|
(I) 6-Mercaptopurine-induced fluorescence quenching of monolayer MoS2 nanodots: applications to glutathione sensing, cellular imaging, and glutathione-stimulated drug delivery:
1.Kubota, R.; Hamachi, I., Protein Recognition Using Synthetic Small-Molecular Binders toward Optical Protein Sensing in Vitro and in Live Cells. Chem. Soc. Rev. 2015, 44, 4454-4471. 2.Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W., Far-Red to Near Infrared Analyte-Responsive Fluorescent Probes Based on Organic Fluorophore Platforms for Fluorescence Imaging. Chem. Soc. Rev. 2013, 42, 622-661. 3.Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chem. Rev. 2010, 110, 2620-2640. 4.Basaric, N.; Baruah, M.; Qin, W.; Metten, B.; Smet, M.; Dehaen, W.; Boens, N., Synthesis and Spectroscopic Characterisation of Bodipy○R Based Fluorescent Off-On Indicators with Low Affinity for Calcium. Org. Biomol. Chem. 2005, 3, 2755-2761. 5.Wolfbeis, O. S., An Overview of Nanoparticles Commonly Used in Fluorescent Bioimaging. Chem. Soc. Rev. 2015, 44, 4743-4768. 6.Shang, L.; Stockmar, F.; Azadfar, N.; Nienhaus, G. U., Intracellular Thermometry by Using Fluorescent Gold Nanoclusters. Angew. Chem. Int. Ed. 2013, 52, 11154-11157. 7.Kobayashi, H.; Hama, Y.; Koyama, Y.; Barrett, T.; Regino, C. A. S.; Urano, Y.; Choyke, P. L., Simultaneous Multicolor Imaging of Five Different Lymphatic Basins Using Nanodots. Nano Lett. 2007, 7, 1711-1716. 8.Liu, H.-Y.; Wu, P.-J.; Kuo, S.-Y.; Chen, C.-P.; Chang, E.-H.; Wu, C.-Y.; Chan, Y.-H., Quinoxaline-Based Polymer Dots with Ultrabright Red to Near-Infrared Fluorescence for In Vivo Biological Imaging. J. Am. Chem. Soc. 2015, 137, 10420-10429. 9.Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M., Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Lett. 2013, 13, 3447-3454. 10.Peimyoo, N.; Shang, J.; Cong, C.; Shen, X.; Wu, X.; Yeow, E. K. L.; Yu, T., Nonblinking, Intense Two-Dimensional Light Emitter: Monolayer WS2 Triangles. ACS Nano 2013, 7, 10985-10994. 11.Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F., Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271-1275. 12.Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M., Photoluminescence from Chemically Exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116. 13.Gopalakrishnan, D.; Damien, D.; Shaijumon, M. M., MoS2 Quantum Dot-Interspersed Exfoliated MoS2 Nanosheets. ACS Nano 2014, 8, 5297-5303. 14.Dong, H.; Tang, S.; Hao, Y.; Yu, H.; Dai, W.; Zhao, G.; Cao, Y.; Lu, H.; Zhang, X.; Ju, H., Fluorescent MoS2 Nanodots: Ultrasonic Preparation, Up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy. ACS Appl. Mater. Interfaces 2016, 8, 3107-3114. 15.Qiao, W.; Yan, S.; Song, X.; Zhang, X.; He, X.; Zhong, W.; Du, Y., Luminescent Monolayer MoS2 Nanodots Produced by Multi-Exfoliation Based on Lithium Intercalation. Appl. Surf. Sci. 2015, 359, 130-136. 