(44.192.10.166) 您好!臺灣時間:2021/03/06 20:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭炳呈
研究生(外文):Bing-Cheng Kuo
論文名稱:利用電腦模擬炸藥分子在液相層析分離之研究
論文名稱(外文):Computer Simulation to Study the Liquid Chromatographic Separation of Explosive Molecules
指導教授:陳正隆陳正隆引用關係
指導教授(外文):Cheng-Lung Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:分子動力模擬液相層析分離炸藥分子聚異黃樟油素材料有機矽氧烷材料
外文關鍵詞:liquid chromatographic separationPISAF polymeric materialmolecular dynamics simulationorganic siloxane materialexplosive molecules
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來電腦模擬計算對於實務上開發研究的輔助已日益漸增,然而在化學分析方面,到目前為止並沒有能與實際情形相匹配的模擬研究,本研究主要是以實驗室獨自開發程式為主,商用模擬軟體為輔,進行混合溶液的分離模擬運算。混合溶液中以甲醇及乙腈分子當作溶劑,待分離的溶質主要為炸藥分子:硝化甘油(nitroglycerin, NG)、黑索金 (1,3,5-trinitroperhydro-1,3,5-triazine, RDX)、奧托金(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, HMX) 及三硝基甲苯(2-methyl-1,3,5-trinitrobenzene, TNT),溶劑分子與炸藥分子混合形成一移動相,而固定相分別建構兩種不同性質的體系,一種具有正相層析性質的異黃樟油素分子(Poly-1,2-methylenedioxy-4-propenyl benzene, PISAF),另一種具有類似逆相層析性質的有機矽氧烷分子 [O-(CH3)2-Si-C8],將移動相與多個重覆結構的固定相接合,並以物理方式進行分離模擬,炸藥分子的模擬分離結果與實驗趨勢相近,而在不同的固定相進行分離也得到不同的分離結果,也記錄了被分離的分子在分離過程的構形變化,有利於我們理解層析物理分離機制,也充分顯示出我們所開發的程式可以成功進行分離模擬。此項技術日後也可以用來做藥物分子的分離、軍事防護衣毒氣隔離等研究,使得開發人員在材料評估、研究成本、實驗設計上能有所幫助。
Molecular dynamics (MD) simulations have been employed to assist the investigation on chemical engineering research for theoretical analysis in recent years. However, the MD simulations were less successfully to research project regarding to analytical chemistry. The computational simulations on liquid chromatography of explosive ingredients were comprehensively investigated by self-development program design and a commercial simulations software as an assistance. An innovative computational program was applied to separating the explosive ingredients physically, of which liquid chromatographic mechanism was thoroughly investigated by MD simulations in this study. The explosive ingredients including nitroglycerin (NG), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2-methyl-1,3,5-trinitrobenzene (TNT) were assigned as solutes and methanol (CH3OH) and acetonitrile (CH3CN) as solvents in the solution system. The polymeric-molecular species consisting of [O-(CH3)2-Si-C8] as a reversed phase and poly-1,2-methylenedioxy-4-propenyl benzene (PISAF) compounds as a normal phase were tested as stationary phase, respectively.
The research results showed that the different species of explosive ingredients were separated successfully in the solutions by each of the constructed stationary phase of [O-(CH3)2-Si-C8] and PISAF after a total simulation time of 300.0 ps approximately, which were consistent with the experimental analysis of HPLC spectrum. In addition, the effects of the constructed stationary phase on the separation dynamics was investigated to clarify the mechanism on the liquid chromatography. The results indicated that the efficient separation can be attributed to the configuration variation of explosive ingredients, and the variation of the configuration and the net charges of [O-(CH3)2-Si-C8] and PISAF, respectively. The MD simulation designed by self-development program was confirmed to compute the liquid chromatography process effectively in this study. The computational techniques can be widely applied to the theoretical analysis of separation of pharmaceutical ingredients and military protective clothing against poison gases, which are beneficial to the selection of function materials, the cost reduction and the experimental design.
