跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 01:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾玉惠
研究生(外文):Yu-Hui Tseng
論文名稱:中藥分子在麩胺酸受體及環氧合酶之模擬研究
論文名稱(外文):A Computational Study of Traditional Chinese Medicine Molecules with Glutamate Receptor and Cyclooxygenase
指導教授:陳正隆陳正隆引用關係
指導教授(外文):Cheng-Lung Chen
學位類別:博士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:100
中文關鍵詞:中藥分子分子動力模擬環氧合酶麩胺酸受體分子對接
外文關鍵詞:molecular dynamics simulationglutamate receptor 2molecular dockingcyclooxygenasetraditional Chinese medicine molecule
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文利用分子對接 (Docking) 與分子動力模擬 (Molecular Dynamics, MD) 探討中藥分子與麩氨酸受體以及環氧合酶這兩種蛋白質的作用。我們從中藥溫清飲 (WenQingYin) 中依據結構的不同選擇了四種中藥分子,分別是 2-(3,4-dihydroxyphenyl)-5,6,7-trihydroxy-4H-chromen-4-one (PHF), 4-hydroxy-3-methoxybenzoic acid (HMB), 4-(2,3-dihydroxy-3-methylbutoxy)-7H-furo[3,2-g]chromen-7-one (DHMBP) 以及 methyl 7-formylcyclopenta[c]pyran-4-carboxylate (cerbinal),分別模擬了四種不同的藥物分子在兩種蛋白質上的作用情形。
在麩氨酸受體系統所得到的結果顯示,PHF、HMB 及 DHMBP 分子會與 GluR2 蛋白質中活性位置的胺基酸產生氫鍵,並形成穩定的複合體結構; cerbinal 分子和 GluR2 蛋白質沒有產生氫鍵,並且使得 GluR2 蛋白質結構發生改變。在環氧合酶系統所得到的結果顯示,PHF、DHMBP 及 cerbinal 分子會與 COX-2 蛋白質中活性位置的胺基酸產生氫鍵,並穩定存在環氧合酶活性位置中。利用分子對接和分子動力學模擬的結果能知道中藥分子和蛋白質之間的實際相互作用情形,這有助於了解中藥分子在蛋白質中的效果,並對於蛋白質拮抗劑與抑制劑的開發,以及中藥分子的研究領域能有更進一步的了解。
Molecular docking and molecular dynamics (MD) simulations have been carried out to investigate the interaction of a traditional Chinese medicine (TCM), WenQingYin, with the glutamate receptor 2 (GluR2) and cyclooxygenase-2 (COX-2). Four representative drug components of TCM molecules, namely 2-(3,4-dihydroxyphenyl)-5,6,7-trihydroxy-4H-chromen-4-one (PHF), 4-hydroxy-3-methoxybenzoic acid (HMB), 4-(2,3-dihydroxy-3-methylbutoxy)-7H-furo[3,2-g]chromen-7-one (DHMBP) and methyl 7-formylcyclopenta[c]pyran-4-carboxylate (cerbinal), and their complexes with GluR2 and COX-2 were simulated.
In GluR2 systems, our results show that PHF, HMB and DHMBP formed a partial hydrogen bond with GluR2 in its ligand-binding domain. However, cerbinal was not stable in the ligand-binding domain of GluR2 and induced a significant change in the structure of GluR2. Three-dimensional plots represent the contact and movement situation of the TCM molecules in the ligand-binding domain of GluR2. In COX-2 systems, our results show that PHF, DHMBP and cerbinal were stable and formed a partial hydrogen bond with its active site. However, the hydrogen bonds are formed on HMB in docking but not observed in MD simulation. It shows that the HMB have an unstable interaction with COX-2.
The interaction between drugs and proteins is a major factor influencing the drug efficacy. The stability of drugs in the active site affects the activity of the protein. Our results suggest that PHF, HMB and DHMBP are considered to be GluR2 antagonists; PHF, DHMBP and cerbinal are considered to be COX-2 inhibitors. The combined results of the docking and molecular dynamics simulations provide insight into the interaction between these traditional Chinese medicine molecules and proteins.
