. Expression and silencing of Selenoprotein M (SelM) from the white shrimp Litopenaeus vannamei: Effect on peroxidase activity and hydrogen peroxide concentration in gills and hepatopancreas. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 155, 200-204.
Garcia Sampaio, F., de Lima Boijink, C., Tie Oba, E., Romagueira Bichara dos Santos, L., Lúcia Kalinin, A., Tadeu Rantin, F., 2008. Antioxidant defenses and biochemical changes in pacu (Piaractus mesopotamicus) in response to single and combined copper and hypoxia exposure. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 147, 43-51.
Gorbman, W.W., Dickhoff, S.B., Vigna, N.B., Ralph, C.L., 1983. Comparative endocrinology. Wiley-Interscience publicatin, New York 382-387 pp. .
Gorman, M.J., An, C., Kanost, M.R., 2007. Characterization of tyrosine hydroxylase from Manduca sexta. Insect Biochemistry and Molecular Biology 37, 1327-1337.
Gregorio, E.D., Spellman, P.T., Rubin, G.M., Lemaitre, B., 2001. Genome-Wide Analysis of the Drosophila Immune Response by Using Oligonucleotide Microarrays. Proceedings of the National Academy of Sciences of the United States of America 98, 12590-12595.
Grenett, H.E., Ledley, F.D., Reed, L.L., Woo, S.L., 1987. Full-length cDNA for rabbit tryptophan hydroxylase: functional domains and evolution of aromatic amino acid hydroxylases. Proceedings of the National Academy of Sciences of the United States of America 84, 5530-5534.
Gueguen, Y., Garnier, J., Robert, L., Lefranc, M.-P., Mougenot, I., de Lorgeril, J., Janech, M., Gross, P.S., Warr, G.W., Cuthbertson, B., Barracco, M.A., Bulet, P., Aumelas, A., Yang, Y., Bo, D., Xiang, J., Tassanakajon, A., Piquemal, D., Bachère, E., 2006. PenBase, the shrimp antimicrobial peptide penaeidin database: Sequence-based classification and recommended nomenclature. Developmental & Comparative Immunology 30, 283-288.
Guilhelmelli, F., Vilela, N., Albuquerque, P., Derengowski, L., Silva-Pereira, I., Kyaw, C., 2013. Antimicrobial development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Frontiers in Microbiology 4, 353
Wang, K. H. C., Tseng, C. W., Lin, H. Y., Chen, I. T., Chen, Y. H., Chen, Y. M., Chen, T-Y., Yang, H-L., 2010. RNAi knock-down of the Litopenaeus vannamei Toll gene (LvToll) significantly increases mortality and reduces bacterial clearance after challenge with Vibrio harveyi. Developmental & Comparative Immunology 34, 49-58.
Hancock, R.E.W., Diamond, G., 2000. The role of cationic antimicrobial peptides in innate host defences. Trends in Microbiology 8, 402-410.
Hashimoto, K., Yamano, Y., Morishima, I., 2008. Induction of tyrosine hydroxylase gene expression by bacteria in the fat body of eri-silkworm, Samia cynthia ricini. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 149, 501-506.
Haycock, J.W., Haycock, D., 1991. Tyrosine hydroxylase in rat brain dopaminergic nerve terminals. Multiple-site phosphorylation in vivo and in synaptosomes. Journal of Biological Chemistry 266, 5650-5657.
Hernández-López, J., Gollas-Galván, T., Vargas-Albores, F., 1996. Activation of the prophenoloxidase system of the brown shrimp Penaeus californiensis Holmes). Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 113, 61-66.
Higgins, D.G., Sharp, P.M., 1988. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73, 237-244.
Ho, S.-H., Song, Y.-L., 2009. Cloning of penaeidin gene promoter in tiger shrimp (Penaeus monodon). Fish & Shellfish Immunology 27, 73-77.
Holmblad, T., Söderhäll, K., 1999. Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture 172, 111-123.
Hopkins, T., Morgan , T., Aso, Y., Kramer, K., 1982. N-beta-Alanyldopamine: Major role in insect cuticle tranning Science 23, 364-366.
Hsieh, S.-L., Ruan, Y.-H., Li, Y.-C., Hsieh, P.-S., Hu, C.-H., Kuo, C.-M., 2008. Immune and physiological responses in Pacific white shrimp (Penaeus vannamei) to Vibrio alginolyticus. Aquaculture 275, 335-341.
Hsieh, S.L., Chen, S.M., Yang, Y.H., Kuo, C.M., 2006. Involvement of norepinephrine in the hyperglycemic responses of the freshwater giant prawn, Macrobrachium rosenbergii, under cold shock. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 143, 254-263.