論文審定書 i
論文公開授權書 ii
誌謝 iii
中文摘要 iv
Abstract v
圖次 x
表次 xii
第壹章 緒論 1
1-1 分子動力模擬 1
1-2 炸藥化合物 2
1-3 高效能液相層析 7
1-4 研究動機與方法 9
第貳章 原理及方法 10
2-1 分子動力模擬 (Molecular Dynamics Simulation) 10
2-1-1 簡介 10
2-1-2 分子動力學基本假設 10
2-1-3 基本流程架構 11
2-2 分子力場 14
2-3 牛頓運動方程式的數值方法 16
2-4 週期性邊界條件 19
第參章 系統建構方法及參數設定 20
3-1 系統建構 20
3-2 模擬軟體 25
3-3 模擬參數設定 27
3-3-1 結構最佳化參數設定 27
3-3-2 分子動力模擬參數設定 28
第肆章 結果與討論 29
4-1 分子動力模擬初始分離結果 29
4-1-1 硝化甘油 (NG) / 黑索金 (RDX) 混合系統分離移動情形 29
4-1-2 奧托金 (HMX) / 三硝基甲苯 (TNT) 混合系統分離移動情形 30
4-2 移動相混合炸藥分子分離結果 31
4-2-1 硝化甘油 (NG) / 黑索金 (RDX) 混合系統分離比較 31
4-2-2奧托金 (HMX) / 三硝基甲苯 (TNT) 混合系統分離比較 32
4-3 不同固定相系統分離動態分佈 33
4-3-1 硝化甘油 (NG) / 黑索金 (RDX) 混合系統分佈 33
4-3-2奧托金 (HMX) / 三硝基甲苯 (TNT) 混合系統分佈 34
4-4 溶液相炸藥分子在不同固定相材料扭轉角度分佈 35
4-4-1 硝化甘油 (NG) / 黑索金 (RDX) 混合系統扭轉角分佈 35
4-4-2 奧托金 (HMX) / 三硝基甲苯 (TNT) 混合系統扭轉角分佈 37
4-5未考量固定相電荷影響之移動相混合炸藥分子分離結果 39
4-5-1 硝化甘油 (NG) / 黑索金 (RDX) 混合系統分離比較 39
4-5-2 奧托金 (HMX) / 三硝基甲苯 (TNT) 混合系統分離比較 40
4-6 未考量固定相電荷影響混合系統分離移動結果 41
4-6-1 硝化甘油 (NG) / 黑索金 (RDX) 混合系統分離移動情形 41
4-6-2 奧托金 (HMX) / 三硝基甲苯 (TNT) 混合系統分離移動情形 43
4-7炸藥分子在異黃樟油素材料考量電荷影響與否之扭轉角度分佈 44
4-7-1硝化甘油 (NG) / 黑索金 (RDX) 混合系統扭轉角分佈 44
4-7-2 奧托金 (HMX) / 三硝基甲苯 (TNT) 混合系統扭轉角分佈 45
4-8炸藥分子在辛基矽氧烷材料考量電荷影響與否之扭轉角度分佈 46
4-8-1硝化甘油 (NG) / 黑索金 (RDX) 混合系統扭轉角分佈 46
4-8-2奧托金 (HMX) / 三硝基甲苯 (TNT) 混合系統扭轉角分佈 48
第伍章 結論 49
參考文獻 51
(1)Alder, B. J.; Wainwright, T. E. Phase transition for a hard sphere system. Journal of Chemical Physics 1957, 27, 1208.
(2)Rahman, A. Correlations in the motion of atoms in liquid argon. Physical Review 1964, 136, A405.
(3)Moore, P. B.; Lopez, C. F.; Klein, M. L. Dynamical properties of a dimiristoylphosphatidylcholine fully hydrated bilayer from a multinanosecond molecular dynamics simulation. Biophysical Journal 2001, 81, 2484.
(4)Yang, Q.; Zhong, C. Atomistic molecular dynamics simulation of liquid carbon tetrachloride confined in pillared pore materials. Chemical Engineering Science 2005, 60, 767.
(5)Lai, W. S.; Liu, B. X. Solid-state amorphization of Ni/Zr bilayer through diffusion-limited-reaction observed by molecular-dynamics simulation. Computational Materials Science 1999, 14, 163.