論文審定書 ................................................................................................................... i
論文公開授權書 .......................................................................................................... ii
誌謝 ......................................................................................................................... iii
摘要 ......................................................................................................................... iv
Abstract ........................................................................................................................ v
Table of Contents ........................................................................................................ vii
List of Figures ............................................................................................................... x
List of Tables .............................................................................................................. xiv
Chapter 1 Introduction ............................................................................................. 1
1.1 Traditional Chinese Medicine .......................................................................... 3
1.2 AMPA Receptor ............................................................................................... 5
1.3 Cyclooxygenase .............................................................................................. 8
1.4 WenQinYing .................................................................................................. 11
Chapter 2 Computer Simulation Method ................................................................ 12
2.1 Molecular Docking ........................................................................................ 13
2.1.1 AutoDock Program ............................................................................................. 16
2.2 Molecular Dynamics Simulation .................................................................... 18
2.2.1 Equations of Motion and Verlet Leapfrog Integration ......................................... 18
2.2.2 Force Field ......................................................................................................... 19
2.2.3 Thermodynamic Ensembles ................................................................................ 22
2.2.4 Periodic Boundary Condition .............................................................................. 23
2.2.5 Root Mean Square Deviation and Radial Distribution Function ........................... 24
2.2.6 AMBER Program ............................................................................................... 26
Chapter 3 The Conformation of Proteins in Aqueous Solution ................................ 28
3.1 Introduction ................................................................................................... 28
3.2 Method .......................................................................................................... 29
3.3 Conformational Change of GluR2 in Aqueous Solution ................................. 31
3.4 Conformational Change of COX-2 in Aqueous Solution ................................ 34
3.5 Summary ....................................................................................................... 36
Chapter 4 The Interaction between TCM Molecules and Proteins by Molecular Docking ............................................................................................................. 37
4.1 Introduction ................................................................................................... 37
4.2 Method .......................................................................................................... 40
4.3 The Binding Orientation of TCM Molecules to GluR2................................... 41
4.4 The Binding Orientation of TCM Molecules to COX-2 ................................. 43
4.5 Summary ....................................................................................................... 49
Chapter 5 The Interaction between TCM Molecules and Proteins by Molecular Dynamics Simulation ................................................... 50
5.1 Introduction ................................................................................................... 50
5.2 Method .......................................................................................................... 52
5.3 The Interaction between TCM Molecules and GluR2 ..................................... 54
5.3.1 The TCM Molecules in the Active Site of GluR2 ................................................ 54
5.3.2 The Conformational Change of GluR2 ................................................................ 58
5.3.3 The Interaction of Drug–GluR2 Complexes ........................................................ 59
5.3.4 The Movement of TCM Molecules in the Ligand-Binding Domain ..................... 62
5.3.5 The Conformational Change of Cerbinal–GluR2 Complex .................................. 65
5.4 The Interaction between TCM Molecules and COX-2.................................... 67
5.4.1 The TCM Molecules in the Active Sites of COX-2 ............................................. 67
5.4.2 The Conformational Change of COX-2 ............................................................... 69
5.4.3 The Interaction of Drug–COX-2 Complexes ....................................................... 69
5.5 Summary ....................................................................................................... 72
Chapter 6 Conclusion ............................................................................................. 74
References .................................................................................................................. 76
(1) Shang, A.; Huwiler, K.; Nartey, L.; Jüni, P.; Egger, M., Placebo-controlled trials of Chinese herbal medicine and conventional medicine—comparative study. International Journal of Epidemiology 2007, 36 (5), 1086-1092.
(2) Shaw, D., Toxicological risks of Chinese herbs. Planta Medica 2010, 76 (17), 2012-2018.
(3) Yu, M.; Wang, Y.; Tian, L.; Wang, Y. Y.; Wang, X. Z.; Liang, W. G.; Yang, J. Y.; Yu, D. H.; Ma, T. H.; Fang, X. X., Safflomin a inhibits neuraminidase activity and influenza virus replication. RSC Advances 2015, 5 (114), 94053-94066.
