|
1.Zhong, S.; Fu, Z.; Tan, Y.; Xie, Q.; Xie, F.; Zhou, X.; Ye, Z.; Peng, G.; Yin, D., 5‐Chloro‐7‐iodo‐8‐quinolinolatomanganese (III) with the Feature of pH‐Regulated Molecular Switches as a Highly Efficient Catalyst for Epoxidation of Olefins with Hydrogen Peroxide. Adv. Synth. Catal. 2008, 350, 802-806. 2.Dobson, C. M., Protein folding and misfolding. Nature 2003, 426, 884-890. 3.Tews, I.; Findeisen, F.; Sinning, I.; Schultz, A.; Schultz, J. E.; Linder, J. U., The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme. Science 2005, 308, 1020-1023. 4.Nishi, T.; Forgac, M., The vacuolar (H+)-ATPases—nature''s most versatile proton pumps. Nat Rev Mol Cell Biol. 2002, 3, 94-103. 5.Liu, R.; Liu, L.; Liang, J.; Wang, Y.; Wei, Y.; Gao, F.; Gao, L.; Gao, X., Detection of pH Change in Cytoplasm of Live Myocardial Ischemia Cells via the ssDNA-SWCNTs Nanoprobes. Anal. Chem. 2014, 86, 3048-3052. 6.Moore, R. D., The role of intracellular pH in insulin action and in diabetes mellitus. Curr. Top. Membr. 1986, 26, 263-290. 7.Webb, B. A.; Chimenti, M.; Jacobson, M. P.; Barber, D. L., Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer. 2011, 11, 671-677. 8.Koh, W. C. A.; Choe, E. S.; Lee, D. K.; Chang, S.-C.; Shim, Y.-B., Monitoring the activation of neuronal nitric oxide synthase in brain tissue and cells with a potentiometric immunosensor. Biosens. Bioelectron. 2009, 25, 211-217. 9.Yang, M.; Zhang, X.; Liu, H.; Kang, H.; Zhu, Z.; Yang, W.; Tan, W., Stable DNA Nanomachine Based on Duplex–Triplex Transition for Ratiometric Imaging Instantaneous pH Changes in Living Cells. Anal. Chem. 2015, 87, 5854-5859. 10.Kneipp, J.; Kneipp, H.; Wittig, B.; Kneipp, K., Following the dynamics of pH in endosomes of live cells with SERS nanosensors. J. Phys. Chem. C 2010, 114, 7421-7426. 11.Rani, R. A.; Sidek, O. In ISFET pH sensor characterization: towards biosensor microchip application, TENCON 2004. 2004 IEEE Region 10 Conference, IEEE: 2004; pp 660-663. 12.Lee, M. H.; Han, J. H.; Lee, J. H.; Park, N.; Kumar, R.; Kang, C.; Kim, J. S., Two‐Color Probe to Monitor a Wide Range of pH Values in Cells. Angew. Chem. Int. Ed. 2013, 52, 6206-6209. 13.Madhu, S.; Rao, M. R.; Shaikh, M. S.; Ravikanth, M., 3, 5-Diformylboron dipyrromethenes as fluorescent pH sensors. Inorg. Chem. 2011, 50, 4392-4400. 14.Yu, X.-J.; McGourty, K.; Liu, M.; Unsworth, K. E.; Holden, D. W., pH sensing by intracellular Salmonella induces effector translocation. Science 2010, 328, 1040-1043. 15.He, C.; Lu, K.; Lin, W., Nanoscale metal–organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 2014, 136, 12253-12256. 16.Søndergaard, R. V.; Henriksen, J. R.; Andresen, T. L., Design, calibration and application of broad-range optical nanosensors for determining intracellular pH. Nat. Protoc. 2014, 9, 2841-2858. 17.Wang, X. d.; Meier, R. J.; Wolfbeis, O. S., Fluorescent pH‐Sensitive Nanoparticles in an Agarose Matrix for Imaging of Bacterial Growth and Metabolism. Angew. Chem. Int. Ed. 2013, 52, 406-409. 