Hsu, S.-W., Chen, J.-C., 2007. The immune response of white shrimp Penaeus vannamei and its susceptibility to Vibrio alginolyticus under sulfide stress. Aquaculture 271, 61-69.
Huynh, T.-G., Yeh, S.-T., Lin, Y.-C., Shyu, J.-F., Chen, L.-L., Chen, J.-C., 2011. White shrimp Litopenaeus vannamei immersed in seawater containing Sargassum hemiphyllum var. chinense powder and its extract showed increased immunity and resistance against Vibrio alginolyticus and white spot syndrome virus. Fish & Shellfish Immunology 31, 286-293.
Hwang, S.H., Cho, S., Park, Y.C., 2010. cDNA cloning and induction of tyrosine hydroxylase gene from the diamondback moth, Plutella xylostella. Archives of Insect Biochemistry and Physiology 75, 107-120.
Jia, X., Wang, F., Lu, Y., Zhang, D., Dong, S., 2014. Immune responses of Litopenaeus vannamei to thermal stress: a comparative study of shrimp in freshwater and seawater conditions. Marine and Freshwater Behaviour and Physiology 47, 79-92.
Jiravanichpaisal, P., Lee, B.L., Söderhäll, K., 2006. Cell-mediated immunity in arthropods: Hematopoiesis, coagulation, melanization and opsonization. Immunobiology 211, 213-236.
Joh, T.H., Hwang, O., 1987. Dopamine β-Hydroxylase: Biochemistry and Molecular Biology. Annals of the New York Academy of Sciences 493, 342-350.
Johansson, M.W., Keyser, P., Sritunyalucksana, K., Söderhäll, K., 2000. Crustacean haemocytes and haematopoiesis. Aquaculture 191, 45-52.
Johansson, M.W., Lind, M.I., Holmblad, T., Thornqvist, P.O., Soderhall, K., 1995. Peroxinectin, a Novel Cell Adhesion Protein from Crayfish Blood. Biochemical and Biophysical Research Communications 216, 1079-1087.
Johansson, M.W., Söderhäll, K., 1988. Isolation and purification of a cell adhesion factor from crayfish blood cells. The Journal of Cell Biology 106, 1795-1803.
Johansson, M.W., Söderhäll, K., 1989. Cellular immunity in crustaceans and the proPO system. Parasitology Today 5, 171-176.
Kang, C.-J., Xue, J.-F., Liu, N., Zhao, X.-F., Wang, J.-X., 2007. Characterization and expression of a new subfamily member of penaeidin antimicrobial peptides (penaeidin 5) from Fenneropenaeus chinensis. Molecular Immunology 44, 1535-1543.
Kanost, M.R., 1999. Serine proteinase inhibitors in arthropod immunity. Developmental & Comparative Immunology 23, 291-301.
Kaufman, S., 1995. Tyrosine hydroxylase. Advances in enzymology and related areas of molecular biology 70, 103-220.
Kim, D.H., Rossi, J.J., 2008. RNAi mechanisms and applications. BioTechniques 44, 613-616.
Kong, Y., Ruan, L., Ma, L., Cui, Y., Wang, J.M., Le, Y., 2007. RNA interference as a novel and powerful tool in immunopharmacological research. International Immunopharmacology 7, 417-426.
Kozak, M., 1987. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Research 15, 8125-8148.
Krepstakies, M., Lucifora, J., Nagel, C.H., Zeisel, M.B., Holstermann, B., Hohenberg, H., Kowalski, I., Gutsmann, T., Baumert, T.F., Brandenburg, K., Hauber, J., Protzer, U., 2012. A New Class of Synthetic Peptide Inhibitors Blocks Attachment and Entry of Human Pathogenic Viruses. Journal of Infectious Diseases 205, 1654-1664.
Kuhar MJ, C.P., Lambert PD. , 1999. Storage and Release of Catecholamines. In: Siegel GJ, Agranoff BW, Albers RW, et al., editors. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition. Philadelphia: Lippincott-Raven. Retrieved June on 11, 2017 from the World Wide Web: https://www.ncbi.nlm.nih.gov/books/NBK28060/.
Kumer, S.C., Vrana, K.E., 1996. Intricate Regulation of Tyrosine Hydroxylase Activity and Gene Expression. Journal of Neurochemistry 67, 443-462.
Kuo, C.-m., Hsu, C.-r., Lin, C.-y., 1995. Hyperglycaemic effects of dopamine in tiger shrimp, Penaeus monodon. Aquaculture 135, 161-172.