(4) Chen, K. C.; Sun, M. F.; Chen, H. Y.; Lee, C. C.; Chen, C. Y. C., Potential smoothened inhibitor from traditional Chinese medicine against the disease of diabetes, obesity, and cancer. Biomed Research International 2014.
(5) Chen, K. C.; Chang, S. S.; Tsai, F. J.; Chen, C. Y. C., Han ethnicity-specific type 2 diabetic treatment from traditional Chinese medicine? Journal of Biomolecular Structure & Dynamics 2013, 31 (11), 1219-1235.
(6) Chen, C. Y.; Chen, C. Y. C., Insights into designing the dual-targeted HER2/HSP90 inhibitors. Journal of Molecular Graphics & Modelling 2010, 29 (1), 21-31.
(7) Yang, S. C.; Chang, S. S.; Chen, H. Y.; Chen, C. Y. C., Identification of potent EGFR inhibitors from tcm database@taiwan. Plos Computational Biology 2011, 7 (10).
(8) Tsou, Y. A.; Chen, K. C.; Lin, H. C.; Chang, S. S.; Chen, C. Y. C., Uroporphyrinogen decarboxylase as a potential target for specific components of traditional Chinese medicine: A virtual screening and molecular dynamics study. Plos One 2012, 7 (11).
(9) Tsou, Y. A.; Chen, K. C.; Chang, S. S.; Wen, Y. R.; Chen, C. Y. C., A possible strategy against head and neck cancer: In silico investigation of three-in-one inhibitors. Journal of Biomolecular Structure & Dynamics 2013, 31 (12), 1358-1369.
(10) Kum, W. F.; Durairajan, S. S. K.; Bian, Z. X.; Man, S. C.; Lam, Y. C.; Xie, L. X.; Lu, J. H.; Wang, Y.; Huang, X. Z.; Li, M., Treatment of idiopathic Parkinson''s disease with traditional Chinese herbal medicine: A randomized placebo-controlled pilot clinical study. Evidence-Based Complementary and Alternative Medicine 2011, 1-8.
(11) Hung, T. C.; Lee, W. Y.; Chen, K. B.; Chan, Y. C.; Lee, C. C.; Chen, C. Y. C., In silico investigation of traditional Chinese medicine compounds to inhibit human histone deacetylase 2 for patients with Alzheimer''s disease. Biomed Research International 2014.
(12) Hard to swallow. Nature 2007, 448 (7150), 105-106.
(13) Shi, S. H.; Hayashi, Y.; Petralia, R. S.; Zaman, S. H.; Wenthold, R. J.; Svoboda, K.; Malinow, R., Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDAreceptor activation. Science 1999, 284 (5421), 1811-1816.
(14) Song, I.; Huganir, R. L., Regulation of AMPA receptors during synaptic plasticity. Trends in Neurosciences 2002, 25 (11), 578-588.
(15) Mayer, M. L., Glutamate receptor ion channels. Current Opinion in Neurobiology 2005, 15 (3), 282-288.
(16) Armstrong, N.; Sun, Y.; Chen, G. Q.; Gouaux, E., Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 1998, 395 (6705), 913-917.
(17) Platt, S. R., The role of glutamate in central nervous system health and disease - Areview. Veterinary Journal 2007, 173 (2), 278-286.
(18) Rosenmund, C.; Stern-Bach, Y.; Stevens, C. F., The tetrameric structure of a glutamate receptor channel. Science 1998, 280 (5369), 1596-1599.
(19) Armstrong, N.; Jasti, J.; Beich-Frandsen, M.; Gouaux, E., Measurement of conformational changes accompanying desensitization in an ionotropic glutamate receptor. Cell 2006, 127 (1), 85-97.
(20) Cheng, Q.; Jayaraman, V., Chemistry and conformation of the ligand-binding domain of GluR2 subtype of glutamate receptors. Journal of Biological Chemistry 2004, 279 (25), 26346-26350.
(21) Funk, C. D., Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science 2001, 294 (5548), 1871-1875.