16.Gopalakrishnan, D.; Damien, D.; Li, B.; Gullappalli, H.; Pillai, V. K.; Ajayan, P. M.; Shaijumon, M. M., Electrochemical Synthesis of Luminescent MoS2 Nanodots. Chem. Commun. 2015, 51, 6293-6296. 17.Li, B. L.; Chen, L. X.; Zou, H. L.; Lei, J. L.; Luo, H. Q.; Li, N. B., Electrochemically Induced Fenton Reaction of Few-Layer MoS2 Nanosheets: Preparation of Luminescent Nanodots via a Transition of Nanoporous Morphology. Nanoscale 2014, 6, 9831-9838. 18.Wang, Y.; Ni, Y., Molybdenum Disulfide Nanodots as a Photoluminescence Sensing Platform for 2,4,6-Trinitrophenol Detection. Anal. Chem. 2014, 86, 7463-7470. 19.Ren, X.; Pang, L.; Zhang, Y.; Ren, X.; Fan, H.; Liu, S., One-Step Hydrothermal Synthesis of Monolayer MoS2 Nanodots for Highly Efficient Electrocatalytic Hydrogen Evolution. J. Mater. Chem. A 2015, 3, 10693-10697. 20.Chen, X.; McDonald, A. R., Functionalization of Two-Dimensional Transition-Metal Dichalcogenides. Adv. Mater.2016, 28, 5738-5746. 21.Chou, S. S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J.; Dravid, V. P., Ligand Conjugation of Chemically Exfoliated MoS2. J. Am. Chem. Soc. 2013, 135, 4584-4587. 22.Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X.; Feng, L.; Sun, B.; Liu, Z., Drug Delivery with PEGylated MoS2 Nano-Sheets for Combined Photothermal and Chemotherapy of Cancer. Adv. Mater. 2014, 26, 3433-3440. 23.Zhou, L.; He, B.; Yang, Y.; He, Y., Facile Approach to Surface Functionalized MoS2 Nanosheets. RSC Adv. 2014, 4, 32570-32578. 24.Sim, D. M.; Kim, M.; Yim, S.; Choi, M.-J.; Choi, J.; Yoo, S.; Jung, Y. S., Controlled Doping of Vacancy-Containing Few-Layer MoS2 via Highly Stable Thiol-Based Molecular Chemisorption. ACS Nano 2015, 9, 12115-12123. 25.Russo, A.; DeGraff, W.; Friedman, N.; Mitchell, J. B., Selective Modulation of Glutathione Levels in Human Normal Tumor Cells and Subsequent Differential Response to Chemotherapy Drugs. Cancer Res. 1986, 46, 2845-2848. 26.Zhuang, Y.; Su, Y.; Peng, Y.; Wang, D.; Deng, H.; Xi, X.; Zhu, X.; Lu, Y., Facile Fabrication of Redox-Responsive Thiol-Containing Drug Delivery System via RAFT Polymerization. Biomacromolecules 2014, 15, 1408-1418. 27.Wang, X.; Cai, X.; Hu, J.; Shao, N.; Wang, F.; Zhang, Q.; Xiao, J.; Cheng, Y., Glutathione-Triggered “Off–On” Release of Anticancer Drugs from Dendrimer-Encapsulated Gold Nanoparticles. J. Am. Chem. Soc. 2013, 135, 9805-9810. 28.Xu, Z.; Liu, S.; Kang, Y.; Wang, M., Glutathione-Responsive Polymeric Micelles Formed by a Biodegradable Amphiphilic Triblock Copolymer for Anticancer Drug Delivery and Controlled Release. ACS Biomater. Sci. Eng. 2015, 1, 585-592. 29.Xu, S.; Li, D.; Wu, P., One-Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Nanodots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2015, 25, 1127-1136. 30.Gaur, A. P. S.; Sahoo, S.; Ahmadi, M.; Dash, S. P.; Guinel, M. J. F.; Katiyar, R. S., Surface Energy Engineering for Tunable Wettability through Controlled Synthesis of MoS2. Nano Lett. 2014, 14, 4314-4321. 