跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 22:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:辛歷
研究生(外文):Cyril Sabelo Dlamini
論文名稱:廢棄菇蕈栽培介質抑制番茄幼苗猝倒病(Pythium aphanidermatum) 之效果
論文名稱(外文):Effects of Spent Mushroom Substrate on Damping-off Disease of Tomato (Solanum lycopersicum) caused by Pythium aphanidermatum
指導教授:陳麗鈴陳麗鈴引用關係
指導教授(外文):Lih-Ling Chern
口試委員:郭章信林宜賢陳麗鈴
口試委員(外文):Chang-Hsin KuoYi-Hsien LinLih-Ling Chern
口試日期:26 July 2017
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:熱帶農業暨國際合作系
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:55
中文關鍵詞:廢棄菇蕈栽培介質猝倒病病害抑制P. aphanidermatum
外文關鍵詞:damping-offdisease suppressivenessspent mushroom substrateP. aphanidermatum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
番茄生產受流行病害的影響,其中Pythium aphanidermatum所引起的猝倒病是番茄幼苗時期最重要的病害。本研究在溫室條件下測試並評估番茄幼苗在廢棄菇蕈栽培介質 (spent mushroom substrate, SMS) 的生長情形及幼苗猝倒病之發生率。測試番茄幼苗於含有100%,90%,75%,50%,25%,10%及0%SMS的田間土壤 (field soil, FS) 當作栽培介質的生長情形,結果顯示番茄苗在土壤中含有較高比例的SMS (>50% SMS)中生長較好,而在土壤中含有較低比例的SMS (≦50% SMS) 中生長較差,用相同配方的栽培介質來評估猝倒病之發生率;最低發病率(40%)是在有較高比例的SMS之FS,隨著SMS的含量遞減,發病率遞增,只含有FS的栽培介質發病率最高,達93%。為評估番茄幼苗株齡對猝倒病發病率之影響,將番茄種於含有不同比例之SMS栽培介質中,於不同株齡時接種,結果顯示在所有接種日期中,於100%SMS之栽培介質中接種九日齡的幼苗時發病率最低(13%),與FS處理的發病率相比降低76%。同樣是FS栽培介質中,接種九日齡的幼苗發病率只有53%,與三日齡的93%相比降低43%,顯示隨著幼苗老化對疾病的抗性增加。為降低SMS的施用量,測試只於植穴施用SMS,接種5天株齡的番茄幼苗,結果發現植穴中放入30和40克的SMS能有效降低75%發病率,
但10及20克的介質則無法降低發病率。用水萃取廢棄菇蕈栽培介質(WESMS),萃取液經0.22m濾膜過濾滅菌得無菌萃取液進行測試,發現對P. aphanidermatum的菌絲生長及游走孢子發芽分別抑制11%及9%。本研究顯示於FS中混入SMS能顯著增加番茄幼苗生長及減少由P. aphanidermatum引起的幼苗猝倒病。SMS的水萃液只能輕微的抑制病原菌的生長,其他抑病的機制有待後續的探討。
A study was conducted to evaluate the efficacy of spent mushroom compost (SMS) on growth and damping-off disease incidence in tomato seedlings grown in greenhouse conditions. Different potting media with varying proportions of SMS to field soil (FS) were formulated. Maximum values of plant growth were achieved in potting media containing the higher proportions of SMS to FS (>50% SMS). Whereas, lowest values of plant growth parameters were observed in potting media containing less proportions of SMS to FS (≦50% SMS). The same formulations of potting media were used in evaluating damping-off disease incidence; minimum disease incidence (40%) was achieved in potting media consisting the higher proportions of SMS to FS, and disease incidence increased with decreasing amounts of SMS resulting to a maximum disease incidence of 93% in potting media with only FS. Potting media formulations which showed the highest disease reduction were used in assessing disease incidence on seedlings
inoculated at different days after planting. Potting media with 100% SMS was more effective in disease suppression at all inoculation dates showing lowest disease incidence (13%) when seedlings were inoculated at 9-day-old, reducing disease incidence by 76%. Disease resistance as seedling get older was also observed as the disease incidence was reduced in FS control from 93% to 53% when seedlings were inoculated at 9-day-old. SMS application rates were also tested whereby 30g and 40g SMS in planting holes were found to be effective in reducing disease incidence by 75%. In vitro tests using sterile water extracts from spent mushroom substrates (WESMS) showed a slight inhibition on both radial growth and spore germination of P. aphanidermatum. In all cases, increasing the amount of SMS to FS significantly increased tomato seedling growth and significantly reduce damping-off disease caused by P. aphanidermatum.
