(3.238.7.202) 您好!臺灣時間:2021/02/25 11:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉廷暐
研究生(外文):Ting-Wei Liu
論文名稱:以機械力驅動烷氧基胺機械響應官能團進行聚合反應
論文名稱(外文):Polymerization Activated by Mechanochemistry using Alkoxyamine Mechanophore
指導教授:李志聰
指導教授(外文):Jyh-Tsung Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:77
中文關鍵詞:烷氧基胺機械力化學氮氧自由基控制聚合機械響應官能團機械力
外文關鍵詞:mechanical forcemechanochemistrynitroxide mediated polymerizationalkoxyaminemechanophore
相關次數:
  • 被引用被引用:1
  • 點閱點閱:136
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇合成一個具有烷氧基胺的機械響應官能團(Mechanophore)並將其建立在高分子中,接著施以機械力探討其在聚合方面的可行性。在具有烷氧基胺的機械響應官能團與高分子方面的研究,藉由核磁共振(NMR)與紅外光譜儀(IR)來鑑定‧結果顯示在線性高分子的部分,超音波確實可以驅動其反應,而在後續的聚合實驗中,也從膠體滲透層析儀進行追蹤,其結果也以NMR進行結構分析;以機械力驅動烷氧基胺生成氮氧自由基與碳自由基的過程也以順磁共振譜儀以及指示劑1,1-diphenyl-2-picrylhydrazyl (DPPH)進行分析。含烷氧基胺之機響應官能團開啟了高分子機械力化學在自修復以及聚合反應方面新的應用。
An alkoxyamine mechanophore has been synthesized to first demonstrate the mechanochemical activation of nitroxide mediated polymerization of styrene. The structures of alkoxyamine mechanophore and the synthesized polystyrene (PS) are characterized by gel permeation chromatography, nuclear magnetic resonance (NMR), infrared spectroscopy(IR). The results show that the polymerization of styrene is carried out by mechanical force via ultrasonication. The alkoxyamine mechanophore activated by mechanical forces generates a carbon radical and a nitroxide radical, which is confirmed by a radical indicator, 1,1-diphenyl-2-picrylhydrazyl (DPPH), and electron spin resonance spectroscopy. The novel mechanophore for polymerization opens a new concept of polymer mechanochemistry for applications in self-healing and polymerizations.
目錄
第一章 文獻回顧 1
1-1. 簡介 2
1-2. 高分子機械力化學歷史(History of Polymer Mechanochemistry) 3
1-3. 其他研究團隊已發之表論文 4
1-3.1. 以超音波驅動含偶氮結構之聚乙二醇之裂解 4
1-3.2. 製備含烯二炔之交連聚合物與其在熱與機械力作用下之反應性 5
1-3.3. 以機械力誘導在機械響應聚合材料中共價鍵的活化 6
1-3.4. 以機械力驅動變色以及高分子鏈間之橋接反應 8
1-4. 原子轉移自由基聚合法 (Atomic Transfer Radical Polymerization, ATRP) 9
1-5. 氮氧自由基控制聚合 (Nitroxide Mediated Polymerizaton, NMP) 10
1-6 研究動機 11
第二章 實驗藥品與實驗儀器 12
2-1. 實驗藥品及材料 13
2-2. 實驗儀器 15
2-2.1 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectroscometer, FTIR) 15
2-2.2 高磁場液態核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR) 15
2-2.3 電子順磁共振光譜儀 (Electron Spin Resonance Spectroscometer, ESR) 15