31.Wang, Y.; Wang, S.; Li, C.; Qian, M.; Bu, J.; Wang, J.; Huang, R., Facile Growth of Well-Dispersed and Ultra-Small MoS2 Nanodots in Ordered Mesoporous Silica Nanoparticles. Chem. Commun. 2016, 52, 10217-10220. 32.Acerce, M.; Voiry, D.; Chhowalla, M., Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nano. 2015, 10, 313-318. 33.Rapoport, L.; Fleischer, N.; Tenne, R., Fullerene-like WS2 Nanoparticles: Superior Lubricants for Harsh Conditions. Adv. Mater. 2003, 15, 651-655. 34.Plechinger, G.; Heydrich, S.; Eroms, J.; Weiss, D.; Schüller, C.; Korn, T., Raman Spectroscopy of the Interlayer Shear Mode in Few-Layer MoS2 Flakes. Applied Physics Letters 2012, 101, 101906. 35.Gu, W.; Yan, Y.; Cao, X.; Zhang, C.; Ding, C.; Xian, Y., A Facile and One-Step Ethanol-Thermal Synthesis of MoS2 Nanodots for Two-Photon Fluorescence Imaging. J. Mater. Chem. B 2016, 4, 27-31. 36.Wilcoxon, J. P.; Newcomer, P. P.; Samara, G. A., Synthesis and Optical Properties of MoS2 and Isomorphous Nanoclusters in the Quantum Confinement Regime. J. Appl. Phys. 1997, 81, 7934-7944. 37.Nguyen, T. P.; Choi, S.; Jeon, J.-M.; Kwon, K. C.; Jang, H. W.; Kim, S. Y., Transition Metal Disulfide Nanosheets Synthesized by Facile Sonication Method for the Hydrogen Evolution Reaction. J. Phys. Chem. C 2016, 120, 3929-3935. 38.Mahmoudian, J.; Hadavi, R.; Jeddi-Tehrani, M.; Mahmoudi, A. R.; Bayat, A. A.; Shaban, E.; Vafakhah, M.; Darzi, M.; Tarahomi, M.; Ghods, R., Comparison of the Photobleaching and Photostability Traits of Alexa Fluor 568- and Fluorescein Isothiocyanate- Conjugated Antibody. Cell. J. 2011, 13, 169-172. 39.Chen, X.; Berner, N. C.; Backes, C.; Duesberg, G. S.; McDonald, A. R., Functionalization of Two-Dimensional MoS2: On the Reaction Between MoS2 and Organic Thiols. Angew. Chem. Int. Ed. 2016, 55, 5803-5808. 40.Dey, S.; Matte, H. S. S. R.; Shirodkar, S. N.; Waghmare, U. V.; Rao, C. N. R., Charge-Transfer Interaction between Few-Layer MoS2 and Tetrathiafulvalene. Chem. Asian J. 2013, 8, 1780-1784. 41.Miura, T.; Urano, Y.; Tanaka, K.; Nagano, T.; Ohkubo, K.; Fukuzumi, S., Rational Design Principle for Modulating Fluorescence Properties of Fluorescein-Based Probes by Photoinduced Electron Transfer. J. Am. Chem. Soc. 2003, 125, 8666-8671. 42.Daly, B.; Ling, J.; de Silva, A. P., Current Developments in Fluorescent PET (Photoinduced Electron Transfer) Sensors and Switches. Chem. Soc. Rev. 2015, 44, 4203-4211. 43.Fraiji, L. K.; Hayes, D. M.; Werner, T. C., Static and Dynamic Fluorescence Quenching Experiments for the Physical Chemistry Laboratory. J. Chem. Educ. 1992, 69, 424. 44.Ahmad, A.; Kurkina, T.; Kern, K.; Balasubramanian, K., Applications of the Static Quenching of Rhodamine B by Carbon Nanotubes. ChemPhysChem 2009, 10, 2251-2255. 45.Li, S.; Aphale, A. N.; Macwan, I. G.; Patra, P. K.; Gonzalez, W. G.; Miksovska, J.; Leblanc, R. M., Graphene Oxide as a Quencher for Fluorescent Assay of Amino Acids, Peptides, and Proteins. ACS Appl. Mater. Interfaces 2012, 4, 7069-7075. 