Table of Contents

摘 要 I
Abstract III
Acknowledgements V
Table of Contents VI
List of Tables X
List of Figures XI
Introduction 1
1.1 Problem Statement 3
1.2 Objectives 4
1.2.1 Specific Experimental Objectives 4
Literature Review 5
1.3 Tomato Propagation 5
1.4 Damping-off Diseases 6
1.5 Features of Pythium aphanidermatum 7
1.6 Spent Mushroom Substrate 8
1.6.1 Physical and Chemical Properties of SMS 9
1.6.2 Biological Agents Associated with SMS 11
1.6.3 SMS as Organic Manure 12
1.6.4 SMS in Disease Management 13
Material and Methods 17
1.7 Establishment of Damping-off Disease 17
1.7.1 Pathogen 17
1.7.2 Inoculum Preparation 17
1.7.3 Seedling Preparation 18
1.7.4 Inoculation 18
1.7.5 Re-isolation 19
1.8 Effects of SMS on Growth of Tomato Seedlings 19
1.9 Effects of SMS on Damping-off Disease Incidence Caused by P. aphanidermatum. 20
1.10 Effects of SMS on Disease Incidence in Plants Inoculated at Different Days After Planting. 20
1.11 Effects of SMS Application Rates on Damping-off Disease 21
1.12 In vitro Tests 22
1.12.1 Effects of Filtrates of Water Extracts from Spent Mushroom Substrates (WESMS) on Radial Growth of P. aphanidermatum. 22
1.12.2 Spore Germination Tests 22
1.13 Statistical Analysis 23
Results 24
1.14 Disease Establishment and Re-isolation of P. aphanidermatum 24
1.14.1 Disease Level 24
1.14.2 Re-isolation 25
1.15 Effects of SMS on Tomato Seedling Growth 26
1.15.1 Plant Height of Tomato Seedlings 26
1.15.2 Leaf number of tomato seedlings 27
1.15.3 Leaf Length of Tomato Seedling 30
1.15.4 Leaf Width of Tomato Seedling 31
1.15.5 Root Length 32
1.15.6 Shoot Weight 32
1.15.7 Root Weight 33
1.16 Effect of SMS on Damping-off of Tomato Seedlings 33
1.17 Damping-off Disease of Tomato Seedlings Inoculated at Different Days After Planting. 35
1.18 Effects of SMS Application Rates on Disease Incidence 37
1.19 Effects of WESMS on the Radial Growth P. aphanidermatum and on spore germination 38
Discussions 40
Conclusions 45
References 46
Bio-sketch of Author 55

List of Tables
Table 1. Treatment descriptions for effects of SMS on disease incidence in plants inoculated at different dates after planting 21
Table 2. Disease incidence in tomato seedlings inoculated with different zoospore concentrations 24
Table 3. Plant height (cm) of tomato seedlings and the average number of leaves/plant of tomato seedlings as influenced by potting media 29
Table 4. Different growth parameters of tomato seedlings as influenced by potting media at harvest (4 Weeks After Planting). 31
Table 5. Effect of seven potting media on the growth and the disease incidence of damping-off in tomato seedlings. 34
Table 6. Effects of spent mushroom substrate on damping-off disease of tomato seedlings inoculated at different dates with P. aphanidermatum 35
Table 7. Effects of spent mushroom substrate application rates on damping-off disease of tomato seedlings caused by P. aphanidermatum. 37


List of Figures
Figure 1. left) Tomato seedling infected with damping-off disease caused by P. aphanidematum, right) healthy tomato seedling. 3