Kuo, C.M., Yang, Y.H., 1999. Hyperglycemic responses to cold shock in the freshwater giant prawn, Macrobrachium rosenbergii. Journal of Comparative Physiology B 169, 49-54.
Kushner, P.D., Maynard, E.A., 1977. Localization of monoamine fluroscence in the stomatogastric nervous system of lobsters. Brain Research 129, 13-28.
Kvetnansky, R., Sabban, E.L., Palkovits, M., 2009. Catecholaminergic Systems in Stress: Structural and Molecular Genetic Approaches. Physiological Reviews 89, 535-606.

Lacoste, A., Malham, S.K., Cueff, A., Poulet, S.A., 2001a. Noradrenaline Modulates Oyster Hemocyte Phagocytosis via a β-Adrenergic Receptor–cAMP Signaling Pathway. General and Comparative Endocrinology 122, 252-259.
Lacoste, A., Malham, S.K., Cueff, A., Poulet, S.A., 2001b. Stress-Induced Catecholamine Changes in the Hemolymph of the Oyster Crassostrea gigas. General and Comparative Endocrinology 122, 181-188.
Lacoste, A., Malham, S.K., Gélébart, F., Cueff, A., Poulet, S.A., 2002. Stress-induced immune changes in the oyster Crassostrea gigas. Developmental & Comparative Immunology 26, 1-9.
Laxmyr, L., 1984. Biogenic amines and DOPA in the central nervous system of decapod crustaceans. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 77, 139-143.
Lee, K.S., Kim, B.Y., Jin, B.R., 2015. Differential regulation of tyrosine hydroxylase in cuticular melanization and innate immunity in the silkworm Bombyx mori. Journal of Asia-Pacific Entomology 18, 765-770.
Lee, S.Y., Wang, R., Söderhäll, K., 2000. A Lipopolysaccharide- and β-1,3-Glucan-binding Protein from Hemocytes of the Freshwater Crayfish Pacifastacus leniusculus : Purification, Characterization, and cDNA cloning. Journal of Biological Chemistry 275, 1337-1343.
Li, C.-C., Chen, J.-C., 2008. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under low and high pH stress. Fish & Shellfish Immunology 25, 701-709.
Li, C.-C., Yeh, S.-T., Chen, J.-C., 2008. The immune response of white shrimp Litopenaeus vannamei following Vibrio alginolyticus injection. Fish & Shellfish Immunology 25, 853-860.
Li, C.-C., Yeh, S.-T., Chen, J.-C., 2010. Innate immunity of the white shrimp Litopenaeus vannamei weakened by the combination of a Vibrio alginolyticus injection and low-salinity stress. Fish & Shellfish Immunology 28, 121-127.
Li, F., Xiang, J., 2013. Recent advances in researches on the innate immunity of shrimp in China. Developmental & Comparative Immunology 39, 11-26.
Li, J.-T., Lee, P.-P., Chen, O.-C., Cheng, W., Kuo, C.-M., 2005. Dopamine depresses the immune ability and increases susceptibility to Lactococcus garvieae in the freshwater giant prawn, Macrobrachium rosenbergii. Fish & Shellfish Immunology 19, 269-280.
Liang, Z., Lindblad, P., Beauvais, A., Johansson, M.W., Latgé, J.-P., Hall, M., Cerenius, L., Söderhäll, K., 1992. Crayfish α-macroglobulin and 76 kDa protein; Their biosynthesis and subcellular localization of the 76 kDa protein. Journal of Insect Physiology 38, 987-995.
Lightner, D.V., Redman, R.M., Pantoja, C.R., Tang, K.F.J., Noble, B.L., Schofield, P., Mohney, L.L., Nunan, L.M., Navarro, S.A., 2012. Historic emergence, impact and current status of shrimp pathogens in the Americas. Journal of Invertebrate Pathology 110, 174-183.
Lin, C.-Y., Hu, K.-Y., Ho, S.-H., Song, Y.-L., 2006. Cloning and characterization of a shrimp clip domain serine protease homolog (c-SPH) as a cell adhesion molecule. Developmental & Comparative Immunology 30, 1132-1144.
Lin, Y.-C., Vaseeharan, B., Chen, J.-C., 2008. Molecular cloning and phylogenetic analysis on α2-macroglobulin (α2-M) of white shrimp Litopenaeus vannamei. Developmental & Comparative Immunology 32, 317-329.
