|
1.van Dam, G. M.; Themelis, G.; Crane, L. M. A.; Harlaar, N. J.; Pleijhuis, R. G.; Kelder, W.; Sarantopoulos, A.; de Jong, J. S.; Arts, H. J. G.; van der Zee, A. G. J.; Bart, J.; Low, P. S.; Ntziachristos, V., Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-[alpha] targeting: first in-human results. Nat Med 2011, 17 (10), 1315-1319. 2.Hu, Z.; Yang, W.; Liu, H.; Wang, K.; Bao, C.; Song, T.; Wang, J.; Tian, J., From PET/CT to PET/MRI: Advances in Instrumentation and Clinical Applications. Mol. Pharm. 2014, 11 (11), 3798-3809. 3.Pressly, E. D.; Pierce, R. A.; Connal, L. A.; Hawker, C. J.; Liu, Y., Nanoparticle PET/CT Imaging of Natriuretic Peptide Clearance Receptor in Prostate Cancer. Bioconjugate Chem. 2013, 24 (2), 196-204. 4.Seo, J. W.; Baek, H.; Mahakian, L. M.; Kusunose, J.; Hamzah, J.; Ruoslahti, E.; Ferrara, K. W., 64Cu-Labeled LyP-1-Dendrimer for PET-CT Imaging of Atherosclerotic Plaque. Bioconjugate Chem. 2014, 25 (2), 231-239. 5.Criscione, J. M.; Dobrucki, L. W.; Zhuang, Z. W.; Papademetris, X.; Simons, M.; Sinusas, A. J.; Fahmy, T. M., Development and Application of a Multimodal Contrast Agent for SPECT/CT Hybrid Imaging. Bioconjugate Chem. 2011, 22 (9), 1784-1792. 6.Patel, N.; Duffy, B. A.; Badar, A.; Lythgoe, M. F.; Årstad, E., Bimodal Imaging of Inflammation with SPECT/CT and MRI Using Iodine-125 Labeled VCAM-1 Targeting Microparticle Conjugates. Bioconjugate Chem. 2015, 26 (8), 1542-1549. 7.Elsabahy, M.; Heo, G. S.; Lim, S.-M.; Sun, G.; Wooley, K. L., Polymeric Nanostructures for Imaging and Therapy. Chem. Rev. 2015, 115 (19), 10967-11011. 8.Smith, B. R.; Gambhir, S. S., Nanomaterials for In Vivo Imaging. Chem. Rev. 2017, 117 (3), 901-986. 9.Yao, J.; Yang, M.; Duan, Y., Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy. Chem. Rev. 2014, 114 (12), 6130-6178. 10.(a) England, C. G.; Hernandez, R.; Eddine, S. B. Z.; Cai, W., Molecular Imaging of Pancreatic Cancer with Antibodies. Mol. Pharm. 2016, 13 (1), 8-24; (b) Chakravarty, R.; Chakraborty, S.; Dash, A., 64Cu2+ Ions as PET Probe: An Emerging Paradigm in Molecular Imaging of Cancer. Mol. Pharm. 2016, 13 (11), 3601-3612; (c) Jokerst, J. V.; Gambhir, S. S., Molecular Imaging with Theranostic Nanoparticles. Acc. Chem. Res. 2011, 44 (10), 1050-1060. 11.Wang, J.; Qin, B.; Chen, X.; Wagner, W. R.; Villanueva, F. S., Ultrasound Molecular Imaging of Angiogenesis Using Vascular Endothelial Growth Factor-Conjugated Microbubbles. Mol. Pharm. 2017, 14 (3), 781-790. 12.Smith, B. R.; Gambhir, S. S., Nanomaterials for In Vivo Imaging. Chemical Reviews 2017, 117 (3), 901-986. 13.Yang, Z.; Sharma, A.; Qi, J.; Peng, X.; Lee, D. Y.; Hu, R.; Lin, D.; Qu, J.; Kim, J. S., Super-resolution fluorescent materials: an insight into design and bioimaging applications. Chem. Soc. Rev. 2016, 45 (17), 4651-4667. 14.Ren, M.; Deng, B.; Zhou, K.; Kong, X.; Wang, J.-Y.; Lin, W., Single Fluorescent Probe for Dual-Imaging Viscosity and H2O2 in Mitochondria with Different Fluorescence Signals in Living Cells. Anal. Chem. 2017, 89 (1), 552-555. 15.Gong, D.; Zhu, X.; Tian, Y.; Han, S.