46.Hu, Y.-J.; Liu, Y.; Zhang, L.-X.; Zhao, R.-M.; Qu, S.-S., Studies of Interaction between Colchicine and Bovine Serum Albumin by Fluorescence Quenching Method. J. Mol. Struct. 2005, 750, 174-178. 47.Xiao, S. J.; Zhao, X. J.; Hu, P. P.; Chu, Z. J.; Huang, C. Z.; Zhang, L., Highly Photoluminescent Molybdenum Oxide Nanodots: One-Pot Synthesis and Application in 2,4,6-Trinitrotoluene Determination. ACS Appl. Mater. Interfaces 2016, 8, 8184-8191. 48.Kubista, M.; Sjoback, R.; Eriksson, S.; Albinsson, B., Experimental Correction for the Inner-Filter Effect in Fluorescence Spectra. Analyst 1994, 119, 417-419. 49.Wood, D. L.; Tauc, J., Weak Absorption Tails in Amorphous Semiconductors. Phys. Rev. B 1972, 5, 3144-3151. 50.Mukherjee, S.; Maiti, R.; Katiyar, A. K.; Das, S.; Ray, S. K., Novel Colloidal MoS2 Quantum Dot Heterojunctions on Silicon Platforms for Multifunctional Optoelectronic Devices. Sci. Rep. 2016, 6, 29016. 51.Gowda, J. I.; M, M.; Nandibewoor, S. T., CTAB Functionalized Multiwalled Carbon Nanotube Composite Modified Electrode for the Determination of 6-Mercaptopurine. Sens. Biosensing. Res. 2017, 12, 1-7. 52.Zhou, L.; Lin, Y.; Huang, Z.; Ren, J.; Qu, X., Carbon Nanodots as Fluorescence Probes for Rapid, Sensitive, and Label-Free Detection of Hg2+ and Biothiols in Complex Matrices. Chem. Commun. 2012, 48, 1147-1149. 53.Wei, M.; Yin, P.; Shen, Y.; Zhang, L.; Deng, J.; Xue, S.; Li, H.; Guo, B.; Zhang, Y.; Yao, S., A New Turn-On Fluorescent Probe for Selective Detection of Glutathione and Cysteine in Living Cells. Chem. Commun. 2013, 49, 4640-4642. 54.Chen, T.-H.; Tseng, W.-L., (Lysozyme Type VI)-Stabilized Au8 Clusters: Synthesis Mechanism and Application for Sensing of Glutathione in a Single Drop of Blood. Small 2012, 8, 1912-1919. 55.Zhang, X.-L.; Zheng, C.; Guo, S.-S.; Li, J.; Yang, H.-H.; Chen, G., Turn-On Fluorescence Sensor for Intracellular Imaging of Glutathione Using G-C3N4 Nanosheet–MnO2 Sandwich Nanocomposite. Anal. Chem. 2014, 86, 3426-3434. 56.Deng, R.; Xie, X.; Vendrell, M.; Chang, Y.-T.; Liu, X., Intracellular Glutathione Detection Using MnO2-Nanosheet-Modified Upconversion Nanoparticles. J. Am. Chem. Soc. 2011, 133, 20168-20171. 57.Jiang, X.; Yu, Y.; Chen, J.; Zhao, M.; Chen, H.; Song, X.; Matzuk, A. J.; Carroll, S. L.; Tan, X.; Sizovs, A.; Cheng, N.; Wang, M. C.; Wang, J., Quantitative Imaging of Glutathione in Live Cells Using a Reversible Reaction-Based Ratiometric Fluorescent Probe. ACS Chemical Biology 2015, 10, 864-874. 58.Koo, A. N.; Lee, H. J.; Kim, S. E.; Chang, J. H.; Park, C.; Kim, C.; Park, J. H.; Lee, S. C., Disulfide-Cross-Linked Peg-Poly(Amino Acid)s Copolymer Micelles for Glutathione-Mediated Intracellular Drug Delivery. Chem. Commun. 2008, 6570-6572. 