(22) Cha, Y. I.; Solnica-Krezel, L.; DuBois, R. N., Fishing for prostanoids: Deciphering the developmental functions of cyclooxygenase-derived prostaglandins. Developmental Biology 2006, 289 (2), 263-272.
(23) Smith, W. L.; DeWitt, D. L.; Garavito, R. M., Cyclooxygenases: Structural, cellular, and molecular biology. Annual Review of Biochemistry 2000, 69, 145-182.
(24) Yokoyama, C.; Takai, T.; Tanabe, T., Primary structure of sheep prostaglandin endoperoxide synthase deduced from CDNA sequence. Febs Letters 1988, 231 (2), 347-351.
(25) Xie, W. L.; Chipman, J. G.; Robertson, D. L.; Erikson, R. L.; Simmons, D. L., Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by messenger-RNA splicing. Proceedings of the National Academy of Sciences of the United States of America 1991, 88 (7), 2692-2696.
(26) Chandrasekharan, N. V.; Dai, H.; Roos, K. L. T.; Evanson, N. K.; Tomsik, J.; Elton, T. S.; Simmons, D. L., Cox-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression. Proceedings of the National Academy of Sciences of the United States of America 2002, 99 (21), 13926-13931.
(27) Tsatsanis, C.; Androulidaki, A.; Venihaki, M.; Margioris, A. N., Signalling networks regulating cyclooxygenase-2. International Journal of Biochemistry & Cell Biology 2006, 38 (10), 1654-1661.
(28) Caivano, M.; Cohen, P., Role of mitogen-activated protein kinase cascades in mediating lipopolysaccharide-stimulated induction of cyclooxygenase-2 and IL-1 beta in RAW264 macrophages. Journal of Immunology 2000, 164 (6), 3018-3025.
(29) Chun, K. S.; Surh, Y. J., Signal transduction pathways regulating cyclooxygenase-2 expression: Potential molecular targets for chemoprevention. Biochemical Pharmacology 2004, 68 (6), 1089-1100.
(30) Kniss, D. A., Cyclooxygenases in reproductive medicine and biology. Journal of the Society for Gynecologic Investigation 1999, 6 (6), 285-292.
(31) Li, S. F.; Miner, K.; Fannin, R.; Barrett, J. C.; Davis, B. J., Cyclooxygenase-1 and 2 in normal and malignant human ovarian epithelium. Gynecologic Oncology 2004, 92 (2), 622-627.
(32) Eberhart, C. E.; Coffey, R. J.; Radhika, A.; Giardiello, F. M.; Ferrenbach, S.; Dubois, R. N., Up-regulation of cyclooxygenase-2 gene-expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994, 107 (4), 1183-1188.
(33) Wulfing, P.; Diallo, R.; Muller, C.; Wulfing, C.; Poremba, C.; Heinecke, A.; Rody, A.; Greb, R. R.; Bocker, W.; Kiesel, L., Analysis of cyclooxygenase-2 expression in human breast cancer: High throughput tissue microarray analysis. Journal of Cancer Research and Clinical Oncology 2003, 129 (7), 375-382.
(34) Wolff, H.; Saukkonen, K.; Anttila, S.; Karjalainen, A.; Vainio, H.; Ristimaki, A., Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Research 1998, 58 (22), 4997-5001.
(35) Chan, G.; Boyle, J. O.; Yang, E. K.; Zhang, F.; Sacks, P. G.; Shah, J. P.; Edelstein, D.; Soslow, R. A.; Koki, A. T.; Woerner, B. M.; Masferrer, J. L.; Dannenberg, A. J., Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Research 1999, 59 (5), 991-994.
(36) Ratnasinghe, D.; Tangrea, J.; Roth, M. J.; Dawsey, S.; Hu, N.; Anver, M.; Wang, Q. H.; Taylor, P. R., Expression of cyclooxygenase-2 in human squamous cell carcinoma of the esophagus; An immunohistochemical survey. Anticancer Research 1999, 19 (1A), 171-174.