Liochev, S.I., Fridovich, I., 2007. The effects of superoxide dismutase on H2O2 formation. Free Radical Biology and Medicine 42, 1465-1469.
Liu, C.-C., Chung, C.-P., Lin, C.-Y., Sung, H.-H., 2014. Function of an anti-lipopolysaccharide factor (ALF) isoform isolated from the hemocytes of the giant freshwater prawn Macrobrachium rosenbergii in protecting against bacterial infection. Journal of Invertebrate Pathology 116, 1-7.
Liu, C.-H., Chen, J.-C., 2004. Effect of ammonia on the immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish & Shellfish Immunology 16, 321-334.
Liu, C.-H., Cheng, W., Chen, J.-C., 2005. The peroxinectin of white shrimp Litopenaeus vannamei is synthesised in the semi-granular and granular cells, and its transcription is up-regulated with Vibrio alginolyticus infection. Fish & Shellfish Immunology 18, 431-444.
Liu, C.-H., Cheng, W., Kuo, C.-M., Chen, J.-C., 2004. Molecular cloning and characterisation of a cell adhesion molecule, peroxinectin from the white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology 17, 13-26.
Liu, C.-H., Tseng, M.-C., Cheng, W., 2007. Identification and cloning of the antioxidant enzyme, glutathione peroxidase, of white shrimp, Litopenaeus vannamei, and its expression following Vibrio alginolyticus infection. Fish & Shellfish Immunology 23, 34-45.
Liu, M., Liu, S., Hu, Y., Pan, L., 2015. Cloning and expression analysis of two carbonic anhydrase genes in white shrimp Litopenaeus vannamei, induced by pH and salinity stresses. Aquaculture 448, 391-400.
Livak, K.J., Schmittgen, T.D., 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 25, 402-408.
Lui, C.-H., Cheng, W., Hsu, J.-P., Chen, J.-C., 2004. Vibrio alginolyticus infection in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing. Diseases of Aquatic Organisms 61, 169-174.
Mamta, S.K., Raghuveer, K., Sudhakumari, C.-C., Rajakumar, A., Basavaraju, Y., Senthilkumaran, B., 2014. Cloning and expression analysis of tyrosine hydroxylase and changes in catecholamine levels in brain during ontogeny and after sex steroid analogues exposure in the catfish, Clarias batrachus. General and Comparative Endocrinology 197, 18-25.
Maningas, M.B.B., Kondo, H., Hirono, I., 2013. Molecular mechanisms of the shrimp clotting system. Fish & Shellfish Immunology 34, 968-972.
Mantione, K.J., Kim, C., Casares, F.M., Stefano, G.B., 2012. Microarray validation of molecular and cellular signaling in Homorus americanus and Penaeus monodon. Invertebrate Survival Journal 9, 212-222.
Mapanao, R., Chang, C.-C., Cheng, W., 2017. The upregulation of immune responses in tyrosine hydroxylase (TH) silenced Litopenaeus vannamei. Developmental & Comparative Immunology 67, 30-42.

Mapanao, R., Cheng, W., 2016. Cloning and characterization of tyrosine hydroxylase (TH) from the pacific white leg shrimp Litopenaeus vannamei, and its expression following pathogen challenge and hypothermal stress. Fish & Shellfish Immunology 56, 506-516.
Marmaras, V.J., Fragoulis, E.G., Christophoratou-Manioti, A., 1971. The metabolism of [14C]dopamine in the decapod crustacean upogebia littoralis. Comparative and General Pharmacology 2, 377-382.
Martin, G.G., Omori, J.E.H.S., Chong, C., Hoodbhoy, T., McKrell, N., 1991. Localization and roles of coagulogen and transglutaminase in hemolymph coagulation in decapod crustaceans. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 100, 517-522.
Martinez, F.S., 2007. The immune system of shrimp. Retrieved on May 3, 2017 from the World Widw Web: http://www.nicovita.com/en/extranet/Boletines/Jul-Set-2007.pdf.
Mason, R.P., Mangum, C.P., Godette, G., 1983. The influence of inorganic ions and acclimation salinity of haemocyanin oxygen binding in the blue crab Callinectes sapidus. Biological Bulletin 164, 104-123.
May, R.C., Machesky, L.M., 2001. Phagocytosis and the actin cytoskeleton. Journal of Cell Science 114, 1061-1077.
Medzhitov, R., Janeway, C., Jr., 2000. Innate immune recognition: mechanisms and pathways. Immunological Reviews 173, 89-97.
Minasyan, H., 2017. Sepsis and septic shock: Pathogenesis and treatment perspectives. Journal of Critical Care 40, 229-242.