2-2.4 膠體滲透層析儀 (Gel Permeation Chromatography, GPC) 16
2-2.5 超音波破碎儀 (Ultrasonicator) 16
第三章 實驗流程 17
3-1. Model Polymer之合成 18
3-1.1. 化合物2-Benzoyl-1-phenylethyl-TEMPO的合成[28] 18
3-1.2. 化合物TEMPO-Based Diol的合成 19
3-1.3. 化合物Alkoxyamine -Based Initiator的合成 20
3-1.4. 化合物Model Polymer 的合成 21
3-2. Cross-linked Polymer之合成 22
3-2.1. 化合物PTMPA之合成 22
3-2.2. 化合物Cross-linked Polymer之合成 23
3-2.3. 化合物Branch Polymer之合成 23
3-3.Control Polymer之合成 24
3-3.1. Control Initiator之合成 24
3-3.2. Control Polymer之合成 25
3-4. 以超音波震碎機進行超音波震盪測試 (Sonication Test) 26
第四章 結果與討論 27
4-1. Alkoxyamine-Based Iinitiator之鑑定 28
4-1.1. NMR光譜 28
4-2. Model Polymer結構之鑑定 29
4-2.1. Model Polymer之NMR光譜 29
4-2.2. Model Polymer之IR光譜 30
4-3. 超音波震盪實驗 31
4-3.1. 超音波震盪實驗之反應機制 31
4-3.2. 超音波震盪實驗之GPC追蹤 32
4-3.3. 以DPPH作為指示劑檢驗超音波震盪實驗反應 36
4-4. 以超音波震盪驅動聚合反應 37
4-4.1. 以超音波震盪驅動聚合反應之機制 37
4-4.2.反應前後之GPC追蹤 38
4-4.3. 反應前後比較之NMR光譜 38
4-4.4. 反應前後比較之IR光譜 42
4-5. Model Cross-linked Polymer之結構鑑定 43
4-5.1.Model Cross-linked Polymer之IR光譜 43
4-6. 交聯高分子之膨脹實驗 (Swelling Test) 44
4-6.1. 膨脹實驗之反應機制 44
4-6.2. 以ESR追蹤實驗探討膨脹拉力對於自由基生成的影響 45
4-6.3. 以DPPH作為指示劑檢驗膨脹實驗反應 47
4-7. 以膨脹驅動自由基聚合實驗 49
4-7.1 以膨脹驅動自由基聚合實驗之機制 49
第五章 結論 52
第六章 參考文獻 55
附錄 59

圖目錄
圖1-1 高分子機械力化發展圖 3
圖1-2 高分子機械力化學反應示意圖 3
圖1-3 以超音波震盪含偶氮結構高分子之反應 4
圖1-4 GPC追蹤圖 4
圖1-7含Enediyene結構之交聯高分子於溶劑中之反應 5
圖1-8含Enediyene結構之交聯高子之DSC分析 5
圖1-9 Spiropyran開環反應式 6
圖1-10 含Spiropyran之交聯高分子swelling test之顏色變化 7
圖1-11 交聯度與Spiropyran開環速率關係圖 7
圖1-13 超音波震盪反應與得到不溶於溶劑之交聯高分子產物 8
圖1-16 反應示意圖 11
圖3-1 超音波震盪裝置圖 26
圖4-1 Alkoxyamine-Based initiator之NMR氫譜 28
圖4-2 Model Polymer之NMR光譜圖 29
圖4-3 Model Polymer之IR光譜圖 30
圖4-6 超音波震盪前後之GPC圖 33
圖4-7 超音波震盪追蹤實驗之GPC圖 33
圖4-8 超音波震盪10分鐘後與20分鐘後之GPC訊號比較 34
圖4-9 分子量變化趨勢圖 (57 kDa) 34
圖4-10分子量變化趨勢圖 (34 kDa) 35
圖4-10 機械響應官能團經超音波震盪產生自由基與DPPH反應 36
圖4-12 添加DPPH震盪前後溶液顏色變化 36
圖4-13 以超音波震盪驅動聚合反應 37
圖4-14 以超音波震盪驅動聚合反應前後之GPC比較 38
圖4-15 以超音波震盪驅動聚合反應0、3、5小時之GPC追蹤圖 38
圖4-16 反應前後之NMR光譜比較 39
圖4-17 以超音波震盪驅動聚合反應追蹤NMR光譜圖 40
圖4-18 以超音波震盪驅動聚合反應前後之IR光譜圖比較 42
圖4-19 含烷氧基胺之交聯高分子之IR光譜圖 43
圖4-20 交聯高分子於溶劑中膨脹之反應機制 44
圖4-21 交聯高分子變溫實驗之ESR光譜圖 45
圖4-22 交聯高分子與接枝高分子變溫實驗訊號強度趨勢圖 45
圖4-24 交聯高分子溶劑膨脹實驗顏色變化(a)1小時 (b)2小時 (c)3小時 48
圖4-26 交聯高分子經溶劑膨脹驅動聚合反應前後比較 49
圖4-27 相同條件以4-tert-Butoxystyrene單體進行聚合 50
圖4-28 相同條件以4-tert-Butoxystyrene單體進行聚合前後IR光譜比較 50
(1).Schmaljohann, D. Thermo- and pH-Responsive Polymers in DrugDelivery. Adv. Drug Delivery Rev 2006, 58, 1655−1670.