(37) Lee, S. H.; Soyoola, E.; Chanmugam, P.; Hart, S.; Sun, W. Q.; Zhong, H.; Liou, S.; Simmons, D.; Hwang, D., Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. Journal of Biological Chemistry 1992, 267 (36), 25934-25938.
(38) Landino, L. M.; Crews, B. C.; Timmons, M. D.; Morrow, J. D.; Marnett, L. J., Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 1996, 93 (26), 15069-15074.
(39) Bachelor, M. A.; Cooper, S. J.; Sikorski, E. T.; Bowden, G. T., Inhibition of p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase decreases UVB-induced activator protein-1 and cyclooxygenase-2 in a SKH-1 hairless mouse model. Molecular Cancer Research 2005, 3 (2), 90-99.
(40) Liu, Y. M.; Borchert, G. L.; Phang, J. M., Polyoma enhancer activator 3, an Ets transcription factor, mediates the induction of cyclooxygenase-2 by nitric oxide in colorectal cancer cells. Journal of Biological Chemistry 2004, 279 (18), 18694-18700.
(41) Park, S. W.; Sung, M. W.; Heo, D. S.; Inoue, H.; Shim, S. H.; Kim, K. H., Nitric oxide upregulates the cyclooxygenase-2 expression through the cAMP-response element in its promoter in several cancer cell lines. Oncogene 2005, 24 (44), 6689-6698.
(42) Wang, Q.; Zhou, Y.; Wang, X.; Evers, B. M., Glycogen synthase kinase-3 is a negative regulator of extracellular signal-regulated kinase. Oncogene 2006, 25 (1), 43-50.
(43) Chen, J. J.; Huang, W. C.; Chen, C. C., Transcriptional regulation of cyclooxygenase-2 in response to proteasome inhibitors involves reactive oxygen species-mediated signaling pathway and recruitment of CCAAT/enhancer-binding protein delta and CREB-binding protein. Molecular Biology of the Cell 2005, 16 (12), 5579-5591.
(44) Du, X.; Wang, J. H.; Liu, P., Effects of WenQingYin on serum MDAand SOD of rats with stress ulcer of stomach. Chinese Journal of Traditional Medical Science and Technology 2009, 16 (3), 174-175.
(45) Gasiorowski, K.; Lamer-Zarawska, E.; Leszek, J.; Parvathaneni, K.; Yendluri, B. B.; Blach-Olszewska, Z.; Aliev, G., Flavones from root of scutellaria baicalensis georgi: Drugs of the future in neurodegeneration? Cns & Neurological Disorders-Drug Targets 2011, 10 (2), 184-191.
(46) Jung, H. S.; Kim, M. H.; Gwak, N. G.; Im, Y. S.; Lee, K. Y.; Sohn, Y.; Choi, H.; Yang, W. M., Antiallergic effects of Scutellaria baicalensis on inflammation in vivo and in vitro. Journal of Ethnopharmacology 2012, 141 (1), 345-349.
(47) Liang, Q.; Ma, J.; Ma, Z.; Wang, Y.; Tan, H.; Xiao, C.; Liu, M.; Lu, B.; Zhang, B.; Gao, Y., Chemical comparison of dried rehmannia root and prepared rehmannia root by UPLC-TOF MS and HPLC-ELSD with multivariate statistical analysis. Acta Pharmaceutica Sinica B 2013, 3 (1), 55-64.
(48) Sung, Y. Y.; Lee, A. Y.; Kim, H. K., The Gardenia jasminoides extract and its constituent, geniposide, elicit anti-allergic effects on atopic dermatitis by inhibiting histamine in vitro and in vivo. Journal of Ethnopharmacology 2014, 156, 33-40.
(49) Xue, R. C.; Fang, Z.; Zhang, M. X.; Yi, Z. H.; Wen, C. P.; Shi, T. L., TCMID: Traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Research 2013, 41 (D1), D1089-D1095.
(50) Chen, C. Y. C., TCM Database@Taiwan: The world''s largest traditional Chinese medicine database for drug screening in silico. Plos One 2011, 6 (1).
(51) Beck, D. A. C.; Daggett, V., Methods for molecular dynamics simulations of protein folding/unfolding in solution. Methods 2004, 34 (1), 112-120.