18.Medintz, I. L.; Stewart, M. H.; Trammell, S. A.; Susumu, K.; Delehanty, J. B.; Mei, B. C.; Melinger, J. S.; Blanco-Canosa, J. B.; Dawson, P. E.; Mattoussi, H., Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nature Mater. 2010, 9, 676-684. 19.Ji, X.; Palui, G.; Avellini, T.; Na, H. B.; Yi, C.; Knappenberger Jr, K. L.; Mattoussi, H., On the pH-dependent quenching of quantum dot photoluminescence by redox active dopamine. J. Am. Chem. Soc. 2012, 134, 6006-6017. 20.Ma, X.; Wang, Y.; Zhao, T.; Li, Y.; Su, L.-C.; Wang, Z.; Huang, G.; Sumer, B. D.; Gao, J., Ultra-pH-sensitive nanoprobe library with broad pH tunability and fluorescence emissions. J. Amer. Chem. Soc. 2014, 136, 11085-11092. 21.Johnston, A. P.; Caruso, F., Stabilization of DNA multilayer films through oligonucleotide crosslinking. Small 2008, 4, 612-618. 22.Colominas, C.; Luque, F. J.; Orozco, M., Tautomerism and protonation of guanine and cytosine. Implications in the formation of hydrogen-bonded complexes. JACS 1996, 118, 6811-6821. 23.Holm, A. I.; Nielsen, L. M.; Kohler, B.; Hoffmann, S. V.; Nielsen, S. B., Electronic coupling between cytosine bases in DNA single strands and i-motifs revealed from synchrotron radiation circular dichroism experiments. PCCP 2010, 12, 3426-3430. 24.Petrovic, A. G.; Polavarapu, P. L., Structural transitions in polyriboadenylic acid induced by the changes in pH and temperature: vibrational circular dichroism study in solution and film states. J. Phys. Chem. B. 2005, 109, 23698-23705. 25.Li, T.; Famulok, M., I-motif-programmed functionalization of DNA nanocircles. J. Am. Chem. Soc. 2013, 135, 1593-1599. 26.Modi, S.; Swetha, M.; Goswami, D.; Gupta, G. D.; Mayor, S.; Krishnan, Y., A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nature Nanotech. 2009, 4, 325-330. 27.Liu, H.; Xu, Y.; Li, F.; Yang, Y.; Wang, W.; Song, Y.; Liu, D., Light‐Driven Conformational Switch of i‐Motif DNA. Angew. Chem. Int. Ed. 2007, 46, 2515-2517. 28.Saha, S.; Chakraborty, K.; Krishnan, Y., Tunable, colorimetric DNA-based pH sensors mediated by A-motif formation. Chem. Commun. 2012, 48, 2513-2515. 29.Chakraborty, S.; Sharma, S.; Maiti, P. K.; Krishnan, Y., The poly dA helix: a new structural motif for high performance DNA-based molecular switches. Nucleic Acids Res. 2009, 37, 2810-2817. 30.Idili, A.; Vallée-Bélisle, A.; Ricci, F., Programmable pH-triggered DNA nanoswitches. J. Am. Chem. Soc. 2014, 136, 5836-5839. 31.Chen, Y.; Lee, S. H.; Mao, C., A DNA nanomachine based on a duplex–triplex transition. Angew. Chem. Int. Ed. 2004, 43, 5335-5338. 32.Del Grosso, E.; Dallaire, A.-M.; Vallée-Bélisle, A.; Ricci, F., Enzyme-operated DNA-based nanodevices. Nano Lett. 2015, 15, 8407-8411. 33.Elbaz, J.; Wang, Z.-G.; Orbach, R.; Willner, I., pH-stimulated concurrent mechanical activation of two DNA “tweezers”. A “SET− RESET” logic gate system. Nano Lett. 2009, 9, 4510-4514. 34.Lakadamyali, M.; Rust, M. J.; Zhuang, X., Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 2006, 124, 997-1009. 35.Narayanaswamy, N.; Nair, R. R.; Suseela, Y.; Saini, D. K.; Govindaraju, T., A molecular beacon-based DNA switch for reversible pH sensing in vesicles and live cells. Chem. Commun. 2016, 52, 8741-8744. 