(2).Katz, J. S.; Burdick, J. A. Light-Responsive Biomaterials:Development and Applications. Macromol. Biosci 2010, 10, 339−348.
(3).Huh, K. M.; Kang, H. C.; Lee, Y. J.; Bae, Y. H. pH-Sensitive Polymers for Drug Delivery. Macromol. Res 2012, 20, 224−233.
(4).Melville, H. W.; Murray, A. J. R. The Ultrasonic Degradation of Polymers. Trans. Faraday Soc. 1950, 46, 996−1009.
(5).Berkowski, K. L.; Potisek, S. L.; Hickenboth, C. R.; Moore, J. S. Ultrasound-Induced Site-Specific Cleavage of Azo-Functionalized Poly(ethylene glycol). Macromolecules 2005, 38, 8975−8978.
(6).Davis,D.A.;Hamilton,A.;Yang,J.;Cremar,L.D.;Gough,D.V.; Potisek, S. L.; Ong, M. T.; Braun, P. V.; Martı́nez, T. J.; White, S. R.; Moore, J. S.; Sottos, N. R. Force-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materials. Nature 2009, 459, 68−72.
(7).Diesendruck, C.; Steinberg, B. D.; Sugai, N.; Silberstein, M. N.; Sottos, N. R.; White, S. R.; Braun, P. V.; Moore, J. S. Proton-Coupled Mechanochemical Transduction: A Mechanogenerated Acid. J. Am. Chem. Soc. 2012, 134, 12446−12449.
(8).Tomohiro Shiraki, Charles E. Diesendruckab and Jeffrey S. Moore. The mechanochemical production of phenyl cations through heterolytic bond scission. Faraday Discuss., 2014, 170, 385
(9).Chen, Y. L.; Spiering, A. J. H.; Karthikeyan, S.; Peters, G. W. M.; Meijer, E. W.; Sijbesma, R. P. Mechanically Induced Chemiluminescence from Polymers Incorporating a 1,2-Dioxetane Unit in the Main Chain. Nat. Chem. 2012, 4, 559−562.
(10).Hickenboth, C. R.; Moore, J. S.; White, S. R.; Sottos, N. R.; Baudry, J.; Wilson, S. R. Biasing Reaction Pathways with Mechanical Force. Nature 2007, 446, 423−427.
(11).Piermattei, A.; Karthikeyan, S.; Sijbesma, R. P. Activating Catalysts with Mechanical Force. Nat. Chem. 2009, 1, 133−137.
(12).Tennyson, A. G.; Wiggins, K. M.; Bielawski, C. W. Mechanical Activation of Catalysts for C-C bond Forming and Anionic Polymerization Reactions from a Single Macromolecular Reagent. J. Am. Chem. Soc. 2010, 132, 16631−16636.