-C.; Deng, M.; Iqbal, A.; Liu, W.; Qin, W.; Guo, H., A Phenylselenium-Substituted BODIPY Fluorescent Turn-off Probe for Fluorescence Imaging of Hydrogen Sulfide in Living Cells. Anal. Chem. 2017, 89 (3), 1801-1807. 16.Sekar, T. V.; Foygel, K.; Devulapally, R.; Kumar, V.; Malhotra, S.; Massoud, T. F.; Paulmurugan, R., Molecular Imaging Biosensor Monitors p53 Sumoylation in Cells and Living Mice. Anal. Chem. 2016, 88 (23), 11420-11428. 17.Hong, G.; Antaris, A. L.; Dai, H., Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010. 18.Vivero-Escoto, J. L.; Huxford-Phillips, R. C.; Lin, W., Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem. Soc. Rev. 2012, 41 (7), 2673-2685. 19.Li, J.; Zhu, J.-J., Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst 2013, 138 (9), 2506-2515. 20.Paredes, J. M.; Idilli, A. I.; Mariotti, L.; Losi, G.; Arslanbaeva, L. R.; Sato, S. S.; Artoni, P.; Szczurkowska, J.; Cancedda, L.; Ratto, G. M.; Carmignoto, G.; Arosio, D., Synchronous Bioimaging of Intracellular pH and Chloride Based on LSS Fluorescent Protein. ACS Chem. Biol. 2016, 11 (6), 1652-1660. 21.Zhang, J.; Yu, S.-H., Carbon dots: large-scale synthesis, sensing and bioimaging. Mater. Today 2016, 19 (7), 382-393. 22.(a) Yu, J.; Rong, Y.; Kuo, C.-T.; Zhou, X.-H.; Chiu, D. T., Recent Advances in the Development of Highly Luminescent Semiconducting Polymer Dots and Nanoparticles for Biological Imaging and Medicine. Anal. Chem. 2017, 89 (1), 42-56; (b) Wu, C.; Chiu, D. T., Highly Fluorescent Semiconducting Polymer Dots for Biology and Medicine. Angew. Chem. Int. Ed. 2013, 52 (11), 3086-3109. 23.Xu, H.; Li, Q.; Wang, L.; He, Y.; Shi, J.; Tang, B.; Fan, C., Nanoscale optical probes for cellular imaging. Chem. Soc. Rev. 2014, 43 (8), 2650-2661. 24.Szymanski, C.; Wu, C.; Hooper, J.; Salazar, M. A.; Perdomo, A.; Dukes, A.; McNeill, J., Single Molecule Nanoparticles of the Conjugated Polymer MEH−PPV, Preparation and Characterization by Near-Field Scanning Optical Microscopy. The Journal of Physical Chemistry B 2005, 109 (18), 8543-8546. 25.Wu, C.; Bull, B.; Szymanski, C.; Christensen, K.; McNeill, J., Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging. ACS Nano 2008, 2 (11), 2415-2423. 26.Wu, C.; Bull, B.; Christensen, K.; McNeill, J., Ratiometric Single-Nanoparticle Oxygen Sensors for Biological Imaging. Angew. Chem. Int. Ed. 2009, 48 (15), 2741-2745. 27.Wu, C.; Schneider, T.; Zeigler, M.; Yu, J.; Schiro, P. G.; Burnham, D. R.; McNeill, J. D.; Chiu, D. T., Bioconjugation of Ultrabright Semiconducting Polymer Dots for Specific Cellular Targeting. J. Am. Chem. Soc. 2010, 132 (43), 15410-15417. 28.Rong, Y.; Wu, C.; Yu, J.; Zhang, X.; Ye, F.; Zeigler, M.; Gallina, M. E.; Wu, I. C.; Zhang, Y.; Chan, Y.-H.; Sun, W.; Uvdal, K.; Chiu, D. T., Multicolor Fluorescent Semiconducting Polymer Dots with Narrow Emissions and High Brightness. ACS Nano 2013, 7 (1), 376-384. 29.Wu, I. C.; Yu, J.; Ye, F.; Rong, Y.; Gallina, M. E.; Fujimoto, B. S.; Zhang, Y.; Chan, Y.-H.; Sun, W.; Zhou, X.-H.; Wu, C.; Chiu, D. T., Squaraine-Based Polymer Dots with Narrow, Bright Near-Infrared Fluorescence for Biological Applications. J. Am. Chem. Soc. 2015, 137 (1), 173-178. 