59.Hall, P. A.; Todd, C. B.; Hyland, P. L.; McDade, S. S.; Grabsch, H.; Dattani, M.; Hillan, K. J.; Russell, S. E. H., The Septin-Binding Protein Anillin Is Overexpressed in Diverse Human Tumors. Clin. Cancer Res. 2005, 11, 6780. 60.Chen, L. D.; Xue, Y. A.; Xia, X. Y.; Song, M. F.; Huang, J.; Zhang, H.; Yu, B.; Long, S. H.; Liu, Y. P.; Liu, L.; Huang, S. W.; Yu, F. Q., A Redox Stimuli-Responsive Superparamagnetic Nanogel with Chemically Anchored DOX for Enhanced Anticancer Efficacy and Low Systemic Adverse Effects. J. Mater. Chem. B 2015, 3, 8949-8962. 61.Yin, W.; Yan, L.; Yu, J.; Tian, G.; Zhou, L.; Zheng, X.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z.; Zhao, Y., High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy. ACS Nano 2014, 8, 6922-6933. 62. Dong, K.; Liu, Z.; Li, Z.; Ren, J.; Qu, X., Hydrophobic Anticancer Drug Delivery by a 980 nm Laser-Driven Photothermal Vehicle for Efficient Synergistic Therapy of Cancer Cells In Vivo. Adv. Mater. 2013, 25, 4452-4458.
(II) Functionalization of MoS2 nanosheets with aptamer as FRET-based nanoprobe for potassium ions sensing and imaging:
1. Gennari, F. J., Hypokalemia. N. Engl. J. Med. 1998, 339, 451-458. 2. Joyce, C. H., James, F. C., Hyperkalemia. Am. Fam. Physician 2006, 73, 283-290. 3. Liu, J.; Cao, Z.; Lu, Y., Functional Nucleic Acid Sensors. Chem. Rev. 2009, 109, 1948–1998. 4. Wang, Y.; Li, Z.; Hu, D.; Lin, C. T.; Li, J. H.; Lin, Y., Aptamer/Graphene Oxide Nanocomplex for in Situ Molecular Probing in Living Cells. J. Am. Chem. Soc. 2010, 132, 9274–9276. 5. Zheng, D.; Seferos, D.; Giljohann, D.; Patel, P.; Mirkin, C., Aptamer Nano-flares for Molecular Detection in Living Cell., Nano Lett., 2009, 9, 3258–3261. 6. Chen, T.; Tian, X.; Liu, C.; Ge, J.; Chu, X.; Li, Y., Fluorescence Activation Imaging of Cytochrome c Released from Mitochondria Using Aptameric Nanosensor., J. Am. Chem. Soc. 2015, 137, 982–989. 7. Huang, J.; Ying, L.; Yang, X.; Yang, Y.; Quan, K.; Wang, H.; Xie, N.; Ou, M.; Zhou, Q.; Wang, K., Detection of pH Change in Cytoplasm of Live Myocardial Ischemia Cells via the ssDNA-SWCNTs Nanoprobes., Anal. Chem. 2015, 87, 8724–8731. 8. Sim, D. M.; Kim, M.; Yim, S.; Choi, M.-J.; Choi, J.; Yoo, S.; Jung, Y. S. Controlled Doping of Vacancy-Containing Few-Layer MoS2 via Highly Stable Thiol-Based Molecular Chemisorption. ACS Nano, 2015, 9, 12115−12123. 9. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V., Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials., Science, 2011, 331, 568-571. 10. Makarova, M.; Okawa, Y.; Masakazu, A., Adsorption of Thiol Molecules at Sulfur Vacancies on MoS2(0001), Followed by Vacancy Repair via S–C Dissociation. J. Phys. Chem. C, 2012, 116, 22411–22416. 11. Chou, S. S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J. X.; Dravid, V. P., Ligand Conjugation of Chemically Exfoliated MoS2. J. Am. Chem. Soc., 2013, 135, 4584−4587. 12. Anbazhagan, R.; Wang, H. J.; Tsai, H. C.; Jeng, R. J., Highly Concentrated MoS2 Nanosheets in Water Achieved by Thioglycolic Acid as Stabilizer and Used as Biomarkers. RSC Adv., 2014, 4, 42936–42941. 