36.Adler, A. J.; Grossman, L.; Fasman, G. D., Polyriboadenylic and polydeoxyriboadenylic acids. Optical rotatory studies of pH-dependent conformations and their relative stability. Biochemistry 1969, 8, 3846-3859. 37.Huang, Z.; Liu, B.; Liu, J., Parallel Polyadenine Duplex Formation at Low pH Facilitates DNA Conjugation onto Gold Nanoparticles. Langmuir 2016, 32, 11986-11992. 38.Lannes, L.; Halder, S.; Krishnan, Y.; Schwalbe, H., Tuning the pH Response of i‐Motif DNA Oligonucleotides. ChemBioChem 2015, 16, 1647-1656. 39.Kim, S.; Choi, J.; Majima, T., Self-assembly of polydeoxyadenylic acid studied at the single-molecule level. J. Phys. Chem. B. 2011, 115, 15399-15405. 40.Marathias, V. M.; Bolton, P. H., Determinants of DNA quadruplex structural type: sequence and potassium binding. Biochemistry 1999, 38, 4355-4364. 41.Hou, X.; Guo, W.; Xia, F.; Nie, F.-Q.; Dong, H.; Tian, Y.; Wen, L.; Wang, L.; Cao, L.; Yang, Y., A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. J. Am. Chem. Soc. 2009, 131, 7800-7805. 42.Owczarzy, R.; You, Y.; Moreira, B. G.; Manthey, J. A.; Huang, L.; Behlke, M. A.; Walder, J. A., Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures. Biochemistry 2004, 43, 3537-3554. 43.Gearheart, L. A.; Somoza, M. M.; Rivers, W. E.; Murphy, C. J.; Coleman, R. S.; Berg, M. A., Sodium-ion binding to DNA: detection by ultrafast time-resolved stokes-shift spectroscopy. J. Amer. Chem. Soc. 2003, 125, 11812-11813. 44.Ke, Q.; Zheng, Y.; Yang, F.; Zhang, H.; Yang, X., A fluorescence glucose sensor based on pH induced conformational switch of i-motif DNA. Talanta 2014, 129, 539-544. 45.Wang, M.; Zhang, G.; Zhang, D., Enzyme-driven i-motif DNA folding for logic operations and fluorescent biosensing. Chem. Commun. 2015, 51, 3812-3815. 46.Lu, L.-F.; Li, Y.-Y.; Zhang, M.; Shi, G., Visual fluorescence detection of H 2 O 2 and glucose based on “molecular beacon”-hosted Hoechst dyes. Analyst 2015, 140, 3642-3647. 47.Golub, E.; Freeman, R.; Niazov, A.; Willner, I., Hemin/G-quadruplexes as DNAzymes for the fluorescent detection of DNA, aptamer–thrombin complexes, and probing the activity of glucose oxidase. Analyst 2011, 136, 4397-4401. 48.Tiwari, P.; Dwivedi, S.; Singh, M. P.; Mishra, R.; Chandy, A., Basic and modern concepts on cholinergic receptor: A review. Asian Pac J Trop Dis. 2013, 3, 413-420. 49.Deshpande, L. S.; Phillips, K.; Huang, B.; DeLorenzo, R. J., Chronic behavioral and cognitive deficits in a rat survival model of paraoxon toxicity. Neurotoxicology 2014, 44, 352-357. 50.Deshpande, L. S.; Carter, D. S.; Phillips, K. F.; Blair, R. E.; DeLorenzo, R. J., Development of status epilepticus, sustained calcium elevations and neuronal injury in a rat survival model of lethal paraoxon intoxication. Neurotoxicology 2014, 44, 17-26. 51.Eyer, P., The role of oximes in the management of organophosphorus pesticide poisoning. Toxicological reviews 2003, 22, 165-190. 52.Hossain, S. Z.; Luckham, R. E.; Smith, A. M.; Lebert, J. M.; Davies, L. M.; Pelton, R. H.; Filipe, C. D.; Brennan, J. D., Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol− gel-derived bioinks. Anal. Chem. 2009, 81, 5474-5483. 