30.Sun, K.; Tang, Y.; Li, Q.; Yin, S.; Qin, W.; Yu, J.; Chiu, D. T.; Liu, Y.; Yuan, Z.; Zhang, X.; Wu, C., In Vivo Dynamic Monitoring of Small Molecules with Implantable Polymer-Dot Transducer. ACS Nano 2016, 10 (7), 6769-6781. 31.Kuo, C.-T.; Thompson, A. M.; Gallina, M. E.; Ye, F.; Johnson, E. S.; Sun, W.; Zhao, M.; Yu, J.; Wu, I. C.; Fujimoto, B.; DuFort, C. C.; Carlson, M. A.; Hingorani, S. R.; Paguirigan, A. L.; Radich, J. P.; Chiu, D. T., Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots. Nat. Commun. 2016, 7, 11468. 32.Tang, Y.; Chen, H.; Chang, K.; Liu, Z.; Wang, Y.; Qu, S.; Xu, H.; Wu, C., Photo-Cross-Linkable Polymer Dots with Stable Sensitizer Loading and Amplified Singlet Oxygen Generation for Photodynamic Therapy. ACS Applied Materials & Interfaces 2017, 9 (4), 3419-3431. 33.Fu, B.; Huang, J.; Bai, D.; Xie, Y.; Wang, Y.; Wang, S.; Zhou, X., Label-free detection of pH based on the i-motif using an aggregation-caused quenching strategy. Chem. Commun. 2015, 51 (95), 16960-16963. 34.Chen, C.-P.; Huang, Y.-C.; Liou, S.-Y.; Wu, P.-J.; Kuo, S.-Y.; Chan, Y.-H., Near-Infrared Fluorescent Semiconducting Polymer Dots with High Brightness and Pronounced Effect of Positioning Alkyl Chains on the Comonomers. ACS Appl. Mater. Interfaces 2014, 6 (23), 21585-21595. 35.Trofymchuk, K.; Reisch, A.; Shulov, I.; Mely, Y.; Klymchenko, A. S., Tuning the color and photostability of perylene diimides inside polymer nanoparticles: towards biodegradable substitutes of quantum dots. Nanoscale 2014, 6 (21), 12934-12942. 36.Yu, Z.; Duan, Y.; Cheng, L.; Han, Z.; Zheng, Z.; Zhou, H.; Wu, J.; Tian, Y., Aggregation induced emission in the rotatable molecules: the essential role of molecular interaction. J. Mater. Chem. 2012, 22 (33), 16927-16932. 37.Wang, H.; Zhao, E.; Lam, J. W. Y.; Tang, B. Z., AIE luminogens: emission brightened by aggregation. Mater. Today 2015, 18 (7), 365-377. 38.Reisch, A.; Klymchenko, A. S., Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging. Small 2016, 12 (15), 1968-1992. 39.Chen, Y.; Han, H.; Tong, H.; Chen, T.; Wang, H.; Ji, J.; Jin, Q., Zwitterionic Phosphorylcholine–TPE Conjugate for pH-Responsive Drug Delivery and AIE Active Imaging. ACS Appl. Mater. Interfaces 2016, 8 (33), 21185-21192. 40.Liu, H.-Y.; Wu, P.-J.; Kuo, S.-Y.; Chen, C.-P.; Chang, E.-H.; Wu, C.-Y.; Chan, Y.-H., Quinoxaline-Based Polymer Dots with Ultrabright Red to Near-Infrared Fluorescence for In Vivo Biological Imaging. J. Am. Chem. Soc. 2015, 137 (32), 10420-10429. 41.Chen, S.; Wang, H.; Hong, Y.; Tang, B. Z., Fabrication of fluorescent nanoparticles based on AIE luminogens (AIE dots) and their applications in bioimaging. Mater. Horiz. 2016, 3 (4), 283-293. 42.Reisch, A.; Didier, P.; Richert, L.; Oncul, S.; Arntz, Y.; Mély, Y.; Klymchenko, A. S., Collective fluorescence switching of counterion-assembled dyes in polymer nanoparticles. Nat. Commun. 2014, 5, 4089. 43.Zhao, Q.; Li, K.; Chen, S.; Qin, A.; Ding, D.; Zhang, S.; Liu, Y.; Liu, B.; Sun, J. Z.; Tang, B. Z., Aggregation-induced red-NIR emission organic nanoparticles as effective and photostable fluorescent probes for bioimaging. J. Mater. Chem. 2012, 22 (30), 15128-15135. 