13. Li, B. L.; Setyawati, M. I.; Chen, L.; Xie, J. P.; Ariga, K.; Lim, C. T.; Garaj, S.; Leong, D. T., Directing Assembly and Disassembly of 2D MoS2 Nanosheets with DNA for Drug Delivery. ACS Appl. Mater. Interfaces, 2017, 9, 15286-15296. 14. Kong, R. M.; Ding, L.; Wang, Z. J.; You, J. M.; Qu, F. L., A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Anal. Bioanal. Chem., 2015, 407, 369–377 15. Jia, L.; Ding, L.; Tian, J. W.; Bao, Lei; Hu, Y. P.; Ju, H. X.; Yu, J. S., Aptamer loaded MoS2 nanoplates as nanoprobes for detection of intracellular ATP and controllable photodynamic therapy. Nanoscale, 2015, 7, 15953-15961. 16. Huang, P.; Li, Z. M.; Lin, J.; Yang, D. P.; Gao, G.; Xu, C.; Bao, L.; Zhang, C. L.; Wang, K.; Song, H.; Hu, H. Y.; Cui, D. X., Biomaterials, 2011, 32, 3447–3458. 17. Wei, Z. T.; Elaine, Lay.; Khim, C.; Zdeněk, S.; Martin, P., Cytotoxicity of Exfoliated Transition-Metal Dichalcogenides (MoS2, WS2, and WSe2) is Lower Than That of Graphene and its Analogues. Chem. Eur. J., 2014, 20, 9627-9632. 18. Halo, T.; McMahon, K.; Angeloni, N; Xu, Y.; Wang, W.; Chinen, A.; Malin, D.; Strekalova, E.; Cryns, V.; Cheng, C.; Mirkin, C.; Thaxton, C., NanoFlares for the Detection, Isolation, and Culture of Live Tumor Cells From Human Blood, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 17104–17109. 19. Yang, Y.; Huang, J.; Yang, X.; Quan, K.; Wang, H.; Ying, L.; Xie, N.; Ou, M.; Wang, K., FRET Nanoflares for Intracellular mRNA Detection: Avoiding False Positive Signals and Minimizing Effects of System Fluctuations. J. Am. Chem. Soc., 2015, 137, 8340–8343. 20. Xu, S.; Li, D.; Wu, P., One-Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Nanodots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater., 2015, 25, 1127–1136. 21. Demers, L. M.; Mirkin, C. A.; Mucic, R. C.; Reynolds, R. A.; Letsinger, R. L.; Elghanian, R.; Viswanadham, G., A Fluorescence-Based Method for Determining the Surface Coverage and Hybridization Efficiency of Thiol-Capped Oligonucleotides Bound to Gold Thin Films and Nanoparticles. Anal. Chem., 2000, 72, 5535-5541. 22. Gaur, A. P. S.; Sahoo, S.; Ahmadi, M.; Dash, S. P.; Guinel, M. J. F.; Katiyar, R. S., Surface Energy Engineering for Tunable Wettability through Controlled Synthesis of MoS2. Nano Lett. 2014, 14, 4314-4321. 23. Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H., Single-Layer MoS2-Based Nanoprobes for Homogeneous Detection of Biomolecules. J. Am. Chem. Soc., 2013, 135, 5998–6001. 24. Yang, Z. P.; Wu, S. Q.; Wen, Y. H.; Zhu, Z. Z., First-principles Calculations on the Optical Properties of Monolayer MoS2., J. Xiamen Univ., 2014, 53, 459-464 25. Xiao, L.; Xu, L.; Gao, C.; Yulin Zhang, Y.; Yao, Q.; Zhang, G. J, A MoS2 Nanosheet-Based Fluorescence Biosensor for Simple and Quantitative Analysis of DNA Methylation., Sensors, 2016, 16, 1561-1571. 