(52) Wang, T.; Wade, R. C., Implicit solvent models for flexible protein-protein docking by molecular dynamics simulation. Proteins-Structure Function and Genetics 2003, 50 (1), 158-169.
(53) Ma, B. Y.; Nussinov, R., Simulations as analytical tools to understand protein aggregation and predict amyloid conformation. Current Opinion in Chemical Biology 2006, 10 (5), 445-452.
(54) Cichero, E.; D''Ursi, P.; Moscatelli, M.; Bruno, O.; Orro, A.; Rotolo, C.; Milanesi, L.; Fossa, P., Homology modeling, docking studies and molecular dynamic simulations using graphical processing unit architecture to probe the type-11 phosphodiesterase catalytic site: A computational approach for the rational design of selective inhibitors. Chemical Biology & Drug Design 2013, 82 (6), 718-731.
(55) D''Ursi, P.; Guariento, S.; Trombetti, G.; Orro, A.; Cichero, E.; Milanesi, L.; Fossa, P.; Bruno, O., Further insights in the binding mode of selective inhibitors to human PDE4D enzyme combining docking and molecular dynamics. Molecular Informatics 2016, 35 (8-9), 369-381.
(56) Lengauer, T.; Rarey, M., Computational methods for biomolecular docking. Current Opinion in Structural Biology 1996, 6 (3), 402-406.
(57) Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J., Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews Drug Discovery 2004, 3 (11), 935-949.
(58) Wei, B. Q.; Weaver, L. H.; Ferrari, A. M.; Matthews, B. W.; Shoichet, B. K., Testing a flexible-receptor docking algorithm in a model binding site. Journal of Molecular Biology 2004, 337 (5), 1161-1182.
(59) Lamb, M. L.; Jorgensen, W. L., Computational approaches to molecular recognition. Current Opinion in Chemical Biology 1997, 1 (4), 449-457.
(60) Gschwend, D. A.; Good, A. C.; Kuntz, I. D., Molecular docking towards drug discovery. Journal of Molecular Recognition 1996, 9 (2), 175-186.
(61) Jain, A. N., Scoring functions for protein-ligand docking. Current Protein & Peptide Science 2006, 7 (5), 407-420.
(62) Lensink, M. F.; Mendez, R.; Wodak, S. J., Docking and scoring protein complexes: CAPRI 3rd edition. Proteins-Structure Function and Bioinformatics 2007, 69 (4), 704-718.
(63) Robertson, T. A.; Varani, G., An all-atom, distance-dependent scoring function for the prediction of protein-DNA interactions from structure. Proteins-Structure Function and Bioinformatics 2007, 66 (2), 359-374.
(64) Ajay; Murcko, M. A., Computational methods to predict binding free energy in ligand-receptor complexes. Journal of Medicinal Chemistry 1995, 38 (26), 4953-4967.
(65) Verlet, L., Computer "experiments" on classical fluids. II. Equilibrium correlation functions. Physical Review 1968, 165 (1), 201-214.
(66) Sun, H., COMPASS: An ab initio force-field optimized for condensed-phase applications - overview with details on alkane and benzene compounds. Journal of Physical Chemistry B 1998, 102 (38), 7338-7364.
(67) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M., CHARMM - a program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry 1983, 4 (2), 187-217.
(68) Oostenbrink, C.; Villa, A.; Mark, A. E.; Van Gunsteren, W. F., A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry 2004, 25 (13), 1656-1676.
(69) Wang, J. M.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A., Development and testing of a general amber force field. Journal of Computational Chemistry 2004, 25 (9), 1157-1174.
(70) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M., UFF, A full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. Journal of the American Chemical Society 1992, 114 (25), 10024-10035.
(71) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (vol 117, pg 5179, 1995). Journal of the American Chemical Society 1996, 118 (9), 2309-2309.
(72) Luo, Z. L.; Jiang, J. W., pH-sensitive drug loading/releasing in amphiphilic copolymer PAE-PEG: Integrating molecular dynamics and dissipative particle dynamics simulations. Journal of Controlled Release 2012, 162 (1), 185-193.