53.Gao, X.; Tang, G.; Su, X., Optical detection of organophosphorus compounds based on Mn-doped ZnSe d-dot enzymatic catalytic sensor. Biosens. Bioelectron. 2012, 36, 75-80. 54.Liang, M.; Fan, K.; Pan, Y.; Jiang, H.; Wang, F.; Yang, D.; Lu, D.; Feng, J.; Zhao, J.; Yang, L., Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal. Chem. 2012, 85, 308-312. 55.Zheng, Z.; Zhou, Y.; Li, X.; Liu, S.; Tang, Z., Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosens. Bioelectron. 2011, 26, 3081-3085. 56.Ke, C.-Y.; Wu, Y.-T.; Tseng, W.-L., Fluorescein-5-isothiocyanate-conjugated protein-directed synthesis of gold nanoclusters for fluorescent ratiometric sensing of an enzyme–substrate system. Biosens. Bioelectron. 2015, 69, 46-53. 57.Traynor, J.; Mactier, R.; Geddes, C. C.; Fox, J. G., How to measure renal function in clinical practice. BMJ 2006, 333, 733. 58.Stewart, G., The emerging physiological roles of the SLC14A family of urea transporters. Br. J. Pharmacol. 2011, 164, 1780-1792. 59.Dong, J. X.; Gao, Z. F.; Zhang, Y.; Li, B. L.; Zhang, W.; Lei, J. L.; Li, N. B.; Luo, H. Q., The pH-switchable agglomeration and dispersion behavior of fluorescent Ag nanoclusters and its applications in urea and glucose biosensing. NPG Asia Mater. 2016, 8, e335. 60.Nair, L. V.; Philips, D. S.; Jayasree, R. S.; Ajayaghosh, A., A Near‐Infrared Fluorescent Nanosensor (AuC@ Urease) for the Selective Detection of Blood Urea. Small 2013, 9, 2673-2677. 61.Kazakova, L. I.; Shabarchina, L. I.; Sukhorukov, G. B., Co-encapsulation of enzyme and sensitive dye as a tool for fabrication of microcapsule based sensor for urea measuring. PCCP 2011, 13, 11110-11117. 62.Villalba, M. M.; McKeegan, K.; Vaughan, D.; Cardosi, M.; Davis, J., Bioelectroanalytical determination of phosphate: A review. J. Mol. Catal. B: Enzym. 2009, 59, 1-8.
1.Bu, Z.; Callaway, D., Proteins move! Protein dynamics and long-range allostery in cell signaling. Adv Protein Chem Struct Biol 2011, 83, 163-221. 2.Bohr, C., Die sauerstoff aufnahme des genuinen blutfarbstoffes und des aus dem blute dargestellten hämoglobins. Zentralblatt Physiol 1904, 17, 688-691. 3.Bohr, C.; Hasselbalch, K.; Krogh, A., Über einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt. Acta Physiol 1904, 16, 402-412. 4.Monod, J.; Wyman, J.; Changeux, J.-P., On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 1965, 12, 88-118. 5.Koshland Jr, D.; Nemethy, G.; Filmer, D., Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 1966, 5, 365-385. 6.Jaffe, E. K., Morpheeins–a new structural paradigm for allosteric regulation. Trends in biochemical sciences 2005, 30 (9), 490-497. 7.Wyman, J.; Gill, S., Binding and linkage: functional chemistry of biological molecules. Mill Valley. CA: University Science Books: 1990. 8.Abeliovich, H., An empirical extremum principle for the hill coefficient in ligand-protein interactions showing negative cooperativity. Biophys. J . 2005, 89, 76-79. 9.Ricci, F.; Vallée-Bélisle, A.; Plaxco, K. W., High-precision, in vitro validation of the sequestration mechanism for generating ultrasensitive dose-response curves in regulatory networks. PLoS Comput Biol 2011, 7, e1002171. 