26. Acerce, M.; Voiry, D.; Chhowalla, M., Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nano. 2015, 10, 313-318. 27. Ren, X.; Pang, L.; Zhang, Y.; Ren, X.; Fan, H.; Liu, S., One-Step Hydrothermal Synthesis of Monolayer MoS2 Nanodots for Highly Efficient Electrocatalytic Hydrogen Evolution. J. Mater. Chem. A 2015, 3, 10693-10697. 28.Rapoport, L.; Fleischer, N.; Tenne, R., Fullerene-like WS2 Nanoparticles: Superior Lubricants for Harsh Conditions. Adv. Mater. 2003, 15, 651-655. 29.Plechinger, G.; Heydrich, S.; Eroms, J.; Weiss, D.; Schüller, C.; Korn, T., Raman Spectroscopy of the Interlayer Shear Mode in Few-Layer MoS2 Flakes. Applied Physics Letters 2012, 101, 101906. 30.Gu, W.; Yan, Y.; Cao, X.; Zhang, C.; Ding, C.; Xian, Y., A Facile and One-Step Ethanol-Thermal Synthesis of MoS2 Nanodots for Two-Photon Fluorescence Imaging. J. Mater. Chem. B 2016, 4, 27-31. 31. Qiao, W.; Yan, S.; Song, X.; Zhang, X.; He, X.; Zhong, W.; Du, Y., Luminescent Monolayer MoS2 Nanodots Produced by Multi-Exfoliation Based on Lithium Intercalation., Appl. Surf. Sci., 2015, 359, 130-136. 32. Chikan, V.; Kelley, D. F., Size Dependent Spectroscopy of MoS2 Nanoclusters., J. Phys. Chem. B, 2002, 106, 3794-3804. 33. Wilson, J. A.; Yoffe, A. D., The Transition Metal Dichalcogenides Discussion and Interpretation of the Observed Optical, Electrical and Structural Properties., J. Adv. Phys., 1969, 18, 193-335. 34. Angelika, S.; Bernard, J., Effect of Cholesterol Anchoring Group on the Properties of G-Quadruplex-Based FRET Probes for Potassium Ion., Chemosensors, 2014, 2, 267-286. 35. Berova, N.; Nakanishi, K.; Woody, R. W., Circular Dichroism: Principles and Applications. Wiley-VCH, 2000, 703−718. 36. Garbett, N. C.; Ragazzon, P. A.; Chaires, J. B., Circular dichroism to determine binding mode and affinity of ligand-DNA interactions. Nat. Protoc., 2007, 2, 3166−3172. 37. Baase, W. A.; Johnson, W. C.; Circular Dichroism and DNA Secondary Structure. Nucleic Acids Res., 1979, 6, 797−814. 38. Hossain, M.; Giri, P.; Kumar, G. S.; DNA Intercalation by Quinacrine and Methylene Blue: A Comparative Binding and Thermodynamic Characterization Study. DNA Cell Biol., 2008, 27, 81−90. 39. Maiti, M.; Kumar, G. S., Molecular Aspects on The Interaction of Protoberberine, Benzophenanthridine, and Aristolochia Group of Alkaloids with Nucleic Acid Structures and Biological Perspectives. Med. Res. Rev., 2007, 27. 649−695. 40. Jansa, H.; Huo, Q., Gold nanoparticle-enabled biological and chemical detection and analysis. Chem. Soc. Rev., 2012, 41, 2849-2866. 41. Yang, Y. J.; Huang, J.; Yang, X. H.; Quan, K.; Xie, N.; Ou, M.; Tang, J. L.; Wang, K., Aptamer-based FRET nanoflares for imaging potassium ions in living cells. Chem. Commun., 2016, 52, 11386—11389. 42. Huang, J.; Ying, L.; Yang, X.; Yang, Y.; Quan, K.; Wang, H.; Xie, N.; Ou, M.; Zhou, Q.; Wang, K., Anal. Chem., 2015, 87, 8724–8731.
|