(13).) Li, J.; Shiraki, T.; Hu, B.; Wright, R. A. E.; Zhao, B.; Moore, J. S. Mechanophore Activation at Heterointerfaces. J. Am. Chem. Soc. 2014, 136, 15925−15928.
(14).Caruso,M.M.;Davis,D.A.;Shen,Q.;Odom,S.A.;Sottos,N.R.; White, S. R.; Moore, J. S. Mechanically-induced Chemical Changes in Polymeric Materials. Chem. Rev. 2009, 109, 5755−5798.
(15).)Ong,M.T.;Leiding,J.;Tao,H.L.;Virshup,A.M.;Martínez,T.J. First Principles Dynamics and Minimum Energy Pathways for Mechanochemical Ring Opening of Cyclobutene. J. Am. Chem. Soc. 2009, 131, 6377−6379.
(16).Zachary S. Kean, Gregory R. Gossweiler, Tatiana B. Kouznetsova, Gihan B. Hewage and Stephen L. Craig. A coumarin dimer probe of mechanochemical scission efficiency in the sonochemical activation of chain-centered mechanophore polymers. Chem. Commun, 2015, 51, 9157--9160
(17).Li, J.; Chikkannagari, N.; Moore, J. S. Polymer Mechanochemistry: From Destructive to Productive. Acc. Chem. Res. 2015, 48, 2181−2190
(18).Staudinger, H.; Bondy, H. F. Isoprene and Rubber. XIX. The Molecular Size of Rubber and Balata. Ber. Dtsch. Chem. Ges. B 1930, 63,734−736.
(19).Staudinger, H.; Leupold, E. O. Isoprene and Rubber. XVIII. Studies of the Viscosity of Balata. Ber. Dtsch. Chem. Ges. B 1930, 63, 730−733.
(20).Staudinger, H.; Hener, W. Highly Polymerized Compounds. XCIII. The Breaking Up of the Molecular Fibers of the Polystyrenes. Ber. Dtsch. Chem. Ges. B 1934, 67, 1159−1164.
(21).Sohma, J. Mechanochemistry of Polymers. Prog. Polym. Sci. 1989, 14, 451−596.
(22).Rule, J. D.; Wilson, S. R.; Moore, J. S. Radical Polymerization Initiated by Bergman Cyclization. J. Am. Chem. Soc. 2003, 125 (43), 12992−12993
(23).Charles R. Hickenboth, Joseph D. Rule, Jeffrey S. Moore. Preparation of enediyne-crosslinked networks and their reactivity under thermal and mechanical conditions.Tetrahedron. 2008, 64, 8435-8448
(24).Corissa K. Lee, Charles E. Diesendruck, Enjiong Lu, Austin N. Pickett, Preston A. May, Jeffrey S. Moore, and Paul V. Braun. Solvent Swelling Activation of a Mechanophore in a Polymer Network. Macromolecules 2014, 47, 2690−2694
(25).Huan Zhang, Fei Gao, Xiaodong Cao, Yanqun Li, Yuanze Xu, Wengui Weng, Roman Boulatov. Mechanochromism and Mechanical Force-Triggered Cross-Linking from a Single Reactive Moiety Incorporated into Polymer Chains. Angew. Chem. Int. Ed. 2016, 55, 1–6.
(26).Krzysztof Matyjaszewski. Atom Transfer Radical Polymerization: From Mechanisms to Applications. Isr. J. Chem. 2012, 52, 206 – 220
(27).Craig J. Hawker.Molecular Weight Control by a “Living” Free-Radical Polymerization Process. J. Am. Chem. SOC. 1994,116, 11185-11186

(28).Yuji Higaki,Hideyuki Otsuka, Takeshi Endo,Atsushi Takahara, Polyurethane Macroinitiator for Controlled Monomer Insertion of Styrene. Macromolecules 2003, 36, 1494-1499
電子全文 電子全文(網際網路公開日期:20220730)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