Mitchell, R.N., 2013. Chapter II.2.3 - Innate and Adaptive Immunity: The Immune Response to Foreign Materials A2 - Ratner, Buddy D. In: Hoffman, A.S., Schoen, F.J., Lemons, J.E. (Eds.), Biomaterials Science (Third Edition). Academic Press, pp. 512-533.
Monastirioti, M., 1999. Biogenic amine systems in the fruit fly Drosophila melanogaster. Microscopy Research and Technique 45, 106-121.
Moss, S.M., Moss, D.R., Arce, S.M., Lightner, D.V., Lotz, J.M., 2012. The role of selective breeding and biosecurity in the prevention of disease in penaeid shrimp aquaculture. Journal of Invertebrate Pathology 110, 247-250.
Muñoz, M., Cedeño, R., Rodrı́guez, J., van der Knaap, W.P.W., Mialhe, E., Bachère, E., 2000. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture 191, 89-107.
Mylonakis, E., Aballay, A., 2005. Worms and Flies as Genetically Tractable Animal Models To Study Host-Pathogen Interactions. Infection and Immunity 73, 3833-3841.
Nagai, C., Nagata, S., Nagasawa, H., 2011. Effects of crustacean hyperglycemic hormone (CHH) on the transcript expression of carbohydrate metabolism-related enzyme genes in the kuruma prawn, Marsupenaeus japonicus. General and Comparative Endocrinology 172, 293-304.
Nagatsu, T., 1995. Tyrosine hydroxylase: human isoforms, structure and regulation in physiology and pathology. Essays Biochem 30, 15-35.
Nagatsu, T., Levitt, M., Udenfriend, S., 1964. Tyrosine hydroxylase. The initial step in physiology and pathology. Essays Biochemistry 239, 2910-2917.
Nance, D.M., Sanders, V.M., 2007. Autonomic Innervation and Regulation of the Immune System (1987-2007). Brain, behavior, and immunity 21, 736-745.
Nappi, A.J., Ottaviani, E., 2000. Cytotoxicity and cytotoxic molecules in invertebrates. Bioessays 22, 469-480.
Nathan, C., Shiloh, M.U., 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proceedings of the National Academy of Sciences 97, 8841-8848.
Ocorr, K.A., Berlind, A., 1983. The identification and localization of a catecholamine in the motor neurons of the lobster cardiac ganglion. Journal of Neurobiology 14, 51-59.
Ottaviani, E., Caselgrandi, E., Franchini, A., Franceschi, C., 1993. CRF Provokes the Release of Norepinephrine by Haemocytes of Viviparus ater (Gastropoda, Prosobranchia): Further Evidence in Favor of the Evolutionary Hypothesis of the "Mobile Immune-Brain". Biochemical and Biophysical Research Communications 193, 446-452.
Ottaviani, E., Caselgrandi, E., Kletsas, D., 1997. Effect of PDGF and TGF-beta on the release of biogenic amines from invertebrate immunocytes and their possible role in the stress response. FEBS Lett 403, 236-238.
Ottaviani, E., Caselgrandi, E., Kletsas, D., 1998. The CRH-ACTH-biogenic amine axis in invertebrate immunocytes activated by PDGF and TGF-β. FEBS Letters 427, 255-258.
Ottaviani, E., Caselgrandi, E., Petraglia, F., Franceschi, C., 1992. Stress response in the freshwater snail Planorbarius corneus (L.)(Gastropoda, Pulmonata): interaction between CRF, ACTH, and biogenic amines. General and comparative endocrinology 87, 354-360.
Ottaviani, E., Cossarizza, A., Ortolani, C., Monti, D., Franceschi, C., 1991. ACTH-Like Molecules in Gastropod Molluscs: A Possible Role in Ancestral Immune Response and Stress. Proceedings of the Royal Society of London. Series B: Biological Sciences 245, 215-218.
Ottaviani, E., Franceschi, C., 1996. The neuroimmunology of stress from invertebrates to man. Progress in Neurobiology 48, 421-440.
Parihar, M.S., Javeri, T., Hemnani, T., Dubey, A.K., Prakash, P., 1997. Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. Journal of Thermal Biology 22, 151-156.
Pérez Farfante, I., Kensley, B.F., 1997. Penaeoid and sergestoid shrimps and prawns of the world: keys and diagnoses for the families and genera. Editions du Muséum, Paris.
Ponzoni, S., 2014. Tyrosine hydroxylase protein expression in ventral nerve cord of Neotropical freshwater crab. Tissue and Cell 46, 482-489.