(6)Ogata, S.; Shimojo, F.; Kalia, R. K.; Nakano, A.; Vashishta, P. Environmental effects of H2O on fracture initiation in silicon: A hybrid electronic-density-functional/molecular-dynamics study. Journal of Applied Physics 2004, 95, 5316.
(7)Holly, S. R.; Lucy, R. F.; Gregory, A. V.; Mark, S. P. S. Molecular dynamics of synthetic leucine-serine ion channels in a phospholipid membrane. Biophysical Journal, 1999, 77, 2400.
(8)Tamai, Y.; Tanaka, H.; Nakanishi, K. Molecular design of polymer membranes using molecular simulation technique. Fluid Phase Equilibria 1995, 104, 363.
(9)Colombo, G.; Carrea, G. Modeling enzyme reactivity in organic solvents and water through computer simulations. Journal of Biotechnology 2002, 96, 23.
(10)Izumi, S.; Hara, S.; Kumagai, T.; Sakai, S. Molecular dynamics study of homogeneous crystal nucleation in amorphous silicon. Journal of Crystal Growth 2005, 274, 47.
(11)Bulson, P. S. Explosive loading of engineering structures: A history of research and a review of recent developments; E. & FN. Spon.: London, 1997.
(12)Meyers, S.; Shanley, E. S. Industrial explosives - a brief history of their development and use. Journal of Hazardous Materials 1990, 23, 183.
(13)Hussein, E. M. A.; Waller, E. J. Review of one-side approaches to radiographic imaging for detection of explosives and narcotics. Radiation Measurements 1998, 29, 581.
(14)Howard, L. J. Distribution and Fate of Military Explosives and Propellants in Soil: A Review. Applied and Environmental Soil Science 2012, 617236.
(15)Kumar, M.; Ladyman, M. K.; Mai, N.; Temple, T.; Coulon, F. Release of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) from polymer-bonded explosives (PBXN-109) into water by artificial weathering. Chemosphere 2017, 169, 604.
(16)Uslu, H. Evaluation of extractability of 2,4,6-trinitrophenol by secondary amine extractant in alcohols: Equilibrium and molecular dynamic study. Separation and Purification Technology 2017, 173, 151.
(17)Junk, T.; Liu, Y.; Li, Z.; Perkins, R.; Liu, Y. Quantum mechanical and experimental analyses of TNT metabolite 2-hydroxylamino-4,6-dinitrotoluene. Journal of Molecular Structure 2015, 1080, 145.
(18)Qiu, L.; Xiao, Heming. Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs. Journal of Hazardous Materials 2009, 164, 329.
(19)Zhu, W.; Wang, X.; Xiao, J.; Zhu, W.; Sun, H.; Xiao, H. Molecular dynamics simulations of AP/HMX composite with a modified force field. Journal of Hazardous Materials 2009, 167, 810.
(20)Jaidann, M.; Abou-Rachid, H.; Lafleur-Lambert, X.; Brisson, J. Atomistic studies of RDX and FOX-7 -Based Plastic-Bonded explosives: molecular dynamics simulation. International Conference on Computational Science 2011, 4 , 1177.
(21)Kalderis, D.; Juhasz, A.; Boopathy, R.; Comfort, S. Soils contaminated with explosives: Environmental fate and evaluation of state-of-the-art remediation processes. Pure and Applied Chemistry 2011, 83, 1407.
(22)Bier, E. L.; Singh, J.; Li, Z. M.; Comfort, S. D.; Shea, P. J. Erratum: Remediating hexahydro-1,3,5-trinitro-1,2,5-trazine-contaminated water and soil by Fenton oxidation (Environmental Toxicology and Chemistry. Environmental Toxicology and Chemistry 1999, 18, 1078.
(23)Boopathy, R. Bioremediation of explosives contaminated soil. International Biodeterioration and Biodegradation 2000, 46, 29.
(24)Shea, P. J. Removal of TNT and RDX from water and soil using iron metal. Environmental Pollution 1997, 97, 55.
(25)Gaurav.; Kaur, V.; Kumar, A.; Malik, A. K.; Rai, P. K. SPME-HPLC: A new approach to the analysis of explosives. Journal of Hazardous Materials 2007, 147, 691.