Figure 2. A) P. aphanidermatum isolated from diseased tomato roots and cultured in water agar media, B) P. aphanidermatum isolates at 3 days after sub-culturing on PDA media. 25
Figure 3. Tomato seedlings in potting media containing different proportions of SMS and FS, a) 100%SMS, b) 90:10, c) 75:25, d) 50:50, e) 25:75, f) 10:90, and g) 100%FS. 26
Figure 4. Tomato seedlings grown in planting hole filled with SMS at different rates a) 40g, b) 30g, c) 20g, d)10g, and e) 0g SMS 38
Figure 5. A) P. aphanidermatum showing 11% radial growth inhibition after 3day incubation in PDA containing 10% WESMS, B) P. aphanidermatum after 3day incubation in PDA (control) 39
Figure 6. A) 9% inhibition on P. aphanidermatum spore germination in WESMS after 8 hours’ incubation, B) P. aphanidermatum zoospores in sterile distilled water (control). 39
References
Abdelzaher, H. M. (2004). Occurrence of damping-off of wheat caused by Pythium diclinum Tokunaga in El-Minia, Egypt and its possible control by Gliocladium roseum and Trichoderma harzianum. Archives of Phytopathology and Plant Protection, 37(2), 147-159.
Agrios, G. (2005). Plant diseases caused by fungi. Plant Pathology, 4, pp 565-597.
Ahlawat, O., Manikandan, K., Sagar, M., Raj, D., Gupta, P., & Vijay, B. (2011). Effect of composted button mushroom spent substrate on yield, quality and disease incidence of Pea (Pisum sativum). Mushroom Research, 20, 87-94.
Ahlawat, O., Sagar, M., Raj, D., Gupta, P., & Vijay, B. (2007). Effect of recomposted button mushroom spent substrate on growth and yield attributes of wheat (Triticum aestivum L). Mushroom Research, 16(1), 41-46.
Al-Sheikh, H. (2010). Two pathogenic species of Pythium; P.aphanidermatum and P. diclinum from a wheat field. Saudi Journal of Biological Sciences, 17(4), 347-352.
Alhussaen, K., Hussein, E. I., Al-Batayneh, K. M., Al-Khatib, M., Al Khateeb, W., Jocob, J., Hegazy, M. I. (2011). Identification and controlling Pythium sp. infecting tomato seedlings cultivated in Jordan Valley using garlic extract. Asian Journal of Plant Pathology, 5(2), 84-92.
Aslam, S., S. (2013). Organic management of root knot nematodes in tomato with spent mushroom compost. Sarhad Journal of Agriculture, 29(1), 63-69.
Bailey, E. B. (1949). James Hutton, Founder of Modern Geology (1726–1797). Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences, 63(4), 357-368.
Baker, K. F. (1957). Damping-off and related diseases . The UC system for producing healthy container-grown plants. California agriculture experimental station extension service manual 23. Australian Nurserymen’s Association, Parramatta, Australia, pp 34–51
Ben-Yephet, Y., & Nelson, E. B. (1999). Differential suppression of damping-off caused by Pythium aphanidermatum, P. irregulare, and P. myriotylum in composts at different temperatures. Plant Disease, 83(4), 356-360.
Beyer, D. M. (1996). The impact of the mushroom Industry on the environment. Mushroom News-Kennett square, 44, 6-13.
Beyer, D. M. (1999). Spent mushroom substrate fact sheet. Penn State Department of Plant Pathology, available at http://mushroomspawn. cas. psu. edu/Spent. htm.