Pruessner, J.C., Dedovic, K., Pruessner, M., Lord, C., Buss, C., Collins, L., Dagher, A., Lupien, S.J., 2010. Stress regulation in the central nervous system: evidence from structural and functional neuroimaging studies in human populations - 2008 Curt Richter Award Winner. Psychoneuroendocrinology 35, 179-191.
Qian, Z., Mi, X., Wang, X., He, S., Liu, Y., Hou, F., Liu, Q., Liu, X., 2013. cDNA cloning and expression analysis of myostatin/GDF11 in shrimp, Litopenaeus vannamei. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 165, 30-39.

Raman, T., Arumugam, M., Mullainadhan, P., 2008. Agglutinin-mediated phagocytosis-associated generation of superoxide anion and nitric oxide by the hemocytes of the giant freshwater prawn Macrobrachium rosenbergii. Fish & Shellfish Immunology 24, 337-345.
Ramos MartíNez, J.I., González-Riopedre, M., Barcia, R., 2012. Role of protein kinases C (PKC) in the relationship between the neuroendocrine and immune systems in marine mussels: The model of Mytilus galloprovincialis Lamark (1819). Italian Journal of Zoology 79, 162-168.
Ramsey, A.J., Daubner, S.C., Ehrlich, J.I., Fitzpatrick, P.F., 1995. Identification of iron ligands in tyrosine hydroxylase by mutagenesis of conserved histidinyl residues. Protein Science : A Publication of the Protein Society 4, 2082-2086.
Ratcliffe, N.A., Rowley, A.F., Fitzgerald, S.W., Rhodes, C.P., 1985. Invertebrate Immunity: Basic Concepts and Recent Advances. In: Bourne, G.H. (Ed.), International Review of Cytology. Academic Press, pp. 183-350.
Reid, S.G., 2011. Hormonal responses to stress | Catecholamines. In: Farrell, A.P. (Ed.), Encyclopedia of Fish Physiology. Academic Press, San Diego, pp. 1524-1533.
Restifo, L.L., White, K., 1990. Molecular and Genetic Approaches to Neurotransmitter and Neuromodulator Systems in Drosophila. In: Evans, P.D., Wigglesworth, V.B. (Eds.), Advances in Insect Physiology. Academic Press, pp. 115-219.
Richard, F., Faucon-Biguet, N., Labatut, R., Rollet, D., Mallet, J., Buda, M., 1988. Modulation of tyrosine hydroxylase gene expression in rat brain and adrenals by exposure to cold. Journal of Neuroscience Research 20, 32-37.
Roch, P., 1999. Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture 172, 125-145.
Rodrı́guez, J., Le Moullac, G., 2000. State of the art of immunological tools and health control of penaeid shrimp. Aquaculture 191, 109-119.
Rolff, J., Siva-Jothy, M.T., 2003. Invertebrate Ecological Immunology. Science 301, 472.
Rusnák, M., Kvetňanský, R., Jeloková, J., Palkovits, M., 2001. Effect of novel stressors on gene expression of tyrosine hydroxylase and monoamine transporters in brainstem noradrenergic neurons of long-term repeatedly immobilized rats. Brain Research 899, 20-35.
Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular and Biology and Evolution 4, 406-425.
Sanders, V.M., Straub, R.H., 2002. Norepinephrine, the β-Adrenergic Receptor, and Immunity. Brain, Behavior, and Immunity 16, 290-332.
Sanger, F., Nicklen, S., Coulson, A.R., 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences 74, 5463-5467.
Santos, E.A., Keller, R., 1993. Crustacean hyperglycemic hormone (CHH) and the regulation of carbohydrate metabolism: Current perspectives. Comparative Biochemistry and Physiology Part A: Physiology 106, 405-411.
Schreck, C., 1996. Immunomodulation: endogenous factors. In: Iwama G, Nakanishi T, editor.The fish imune system organism, pathogen, and environment. San Diego, CA: Academic Press p.311-337.

Seitz, V., Clermont, A., Wedde, M., Hummel, M., Vilcinskas, A., Schlatterer, K., Podsiadlowski, L., 2003. Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by a subtractive hybridization approach. Developmental & Comparative Immunology 27, 207-215.
Sherman, J.H., Munyikwa, T., Chan, S.Y., Petrick, J.S., Witwer, K.W., Choudhuri, S., 2015. RNAi technologies in agricultural biotechnology: The Toxicology Forum 40th Annual Summer Meeting. Regulatory Toxicology and Pharmacology 73, 671-680.