10.Hu, R.; Liu, T.; Zhang, X.-B.; Yang, Y.; Chen, T.; Wu, C.; Liu, Y.; Zhu, G.; Huan, S.; Fu, T., DLISA: A DNAzyme-based ELISA for protein enzyme-free immunoassay of multiple analytes. Anal. Chem. 2015, 87, 7746-7753. 11.Simon, A. J.; Vallée‐Bélisle, A.; Ricci, F.; Watkins, H. M.; Plaxco, K. W., Using the Population‐Shift Mechanism to Rationally Introduce “Hill‐type” Cooperativity into a Normally Non‐Cooperative Receptor. Angew. Chem. 2014, 126, 9625-9629. 12.Johnston, A. P.; Caruso, F., Stabilization of DNA multilayer films through oligonucleotide crosslinking. Small 2008, 4, 612-618. 13.Nieh, C.-C.; Tseng, W.-L., Thymine-based molecular beacon for sensing adenosine based on the inhibition of S-adenosylhomocysteine hydrolase activity. Biosens. Bioelectron. 2014, 61, 404-409. 14.Zhao, C.; Qu, K.; Song, Y.; Xu, C.; Ren, J.; Qu, X., A Reusable DNA Single‐Walled Carbon‐Nanotube‐Based Fluorescent Sensor for Highly Sensitive and Selective Detection of Ag+ and Cysteine in Aqueous Solutions. Chem.-Eur. J. 2010, 16, 8147-8154. 15.Persil, Ö.; Santai, C. T.; Jain, S. S.; Hud, N. V., Assembly of an antiparallel homo-adenine DNA duplex by small-molecule binding. J. Am. Chem. Soc. 2004, 126, 8644-8645. 16.Hao, C.; Xua, L.; Xing, C.; Kuang, H.; Wang, L.; Xu, C., Oligonucleotide-based fluorogenic sensor for simultaneous detection of heavy metal ions. Biosens. Bioelectron. 2012, 36, 174-178. 17.Wang, M.; Leung, K.-H.; Lin, S.; Chan, D. S.-H.; Leung, C.-H.; Ma, D.-L., A G-quadruplex-based, label-free, switch-on luminescent detection assay for Ag+ ions based on the exonuclease III-mediated digestion of C–Ag+–C DNA. J. Mater. Chem. B 2014, 2, 6467-6471. 18.Park, K. S.; Jung, C.; Park, H. G., “Illusionary” Polymerase Activity Triggered by Metal Ions: Use for Molecular Logic‐Gate Operations. Angew. Chem. Int. Ed. 2010, 49, 9757-9760. 19.Gong, H.; Li, X., Y-type, C-rich DNA probe for electrochemical detection of silver ion and cysteine. Analyst 2011, 136, 2242-2246. 20.Zhou, X.-H.; Kong, D.-M.; Shen, H.-X., G-quadruplex–hemin DNAzyme-amplified colorimetric detection of Ag+ ion. Anal. Chim. Acta 2010, 678 (1), 124-127. 21.Çetinkol, Ö. P.; Hud, N. V., Molecular recognition of poly (A) by small ligands: an alternative method of analysis reveals nanomolar, cooperative and shape-selective binding. Nucleic Acids Res. 2008, 37 (2), 611-621. 22.Xing, F.; Song, G.; Ren, J.; Chaires, J. B.; Qu, X., Molecular recognition of nucleic acids: coralyne binds strongly to poly (A). FEBS Lett. 2005, 579, 5035-5039. 23.Giri, P.; Kumar, G. S., Binding of protoberberine alkaloid coralyne with double stranded poly (A): a biophysical study. Mol Biosyst. 2008, 4 (4), 341-348. 24.Fan, C.; Plaxco, K. W.; Heeger, A. J., Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci 2003, 100, 9134-9137. 25.Mao, Y.; Luo, C.; Ouyang, Q., Studies of temperature‐dependent electronic transduction on DNA hairpin loop sensor. Nucleic Acids Res. 2003, 31, e108-e108. 