44.Liu, Y.; Lam, J. W. Y.; Zheng, X.; Peng, Q.; Kwok, R. T. K.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z., Aggregation-Induced Emission and Photocyclization of Poly(hexaphenyl-1,3-butadiene)s Synthesized from “1 + 2” Polycoupling of Internal Alkynes and Arylboronic Acids. Macromolecules 2016, 49 (16), 5817-5830. 45.Tong, H.; Hong, Y.; Dong, Y.; Hau; Lam, J. W. Y.; Li, Z.; Guo, Z.; Guo, Z.; Tang, B. Z., Fluorescent "light-up" bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics. Chem. Commun. 2006, (35), 3705-3707. 46.Jiang, G.; Zeng, G.; Zhu, W.; Li, Y.; Dong, X.; Zhang, G.; Fan, X.; Wang, J.; Wu, Y.; Tang, B. Z., A selective and light-up fluorescent probe for [small beta]-galactosidase activity detection and imaging in living cells based on an AIE tetraphenylethylene derivative. Chem. Commun. 2017, 53 (32), 4505-4508. 47.Li, K.; Liu, B., Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014, 43 (18), 6570-6597. 48.Lin, C.-J.; Liu, Y.-H.; Peng, S.-M.; Shinmyozu, T.; Yang, J.-S., Excimer–Monomer Photoluminescence Mechanochromism and Vapochromism of Pentiptycene-Containing Cyclometalated Platinum(II) Complexes. Inorg Chem 2017, 56 (9), 4978-4989. 49.Tan, W. S.; Prabhakar, C.; Liu, Y.-H.; Peng, S.-M.; Yang, J.-S., Effects of iptycene scaffolds on the photoluminescence of N,N-dimethylaminobenzonitrile and its analogues. Photochem. Photobiol. Sci. 2014, 13 (2), 211-223. 50.Yang, J.-S.; Yan, J.-L., Central-ring functionalization and application of the rigid, aromatic, and H-shaped pentiptycene scaffold. Chem. Commun. 2008, (13), 1501-1512. 51.(a) Yang, J.-S.; Ko, C.-W., Pentiptycene Chemistry: New Pentiptycene Building Blocks Derived from Pentiptycene Quinones. J. Org. Chem. 2006, 71 (2), 844-847; (b) Yang, J.-S.; Yan, J.-L.; Hwang, C.-Y.; Chiou, S.-Y.; Liau, K.-L.; Gavin Tsai, H.-H.; Lee, G.-H.; Peng, S.-M., Probing the Intrachain and Interchain Effects on the Fluorescence Behavior of Pentiptycene-Derived Oligo(p-phenyleneethynylene)s. J. Am. Chem. Soc. 2006, 128 (43), 14109-14119. 52.Zhang, X.; Yu, J.; Rong, Y.; Ye, F.; Chiu, D. T.; Uvdal, K., High-intensity near-IR fluorescence in semiconducting polymer dots achieved by cascade FRET strategy. Chem. Sci. 2013, 4 (5), 2143-2151. 53.Nguyen, H. Q.; Bhatt, M. P.; Rainbolt, E. A.; Stefan, M. C., Synthesis and characterization of a polyisoprene-b-polystyrene-b-poly(3-hexylthiophene) triblock copolymer. Polym. Chem. 2013, 4 (3), 462-465. 54.(a) Song, H.-J.; Kim, D.-H.; Lee, E.-J.; Moon, D.-K., Conjugated polymers consisting of quinacridone and quinoxaline as donor materials for organic photovoltaics: orientation and charge transfer properties of polymers formed by phenyl structures with a quinoxaline derivative. J. Mater. Chem. 2013, 1 (19), 6010-6020; (b) Caffy, F.; Delbosc, N.; Chavez, P.; Leveque, P.; Faure-Vincent, J.; Travers, J. P.; Djurado, D.; Pecaut, J.; Grevin, B.; Lemaitre, N.; Leclerc, N.; Demadrille, R., Synthesis, optoelectronic properties and photovoltaic performances of wide band-gap copolymers based on dibenzosilole and quinoxaline units, rivals to P3HT. Polym. Chem. 2016, 7 (25), 4160-4175. 