Shiman, R., Akino, M., Kuafman, S., 1971. Solubilixation and partial purification of tyrosine hydroxylase from bovine adrenal medulla. The journal of biological chemistry 246, 330-1340
Smith, S.M., Vale, W.W., 2006. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience 8, 383-395.
Smith, V.J., 1991. Invertebrate immunology: Phylogenetic, ecotoxicological and biomedical implications. Comparative Haematology International 1, 61-76.
Smith, V.J., Chisholm, J.R.S., 1992. Non-cellular immunity in crustaceans. Fish & Shellfish Immunology 2, 1-31.
Smith, V.J., Söderhäll, K., Hamilton, M., 1984. β 1,3-Glucan induced cellular defence reactions in the shore crab, Carcinus maenas. Comparative Biochemistry and Physiology Part A: Physiology 77, 635-639.
Snieszko, S.F., 1973. Diseases of fishes and their control in the U.S. In: the two lakes fifth fishery management tranlining cours report. Jansen, London: pp 55-66.
Söderhäll, I., Bangyeekhun, E., Mayo, S., Söderhäll, K., 2003. Hemocyte production and maturation in an invertebrate animal; proliferation and gene expression in hematopoietic stem cells of Pacifastacus leniusculus. Developmental & Comparative Immunology 27, 661-672.
Söderhäll, K., Cerenius, L., 1998. Role of the prophenoloxidase-activating system in invertebrate immunity. Current Opinion in Immunology 10, 23-28.
Söderhäll, K., Cerenius, L., Johansson, M.W., 1996. The prophenoloxidase activating system in invertebrates. In: Söderhäll, KS, Iwanaga GR, Vasta GR, editors. New Directions in Invertebrate Immunology Fair Haven, NJ: SOS Publications pp. 229-253.
Song, Y.-L., Hsieh, Y.-T., 1994. Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances: Analysis of reactive oxygen species. Developmental & Comparative Immunology 18, 201-209.
Song, Y.L., Li, C.Y., 2014. Shrimp immune system – Special focus on penaeidin. Journal of Marine Science and Technology 22, 1-8.
Sritunyalucksana, K., Söderhäll, K., 2000. The proPO and clotting system in crustaceans. Aquaculture 191, 53-69.
Stefano, G.B., Cadet, P., Scharrer, B., 1989. Stimulatory effects of opioid neuropeptides on locomotory activity and conformational changes in invertebrate and human immunocytes: evidence for a subtype of delta receptor. Proceeddings of the National Academy of Sciences of the United states of America 86, 6307-6311.
Steinman, L., 2004. Elaborate interactions between the immune and nervous systems. Nature Immunology 5, 575-581.
Sternberg, E.M., 2006. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nature Reviews Immunology 6, 318-328.
Syed Musthaq, S.K., Kwang, J., 2014. Evolution of specific immunity in shrimp – A vaccination perspective against white spot syndrome virus. Developmental & Comparative Immunology 46, 279-290.
Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0 Molecular Biology and Evolution 24, 1596-1599.
Tassanakajon, A., Somboonwiwat, K., Supungul, P., Tang, S., 2013. Discovery of immune molecules and their crucial functions in shrimp immunity. Fish & Shellfish Immunology 34, 954-967.
Tierney, A.J., Kim, T., Abrams, R., 2003. Dopamine in crayfish and other crustaceans: distribution in the central nervous system and physiological functions. Microsc Res Tech 60, 325-335.
Tinikul, Y., Poljaroen, J., Tinikul, R., Chotwiwatthanakun, C., Anuracpreeda, P., Hanna, P.J., Sobhon, P., 2015. Alterations in the levels and distribution of octopamine in the central nervous system and ovary of the Pacific white shrimp, Litopenaeus vannamei, and its possible role in ovarian development. General and Comparative Endocrinology 210, 12-22.
Tseng, I.T., Chen, J.-C., 2004. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress. Fish & Shellfish Immunology 17, 325-333.
Tsing, A., Arcier, J.-M., Brehélin, M., 1989. Hemocytes of Penaeid and Palaemonid shrimps: Morphology, cytochemistry, and hemograms. Journal of Invertebrate Pathology 53, 64-77.
Turgeon, M.L., 2005. Clinical hematology: theory and procedures. Lippincott Williams & Wilkins.
Ullrich, R., Hofrichter, M., 2007. Enzymatic hydroxylation of aromatic compounds. Cellular and Molecular Life Sciences 64, 271-293.