26.Immoos, C. E.; Lee, S. J.; Grinstaff, M. W., Conformationally gated electrochemical gene detection. ChemBioChem 2004, 5 (8), 1100-1103. 27.Tyagi, S.; Kramer, F. R., Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 1996, 14 (3), 303-308. 28.Lee, C.-Y.; Tseng, W.-L., Molecular Beacon-Based Fluorescent Assay for Specific Detection of Oversulfated Chondroitin Sulfate Contaminants in Heparin without Enzyme Treatment. Anal. Chem. 2015, 87, 5031-5035. 29.Kuo, C.-Y.; Tseng, W.-L., Adenosine-based molecular beacons as light-up probes for sensing heparin in plasma. Chem. Commun. 2013, 49, 4607-4609. 30.Lin, K.-C.; Kuo, C.-Y.; Nieh, C.-C.; Tseng, W.-L., Molecular beacon-based NAND logic gate for sensing triplex DNA binders. RSC ADV 2014, 4, 38389-38392. 31.Hirao, I.; Kawai, G.; Yoshizawa, S.; Nishimura, Y.; Ishido, Y.; Watanabe, K.; Miura, K.-i., Most compact hairpin-turn structure exerted by a short DNA fragment, d (GCGAAGC) in solution: an extraordinarily stable structure resistant to nucleases and heat. Nucleic Acids Res. 1994, 22, 576-582. 32.Varani, G., Exceptionally stable nucleic acid hairpins. Annu Rev Biophys Biomol Struct. 1995, 24, 379-404. 33.Antao, V. P.; Tinoco Jr, I., Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. Nucleic Acids Res. 1992, 20, 819-824. 34.Breslauer, K. J.; Frank, R.; Blöcker, H.; Marky, L. A., Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci 1986, 83, 3746-3750. 35.Cao, M.; Jiang, L.; Hu, F.; Zhang, Y.; Yang, W. C.; Liu, S. H.; Yin, J., A dansyl-based fluorescent probe for selectively detecting Cu 2+ and imaging in living cells. RSC ADV 2015, 5, 23666-23670. 36.Pollard, T. D., A guide to simple and informative binding assays. Mol Biol Cell 2010, 21, 4061-4067. 37.Greco, W. R.; Hakala, M. T., Evaluation of methods for estimating the dissociation constant of tight binding enzyme inhibitors. J. Biol. Chem. 1979, 254, 12104-12109. 38.Michaelis, L.; Menten, M., Die kinetik der invertinwirkung Biochem Z 49: 333–369. Find this article online 1913. 39.Briggs, G. E.; Haldane, J. B. S., A note on the kinetics of enzyme action. Biochem. J 1925, 19, 338. 40.Dowd, J. E.; Riggs, D. S., A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations. J. Biol. Chem. 1965, 240, 863-869. 41.Li, J. J.; Geyer, R.; Tan, W., Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Res. 2000, 28, e52-e52. 42.Naumann, W.; Shokhirev, N. V.; Szabo, A., Exact asymptotic relaxation of pseudo-first-order reversible reactions. Phys. Rev. Lett. 1997, 79, 3074. 43.Schnell, S.; Mendoza, C., The condition for pseudo-first-order kinetics in enzymatic reactions is independent of the initial enzyme concentration. Biophys. Chem. 2004, 107, 165-174. 44.Zhou, J.; Sayre, D. A.; Zheng, Y.; Szmacinski, H.; Sintim, H. O., Unexpected complex formation between coralyne and cyclic diadenosine monophosphate providing a simple fluorescent turn-on assay to detect this bacterial second messenger. Anal. Chem. 2014, 86, 2412-2420. 45.Opoku-Temeng, C.; Sintim, H. O., Potent inhibition of cyclic diadenylate monophosphate cyclase by the antiparasitic drug, suramin. Chem. Commun. 2016, 52, 3754-3757.
|