(26)Akrill, P.; Cocker, J. Determination of nitroglycerin and its dinitrate metabolites in urine by gas chromatography–mass spectrometry as potential biomarkers for occupational exposure. Journal of Chromatography B 2002, 778, 193.
(27)Zhao, X.; Yinon, J. Identification of nitrate ester explosives by liquid chromatography–electrospray ionization and atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography A 2002, 977, 59.
(28)Wang, Y.; Zhou, Y.; Ma, C. et al. High performance liquid chromatographic separation of eight drugs collected in Chinese Pharmacopoeia 2010 on amylose ramification chiral stationary phase. Acta Pharmaceutica Sinica B 2012, 2, 527.
(29)Calinescu, O.; Badea, I. A.; Vladescu, L.; Meltzer, V.; Pincu, E. HPLC Separation of Acetaminophen and its Impurities Using A Mixed-mode Reversed-Phase/Cation Exchange Stationary Phase. Journal of Chromatographic Science 2012, 50, 335.
(30)Mittermayr, R.; Kalman, A.; Trisconi, M.; Heudi, O. Determination of Vitamin B5 in a range of fortified food products by reversed-phase liquid chromatography–mass spectrometry with electrospray ionisation. Journal of Chromatography A 2004, 1032, 1.
(31)Mitani, K.; Kataoka, H. Determination of fluoroquinolones in environmental waters by in-tube solid-phase microextraction coupled with liquid chromatography–tandem mass spectrometry. Analytica Chimica Acta 2006, 562, 16.
(32)Altun, M. L. HPLC Method for the analysis of paracetamol, caffeine and dipyrone. Turkish Journal of Chemistry 2002, 26, 521.
(33)Li, J.; Bi, Y.; Sun, S.; Peng, D. Simultaneous analysis of tert-butylhydroquinone, tert-butylquinone, butylated hydroxytoluene, 2-tert-butyl-4-hydroxyanisole, 3-tert-butyl-4-hydroxyanisole, α-tocopherol, γ-tocopherol, and δ-tocopherol in edible oils by normal-phase high performance liquid chromatography. Food Chemistry 2017, 234, 205.
(34)Lee, S. L.; Tsai, H. J.; Huang, C. C.; Den, T. G. Preparation of poly(isosafrole) stationary phase and its chromatographic separation for nitroaromatics. Chinese Journal of Explosives and Propellants 1992, 8, 45.
(35)Plimption, S.; Hendrickson, B. A new parallel method for molecular-dynamics simulation of macromolecular systems. Journal of Computational Chemistry 1996, 17, 326.
(36)Scott, W. R. P.; Hunenberger, P. H.; Tironi, I. G. et al. The GROMOS Biomolecular Simulation Package. The Journal of Physical Chemistry A 1999, 103, 3596.
(37)Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. An overview of the Amber biomolecular simulation package. Computational Molecular Science 2013, 3, 198.
(38)Rappe, A. K.; Casewit, C. J. et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of American Chemistry Society 1992, 114, 10024.
(39)Shirts, RB.; Burt, SR.; Johnson, AM. Periodic boundary condition induced breakdown of the equipartition principle and other kinetic effects of finite sample size in classical hard-sphere molecular dynamics simulation. Journal of Chemical Physics 2006, 125, 164102.
(40)De Souza, ON.; Ornstein, RL. Effect of periodic box size on aqueous molecular dynamics simulation of a DNA dodecamer with particle-mesh Ewald method. Biophysical Journal 1997, 72, 2395.
(41)Haile, J. M. Molecular dynamics simulation, elementary methods. Molecular Dynamics Simulation: Elementary Methods, 1992.
(42)Chuang, P. H.; Tseng, Y. H.; Chen, C. L. Estimation of electron transfer properties of ferrocenyl-dicholesteryl-peptide in liquid and gel. Journal of Colloid and Interface Science 2014, 417, 310.
(43)Tai, C. C.; Chen, C. L.; Liu, C. W. Computer simulation to investigate proton transport and conductivity in perfluorosulfonate ionomeric membrane. International Journal of Hydrogen Energy 2017, 42, 3981.
電子全文 電子全文(網際網路公開日期:20220728)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