Borrero, C., Ordovás, J., Trillas, M., & Avilés, M. (2006). Tomato Fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterised by Biolog®. Soil Biology and Biochemistry, 38(7), 1631-1637.
Buswell, J. (1994). Potential of spent mushroom substrate for bioremediation purposes. Compost Science & Utilization, 2(3), 31-36.
Butt, T.M., Jackson, C.W. and Magan, N. (2001). Fungi as biocontrol agent: Progress, problems and potential. CABI, Press, Oxon, U.K., pp. 390.
Cangy, C., & Peerally, A. (1995). Studies of Pleurotus production on sugarcane bagasse. African Journal of Mycology and Biotechnology, 3(2), 67-79.
Chen, D. W., & Zentmyer, G. (1970). Production of sporangia by Phytophthora cinnamomi in axenic culture. Mycologia, 62(2), 397-402.
Chen, J. T., & Huang, J. W. (2010). Antimicrobial activity of edible mushroom culture filtrates on plant pathogens. Plant Pathology Bulletin(4), 261-270.
Chen, J. T., Lin, M. J., & Huang, J. W. (2014). Efficacy of spent blewit mushroom compost and Bacillus aryabhattai combination on control of Pythium damping-off in cucumber. The Journal of Agricultural Science, 153(07), 1257-1266.
Chiu, A., & Huang, J. (1997). Effect of composted agricultural and industrial wastes on the growth of vegetable seedlings and suppression of their root diseases. Plant Pathology Bulletin, 6(2), 67-75.
Deacon, J.W. (1997). Modern mycology. Blackwell Science Ltd. pp. 303.
De Corato, U., Viola, E., Arcieri, G., Valerio, V., & Zimbardi, F. (2016). Use of composted agro-energy co-products and agricultural residues against soil-borne pathogens in horticultural soil-less systems. Scientia Horticulturae, 210 (1), 166-179.
Devonald, V. (1987). Spent mushroom compost, a possible growing medium ingredient. Compost: Production, Quality and Use. Els., April. Sci. London, 785-791.
Fasidi, I., Kadiri, M., Jonathan, S., Adenipekun, C., & Kuforiji, O. (2008). Cultivation of tropical mushrooms. Ibadan: Ibadan University Press 81pp.
Fidanza, M. A., Sanford, D. L., Beyer, D. M., & Aurentz, D. J. (2010). Analysis of fresh mushroom compost. Horticulture Technology, 20(2), 449-453.
Flint, M. L. (1998). Pests of the garden and small farm: a grower's guide to using less pesticide : University of California, Agriculture and Natural Resources pp3332.
Fontana, E., Nicola, S., & Tibaldi, G. (2008). Tomato production systems and their application to the tropics. Paper presented at the International Symposium on Tomato in the Tropics 821.
Gbolagade, J., Ajayi, A., Oku, I., & Wankasi, D. (2006). Nutritive value of common wild edible mushrooms from southern Nigeria. Global Journal of Biotechnology and Biochemistry, 1(1), 16-21.
Gerster, H. (1997). The potential role of lycopene for human health. Journal of the American College of Nutrition, 16(2), 109-126.
Goonani, Z., Sharifi, K., & Riahi, H. (2011). The effects of spent mushroom compost and municipal solid waste compost on Phytophthora drechsleri in vivo and in vitro. Archives of Phytopathology and Plant Protection, 44(12), 1171-1181.
Grabbe, K. (1978). Verfahren zur Herstellung eines Dung emittels: BRD-Patent NR. 2831583.
Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M. C., Shyamsundar, P., Noble, I. (2013). Policy: Sustainable development goals for people and planet. Nature, 495(7441), 305-307.
Gupta, P., Indurani, C., Ahlawat, O., Vijay, B., & Mediratta, V. (2004). Physico-chemical properties of spent mushroom substrates of Agaricus bisporus. Mushroom Research, 13(2). 84-94.