55.Samanta, S.; Manna, U.; Das, G., White-light emission from simple AIE-ESIPT-excimer tripled single molecular system. New Journal of Chemistry 2017, 41 (3), 1064-1072. 56.Jin, X.; Dong, L.; Di, X.; Huang, H.; Liu, J.; Sun, X.; Zhang, X.; Zhu, H., NIR luminescence for the detection of latent fingerprints based on ESIPT and AIE processes. RSC Adv. 2015, 5 (106), 87306-87310. 57.Hu, R.; Lager, E.; Aguilar-Aguilar, A.; Liu, J.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Zhong, Y.; Wong, K. S.; Peña-Cabrera, E.; Tang, B. Z., Twisted Intramolecular Charge Transfer and Aggregation-Induced Emission of BODIPY Derivatives. J. Phys. Chem. C 2009, 113 (36), 15845-15853. 58.Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S., Solar Water Splitting Cells. Chem. Rev. 2010, 110 (11), 6446-6473. 59.Hammarström, L.; Hammes-Schiffer, S., Artificial Photosynthesis and Solar Fuels. Acc. Chem. Res. 2009, 42 (12), 1859-1860. 60.Li, X.; Wang, M.; Zhang, S.; Pan, J.; Na, Y.; Liu, J.; Åkermark, B.; Sun, L., Noncovalent Assembly of a Metalloporphyrin and an Iron Hydrogenase Active-Site Model: Photo-Induced Electron Transfer and Hydrogen Generation. J. Phys. Chem. B 2008, 112 (27), 8198-8202. 61.Andreiadis, E. S.; Chavarot-Kerlidou, M.; Fontecave, M.; Artero, V., Artificial Photosynthesis: From Molecular Catalysts for Light-driven Water Splitting to Photoelectrochemical Cells. Photochem. Photobiol. 2011, 87 (5), 946-964. 62.Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A., Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures. J. Am. Chem. Soc. 2004, 126 (41), 13406-13413. 63.Huang, J.; Mulfort, K. L.; Du, P.; Chen, L. X., Photodriven Charge Separation Dynamics in CdSe/ZnS Core/Shell Quantum Dot/Cobaloxime Hybrid for Efficient Hydrogen Production. J. Am. Chem. Soc. 2012, 134 (40), 16472-16475. 64.Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8 (1), 76-80. 65.Cao, S.; Yu, J., g-C3N4-Based Photocatalysts for Hydrogen Generation. J. Phys. Chem. Lett. 2014, 5 (12), 2101-2107. 66.Zhao, Z.; Sun, Y.; Dong, F., Graphitic carbon nitride based nanocomposites: a review. Nanoscale 2015, 7 (1), 15-37. 67.Schwinghammer, K.; Tuffy, B.; Mesch, M. B.; Wirnhier, E.; Martineau, C.; Taulelle, F.; Schnick, W.; Senker, J.; Lotsch, B. V., Triazine-based Carbon Nitrides for Visible-Light-Driven Hydrogen Evolution. Angew. Chem. Int. Ed. 2013, 52 (9), 2435-2439. 68.Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V., Crystalline Carbon Nitride Nanosheets for Improved Visible-Light Hydrogen Evolution. J. Am. Chem. Soc. 2014, 136 (5), 1730-1733. 69.Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V., A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci. 2014, 5 (7), 2789-2793. 70.Schwinghammer, K.; Hug, S.; Mesch, M. B.; Senker, J.; Lotsch, B. V., Phenyl-triazine oligomers for light-driven hydrogen evolution. Energy Environ Sci. 2015, 8 (11), 3345-3353. 71.Park, J. H.; Ko, K. C.; Park, N.; Shin, H.-W.; Kim, E.; Kang, N.; Hong Ko, J.; Lee, S. M.; Kim, H. J.; Ahn, T. K.; Lee, J. Y.; Son, S. U., Microporous organic nanorods with electronic push-pull skeletons for visible light-induced hydrogen evolution from water. J. Mater. Chem. A 2014, 2 (21), 7656-7661.
|