(73) Salomon-Ferrer, R.; Case, D. A.; Walker, R. C., An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews-Computational Molecular Science 2013, 3 (2), 198-210.
(74) Armstrong, N.; Gouaux, E., Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: Crystal structures of the GluR2 ligand binding core. Neuron 2000, 28 (1), 165-181.
(75) Ahmed, A. H.; Thompson, M. D.; Fenwick, M. K.; Romero, B.; Loh, A. P.; Jane, D. E.; Sondermann, H.; Oswald, R. E., Mechanisms of antagonism of the GluR2 AMPA receptor: Structure and dynamics of the complex of two willardiine antagonists with the glutamate binding domain. Biochemistry 2009, 48 (18), 3894-3903.
(76) Speranskiy, K.; Kurnikova, M., On the binding determinants of the glutamate agonist with the glutamate receptor ligand binding domain. Biochemistry 2005, 44 (34), 11508-11517.
(77) Rouzer, C. A.; Marnett, L. J., Cyclooxygenases: Structural and functional insights. Journal of Lipid Research 2009, 50, S29-S34.
(78) Zarghi, A.; Arfaei, S., Selective COX-2 inhibitors: A review of their structure-activity relationships. Iranian Journal of Pharmaceutical Research 2011, 10 (4), 655-683.
(79) Kalgutkar, A. S.; Crews, B. C.; Rowlinson, S. W.; Marnett, A. B.; Kozak, K. R.; Remmel, R. P.; Marnett, L. J., Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors: Facile conversion of nonsteroidal antiinflammatory drugs to potent and highly selective COX-2 inhibitors. Proceedings of the National Academy of Sciences of the United States of America 2000, 97 (2), 925-930.
(80) DeWitt, D. L., COX-2-selective inhibitors: The new super aspirins. Molecular Pharmacology 1999, 55 (4), 625-631.
(81) Nagano, S.; Huang, X. D.; Moir, R. D.; Payton, S. M.; Tanzi, R. E.; Bush, A. I., Peroxidase activity of cyclooxygenase-2 (COX-2) cross-links beta-amyloid (A beta) and generates A beta-COX-2 hetero-oligomers that are increased in Alzheimer''s disease. Journal of Biological Chemistry 2004, 279 (15), 14673-14678.
(82) Rissanou, A. N.; Harmandaris, V., Dynamics of various polymer-graphene interfacial systems through atomistic molecular dynamics simulations. Soft Matter 2014, 10 (16), 2876-2888.
(83) Pande, V. S.; Rokhsar, D. S., Molecular dynamics simulations of unfolding and refolding of a beta-hairpin fragment of protein G. Proceedings of the National Academy of Sciences of the United States of America 1999, 96 (16), 9062-9067.
(84) Lerbret, A.; Bordat, P.; Affouard, F.; Descamps, M.; Migliardo, F., How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations. Journal of Physical Chemistry B 2005, 109 (21), 11046-11057.
(85) Karplus, M.; Kuriyan, J., Molecular dynamics and protein function. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (19), 6679-6685.
(86) Hertig, S.; Latorraca, N. R.; Dror, R. O., Revealing atomic-level mechanisms of protein allostery with molecular dynamics simulations. Plos Computational Biology 2016, 12 (6).
(87) Childers, M. C.; Daggett, V., Insights from molecular dynamics simulations for computational protein design. Molecular Systems Design & Engineering 2017, 2 (1), 9-33.
(88) Penn, A. C.; Williams, S. R.; Greger, I. H., Gating motions underlie AMPA receptor secretion from the endoplasmic reticulum. Embo Journal 2008, 27 (22), 3056-3068.
(89) Mamonova, T.; Yonkunas, M. J.; Kurnikova, M. G., Energetics of the cleft closing transition and the role of electrostatic interactions in conformational rearrangements of the glutamate receptor ligand binding domain. Biochemistry 2008, 47 (42), 11077-11085.