Hoitink, H. A., & Fahy, P. C. (1986). Basis for the control of soilborne plant pathogens with composts. Annual Review of Phytopathology, 24(1), 93-114.
Huang, J.-W., & Huang, H. C. (2000). A formulated container medium suppressive to Rhizoctonia damping-off of cabbage. Botanical Bulletin of Academia Sinica, 41, 49-56
Huang, J., Hu, C., Tzeng, D., & Ng, K. (1995). Effect of soil amended with spent golden mushroom compost on alleviating phytotoxicity of alachlor to seedling of garden pea. Plant Pathology Bull, 4(2), 76-82.
Isah, A., Amans, E., Odion, E., & Yusuf, A. (2014). Growth rate and yield of two tomato varieties (Lycopersicon esculentum Mill) under green manure and NPK fertilizer rate Samaru Northern Guinea Savanna. International Journal of Agronomy, 2014, 1-9.
Jayasinghe, G., Arachchi, I. L., & Tokashiki, Y. (2010). Evaluation of containerized substrates developed from cattle manure compost and synthetic aggregates for ornamental plant production as a peat alternative. Resources, Conservation and Recycling, 54(12), 1412-1418.
Jordan, S. N., Mullen, G. J., & Murphy, M. (2008). Composition variability of spent mushroom compost in Ireland. Bioresource Technology, 99(2), 411-418.
Kadiri, M., & Mustapha, Y. (2010). The use of spent mushroom substrate of L. subnudus Berk as a soil condition for vegetables. Bayero Journal of Pure and Applied Sciences, 3(2), 16-19.
Kang, D. S., Min, K. J., Kwak, A.-M., Lee, S.-Y., & Kang, H.-W. (2017). Defense Response and Suppression of Phytophthora Blight Disease of Pepper by Water Extract from Spent Mushroom Substrate of Lentinula edodes. The Plant Pathology Journal, 33(3), 264-275.
Kilany, M., Ibrahim, E. H., Al Amry, S., Al Roman, S., & Siddiqi, S. (2015). Microbial suppressiveness of Pythium damping-off diseases: Organic Amendments and Soil Suppressiveness in Plant Disease Management. Soil Biology, 46, 187-206.
Landis, T. D., Tinus, R. W., McDonald, S. E., & Barnett, J. P. (1990). The container tree nursery manual, Vol. 2. Agriculture Handbook, 674.
Larkin, R. P., English, J. T., & Mihail, J. D. (1995). Identification, distribution and comparative pathogenicity of Pythium spp associated with alfalfa seedlings. Soil Biology and Biochemistry, 27(3), 357-364.
Lerner, B. R. (2001). Tomatoes. Produce university cooperative extension service. Department of Horticulture, Reviewed 4/01, 2001, 1-5.
Lohr, V., Wang, S., & Wolt, J. (1984). Physical and chemical characteristics of fresh and aged spent mushroom compost. Horticultural Science, 19(5): 681-683.
Lucas, J. A. (2009). Plant pathology and plant pathogens: John Wiley & Sons, 3rd Edition. pp. 273.
Maynard, A. A. (1994). Sustained vegetable production for three years using composted animal manures. Compost Science & Utilization, 2(1), 88-96.
Medina, E., Paredes, C., Pérez-Murcia, M., Bustamante, M., & Moral, R. (2009). Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresource Technology, 100(18), 4227-4232.
Mitchell, R., & Deacon, J. (1986). Differential (host‐specific) accumulation of zoospores of Pythium on roots of graminaceous and non‐graminaceous plants. New Phytologist, 102(1), 113-122.
Musebe, R., Massawe, A., Mansuet, T., Kimani, M., Kuhlmann, U., & Toepfer, S. (2014). Achieving rational pesticide use in outdoor tomato production through farmer training and implementation of a technical guideline. Journal of Agricultural Extension and Rural Development, 6(12), 367-381.