Van De Braak, C.B., Botterblom, M.H., Liu, W., Taverne, N., van der Knaap, W.P., Rombout, J.H., 2002. The role of the haematopoietic tissue in haemocyte production and maturation in the black tiger shrimp (Penaeus monodon). Fish & Shellfish Immunology 12, 253-272.
Vargas-Albores, F., Yepiz-Plascencia, G., 2000. Beta glucan binding protein and its role in shrimp immune response. Aquaculture 191, 13-21.
Vazquez, L., Alpuche, J., Maldonado, G., Agundis, C., Pereyra-Morales, A., Zenteno, E., 2009. Immunity mechanisms in crustaceans. Innate Immunity 15 179–188.
Veldsema, A., Veldsema-Currie, R.D., 1979. Transmitter screening in the nervous tissues of the prawn Palaemonetes varians (leach), in organ culture. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 64, 143-147.
Visetnan, S., Donpudsa, S., Supungul, P., Tassanakajon, A., Rimphanitchayakit, V., 2009. Kazal-type serine proteinase inhibitors from the black tiger shrimp Penaeus monodon and the inhibitory activities of SPIPm4 and 5. Fish & Shellfish Immunology 27, 266-274.
Vrana, K.E., Walker, S.J., Rucker, P., Liu, X., 1994. A carboxyl terminal leucine zipper is required for tyrosine hydroxylase tetramer formation. Journal of Neurochemistry 63, 2014-2020.
Wang, F.-I., Chen, J.-C., 2006. The immune response of tiger shrimp Penaeus monodon and its susceptibility to Photobacterium damselae subsp. damselae under temperature stress. Aquaculture 258, 34-41.
Wen, C., Xue, M., Liang, H., Zhou, S., 2014. Evaluating the potential of marine Bacteriovorax sp. DA5 as a biocontrol agent against vibriosis in Litopenaeus vannamei larvae. Veterinary Microbiology 173, 84-91.
Yang, S.-P., Wu, Z.-H., Jian, J.-C., Zhang, X.-Z., 2010. Effect of marine red yeast Rhodosporidium paludigenum on growth and antioxidant competence of Litopenaeus vannamei. Aquaculture 309, 62-65.
Yeh, M.-S., Liu, C.-H., Hung, C.-W., Cheng, W., 2009. cDNA cloning, identification, tissue localisation, and transcription profile of a transglutaminase from white shrimp, Litopenaeus vannamei, after infection by Vibrio alginolyticus. Fish & Shellfish Immunology 27, 748-756.
Yeh, M.-S., Tsai, W.-L., Cheng, W., 2013. Identification and cloning of the second type transglutaminase from Litopenaeus vannamei, and its transcription following pathogen infection and in relation to the haemolymph coagulation. Fish & Shellfish Immunology 35, 1613-1623.
Yeh, S.-P., Chiu, H.-T., Cheng, W., 2006. Norepinephrine induces transient modulation of the physiological responses of whiteleg shrimp, Litopenaeus vannamei. Aquaculture 254, 693-700.
Yu, H.-S., Shen, Y.-H., Yuan, G.-X., Hu, Y.-G., Xu, H.-E., Xiang, Z.-H., Zhang, Z., 2011. Evidence of Selection at Melanin Synthesis Pathway Loci during Silkworm Domestication. Molecular Biology and Evolution 28, 1785-1799.
Yu, X.Q., Zhu, Y.F., Ma, C., Fabrick, J.A., Kanost, M.R., 2002. Pattern recognition proteins in Manduca sexta plasma. Insect Biochemistry and Molecular Biology 32, 1287-1293.
Yuan, A., Wang, S., Li, Z., Huang, C., 2010. Psychological aspect of cancer: From stressor to cancer progression. Experimental and Therapeutic Medicine 1, 13-18.
Zhang, H., Zhou, Z., Yue, F., Wang, L., Yang, C., Wang, M., Song, L., 2014a. The modulation of catecholamines on immune response of scallop Chlamys farreri under heat stress. General and Comparative Endocrinology 195, 116-124.
Zhang, M., Sun, Y., Chen, K., Yu, N., Zhou, Z., Chen, L., Du, Z., Li, E., 2014b. Characterization of the intestinal microbiota in Pacific white shrimp, Litopenaeus vannamei, fed diets with different lipid sources. Aquaculture 434, 449-455.
Zhou, Z., Wang, L., Shi, X., Zhang, H., Gao, Y., Wang, M., Kong, P., Qiu, L., Song, L., 2011. The modulation of catecholamines to the immune response against bacteria Vibrio anguillarum challenge in scallop Chlamys farreri. Fish & Shellfish Immunology 31, 1065-1071.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