(90) Chuang, P. H.; Gu, Q. R.; Tseng, Y. H.; Chen, C. L., Estimation of electron transfer properties of ferrocenyl-dicholesteryl-peptide in liquid and gel. Journal of Colloid and Interface Science 2014, 417, 310-316.
(91) Mendieta, J.; Gago, F.; Ramirez, G., Binding of 5 ''-GMP to the GluR2 AMPA receptor: Insight from targeted molecular dynamics simulations. Biochemistry 2005, 44 (44), 14470-14476.
(92) Chen, P. E.; Wyllie, D. J. A., Pharmacological insights obtained from structure-function studies of ionotropic glutamate receptors. British Journal of Pharmacology 2006, 147 (8), 839-853.
(93) Rowlinson, S. W.; Crews, B. C.; Lanzo, C. A.; Marnett, L. J., The binding of arachidonic acid in the cyclooxygenase active site of mouse prostaglandin endoperoxide synthase-2 (COX-2) - A putative L-shaped binding conformation utilizing the top channel region. Journal of Biological Chemistry 1999, 274 (33), 23305-23310.
(94) Rouzer, C. A.; Marnett, L. J., Mechanism of free radical oxygenation of polyunsaturated fatty acids by cyclooxygenases. Chemical Reviews 2003, 103 (6), 2239-2304.
(95) Xu, S.; Hermanson, D. J.; Banerjee, S.; Ghebreselasie, K.; Clayton, G. M.; Garavito, R. M.; Marnett, L. J., Oxicams bind in a novel mode to the cyclooxygenase active site via a two-water-mediated H-bonding network. Journal of Biological Chemistry 2014, 289 (10), 6799-6808.
(96) Sun, L. L.; Wu, H.; Zhang, Y. Z.; Wang, R.; Wang, W. Y.; Wang, W.; Li, S. P.; Dai, L.; Zhang, Z. R., Design, synthesis and preliminary evaluation of the anti-inflammatory of the specific selective targeting druggable enzymome cyclooxygenase-2 (COX-2) small molecule. Pharmaceutical Biology 2016, 54 (11), 2505-2514.
(97) Limongelli, V.; Bonomi, M.; Marinelli, L.; Gervasio, F. L.; Cavalli, A.; Novellino, E.; Parrinello, M., Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition. Proceedings of the National Academy of Sciences of the United States of America 2010, 107 (12), 5411-5416.
(98) Valmsen, K.; Boeglin, W. E.; Jarving, I.; Schneider, C.; Varvas, K.; Brash, A. R.; Samel, N., Structural and functional comparison of 15S- and 15R-specific cyclooxygenases from the coral Plexaura homomalla. European Journal of Biochemistry 2004, 271 (17), 3533-3538.
(99) Vecchio, A. J.; Orlando, B. J.; Nandagiri, R.; Malkowski, M. G., Investigating substrate promiscuity in cyclooxygenase-2 the role of ARG-120 and residues lining the hydrophobic groove. Journal of Biological Chemistry 2012, 287 (29), 24619-24630.
(100) Ribeiro, D.; Freitas, M.; Tome, S. M.; Silva, A. M. S.; Laufer, S.; Lima, J.; Fernandes, E., Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. Inflammation 2015, 38 (2), 858-870.
(101) Likhitwitayawuid, K.; Sawasdee, K.; Kirtikara, K., Flavonoids and stilbenoids with COX-1 and COX-2 inhibitory activity from Dracaena loureiri. Planta Medica 2002, 68 (9), 841-843.
(102) Wolf, P.; Nghiem, D. X.; Walterscheid, J. P.; Byrne, S.; Matsumura, Y.; Matsumura, Y.; Bucana, C.; Ananthaswamy, H. N.; Ullrich, S. E., Platelet-activating factor is crucial in psoralen and ultraviolet A-induced immune suppression, inflammation, and apoptosis. American Journal of Pathology 2006, 169 (3), 795-805.
(103) Hong, Y. J.; Yang, K. S., Anti-inflammatory activities of crocetin derivatives from processed Gardenia jasminoides. Archives of Pharmacal Research 2013, 36 (8), 933-940.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top