Nair, A., Ngouajio, M., & Biernbaum, J. (2011). Alfalfa-based organic amendment in peat-compost growing medium for organic tomato transplant production. Horticultural Science, 46(2), 253-259.
Nico, A. I., Jiménez-Dı́az, R. M., & Castillo, P. (2004). Control of root-knot nematodes by composted agro-industrial wastes in potting mixtures. Crop Protection, 23(7), 581-587.
Pane, C., Spaccini, R., Piccolo, A., Scala, F., & Bonanomi, G. (2011). Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor. Biological Control, 56(2), 115-124.
Panthee, D. R., & Chen, F. (2010). Genomics of fungal disease resistance in tomato. Current genomics, 11(1), 30-39.
Parada, R., Murakami, S., Shimomura, N., Egusa, M., & Otani, H. (2011). Autoclaved spent substrate of hatakeshimeji mushroom (Lyophyllum decastes Sing.) and its water extract protect cucumber from anthracnose. Crop Protection, 30(4), 443-450.
Perez-Murcia, M., Moral, R., Moreno-Caselles, J., Perez-Espinosa, A., & Paredes, C. (2006). Use of composted sewage sludge in growth media for broccoli. Bioresource Technology, 97(1), 123-130.
Permana, I. G., Flachowsky, G., Meulen, U. t., & Zadrazil, F. (2000). Use of sugarcane bagasse for mushroom and animal feed production. The International Society for Mushroom Science, 15(47), 385-391.
Phae, C.-G., Sasaki, M., Shoda, M., & Kubota, H. (1990). Characteristics of Bacillus subtilis isolated from composts suppressing phytopathogenic microorganisms. Soil Science and Plant Nutrition, 36(4), 575-586.
Phan, C. W., & Sabaratnam, V. (2012). Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Applied Microbiology and Biotechnology, 96(4), 863-873.
Pill, W. G., Evans, T. A., & Garrison, S. A. (1993). Forcing white asparagus in various substrates under cool and warm regimes. Horticultural Science, 28(10), 996-998.
Polat, E., Uzun, H. I., Topçuoglu, B., Önal, K., Onus, A. N., & Karaca, M. (2009). Effects of spent mushroom compost on quality and productivity of cucumber (Cucumis sativus L.) grown in greenhouses. African Journal of Biotechnology, 8(2) 149-154.
Raftoyannis, Y., & Dick, M. W. (2006). Zoospore encystment and pathogenicity of Phytophthora and Pythium species on plant roots. Microbiology Research, 161(1), 1-8.
Regan, R., & Kuo, W. (1992). Degradation of carbaryl and 1-naphthol by spent mushroom compost microorganisms. Water Science and Technology, 26(9-11), 2081-2084.
Romaine, C. P., & Holcomb, E. J. (2001). Spent mushroom substrate: a novel multifunctional constituent of a potting medium for plants. Mushroom News-Kennett Square, 49(11), 4-17.
Roy, S., Barman, S., Chakraborty, U., & Chakraborty, B. (2015). Evaluation of spent mushroom substrate as biofertilizer for growth improvement of Capsicum annuum L. Journal of Applied Biology and Biotechnology, 3, 022-027.
Rupert, D. R. (1995). Use of spent mushroom substrate in stabilizing disturbed and commercial sites. Compost Science & Utilization, 3(1), 80-83.
Salman, M., & Abuamsha, R. (2012). Potential for integrated biological and chemical control of damping-off disease caused by Pythium ultimum in tomato. Biological Control, 57(5), 711-718.
Schwarz, D., & Grosch, R. (2003). Influence of nutrient solution concentration and a root pathogen (Pythium aphanidermatum) on tomato root growth and morphology. Scientia Horticulturae, 97(2), 109-120.
Sendi, H., Mohamed, M., Anwar, M., & Saud, H. (2013). Spent mushroom waste as a media replacement for peat moss in Kai-Lan (Brassica oleracea var. Alboglabra) production. The Scientific World Journal, 2013,1-9.
Shitole, A., Gade, R., Bandgar, M., Wavare, S., & Belkar, Y. (2014). Utilization of spent mushroom substrate as carrier for biocontrol agent and biofertilizer. The Bioscan, 9(1), 271-275.
Singh, R., Bhandari, T., Adhikari, K., & Kanaujia, J. (1992). Physico chemical parameters of casing soil in relation to yield of button mushroom(Agaricus brunnescens). Indian Journal of Mycology and Plant Pathology, 22(2), 160-164.
Singh, S., & Allen, D. J. (1979). Cowpea pests and diseases: Ibadan. International Institute of Tropical Agriculture (IITA). IITA Manual Series 2.
Steffen, K., Dann, M., Fager, K., Fleischer, S., & Harper, J. (1994). Short-term and long-term impact of an initial large scale SMS soil amendment on vegetable crop productivity and resource use efficiency. Compost Science and Utilization (USA), 2(4): 75-83.
Sterrett, S. B. (2001). Compost as horticultural substrates for vegetable transplant production. In: Stoffella, P.J. and Kahn, B.A. (Eds.), Compost Utilization in Horticultural Cropping Systems. Lewis Publication, Boca Raton, FL, pp. 227–240 .
Stewart, D., Cameron, K., & Cornforth, I. (1998). Effects of spent mushroom substrate on soil chemical conditions and plant growth in an intensive horticultural system: a comparison with inorganic fertiliser. Soil Research, 36(2), 185-198.
Stone, A., Traina, S., & Hoitink, H. (2001). Particulate organic matter composition and Pythium damping-off of cucumber. Soil Science Society of America Journal, 65(3), 761-770.
Sumner, D., Gascho, G., Johnson, A., Hook, J., & Threadgill, E. (1990). Root diseases, populations of soil fungi, and yield decline in continuous double-crop corn. Plant Disease, 74(9), 704-710.
Tariq, U., Rehman, S. U., Khan, M. A., Younis, A., Yaseen, M., & Ahsan, M. (2012). Agricultural and municipal waste as potting media components for the growth and flowering of Dahlia hortensis ‘Figaro’. Turkish Journal of Botany, 36(4), 378-385.
Tsitsigiannis, D. I., Antoniou, P. P., Tjamos, S. E., & Paplomatas, E. J. (2008). Major diseases of tomato, pepper and egg plant in green houses. The European Journal of Plant Science and Biotechnology, 2(1), 106-124.
van der Plaats-Niterink, A. J. (1981). Monograph of the genus Pythium: Centraalbureau voor Schimmelcultures Baarn, 21, 1-244
Wang, S. (1977). Comparison of the effect of NH4 nitrohumate, garbage compost and waste mushroom compost on corn yield. Paper presented at the Proceedings of the International Seminar on Soil Environment and Fertility Management in Intensive Agriculture. pp. 725-30. (The Society of the Science of Soil and Manure: Tokyo).
Waterhouse, G. a., & Waterston, J. (1964). CMI Description of pathogenic fungi and bacteria, Nos.31 .,33, 35. CMI, Kew. Surrey, England.
Wuest, P., & Fahy, H. (1991). Spent mushroom compost. Traitis and Uses. Mushromm News, 39(12), 9-15.
Yohalem, D., Harris, R., & Andrews, J. (1994). Aqueous extracts of spent mushroom substrate for foliar disease control. Compost science and utilization (USA), 2, 67‒74.
Zeeshan, M. A., Khan, I., Shah, B., Naeem, A., Khan, N., Ullah, W., Iqbal, M. (2016). Study on the management of Ralstonia solanacearum (Smith) with spent mushroom compost. Journal of Entomology and Zoology Studies, 4(3): 114-121
Zhang, W., Han, D., Dick, W., Davis, K., & Hoitink, H. (1998). Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis. Phytopathology, 88(5), 450-455.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top