|
1. Levene, P. A. Biochemische Zeitschrift 1909, 17, 120. 2. Franklin, R.; Gosling, R. G. Molecular Configuration in Sodium Thymonucleate. Nature 1953, 171, 740. 3. Watson, J. D.; Crick, F. H. C. A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171, 737. 4. Ong, C. W.; Hwang, J. D. 抗癌藥物的化學. Chinese Chemical Society 1987, 45, 175. 5. Ali, A.; Bhattacharya, S. DNA binders in clinical trials and chemotherapy. Bioorganic & Medicinal Chemistry 2014, 22, 4506. 6. Kopka, M. L.; Chun, Y.; Goodsell, D.; Pjura, P.; Dickerson. R. E. Proc. Nati. Acad. Sci. USA. 1985, 82, 13. 7.Pelton, J. G.; Wemmer, D. E. Structural Modeling of the Distamycin A-d (CGCGATATCGCG)2 Complex Using 2D NMR and Molecular mechanics Biochemistry 1988, 27, 8088. 8. Pelton, J. G.; Wemmer. D. E. Binding Modes of Distamycin A with d( CGCAAATTTGCG)2 Determined by Two-Dimensional NMR. J. Am. Chem. Soc. 1990, 112, 1393. 9. Youngquist, R. S.; Dervan, P. B. Sequence-specific recognition of B-DNA by oligo(N-methylpyrrolecarboxamide)s. Proc. Nati. Acad. Sci. USA. 1985, 82, 2565. 10. Lown, J. W.; Krowicki, K.; Bhat, U. G. Molecular Recognition between Oligopeptides and Nucleic Acids: Novel Imidazole-Containing Oligopeptides Related to Netropsin That Exhibit Altered DNA Sequence Specificity. Biochemistry. 1986, 25, 7408. 11. Wade, W. S.; Dervan, P. B. Alteration of the Sequence Specificity of Distamycin on DNA by Replacement of an N-Methylpyrrolecarboxamide with Pyridine-2-carboxamide. J. Am. Chem. Soc. 1987, 109, 1574. 12. Wade, W. S.; Mrksich, M.; Dervan, P. B. Design of Peptides That Bind in the Minor Groove of DNA at S-(A,T)G(A,T)C(A,T)-3’ Sequences by a Dimeric Side-by-Side Motif. J. Am. Chem. Soc. 1992, 114, 8783. 13. Dwyer, T. J.; Geierstanger, B. H.; Bathid, Y.; Lown, J. W.; Wemmer, D. E. Design and Binding of a Distamycin A Analog to d(CGCAAGTTGGC)-d(GCCAACTTGCG): Synthesis, NMR Studies, and Implications for the Design of Sequence-Specific Minor Groove Binding Oligopeptides. J. Am. Chem. Soc. 1992, 114, 5911. 14. Bailly, C; Chaires, J. B. Sequence-Specific DNA Minor Groove Binders. Design and Synthesis of Netropsin and Distamycin Analogues. Bioconjugate Chem. 1998, 9, 513. 15. Mrksicb, M.; Dervan, P. B. Antiparallel Side-by-Side Heterodimer for Sequence-Specific Recognition in the Minor Groove of DNA by a Distamycin/ 1-Methylimidazole-2-carboxamide-netropsin Pair. J. Am. Chem. Soc. 1993, 115, 2572. 16. Mrksicb, M; Dervan, P. B. Design of a Covalent Peptide Heterodimer for Sequence-Specific Recognition in the Minor Groove of Double-Helical DNA. J. Am. Chem. Soc. 1994, 116, 3663. 17. Mrksicb, M.; Parks, M. E.; Devan, P. B. Hairpin Peptide Motif. A New Class of Oligopeptides for Sequence-Specific Recognition in the Minor Groove of Double-Helical DNA. J. Am. Chem. Soc. 1994,116, 1983. 18. White, S.; Baird, E. E.; Dervan, P. B. On the pairing rules for recognition in the minor groove of DNA by pyrrole-imidazole polyamides. Chemistry & Biology 1997, 4, 569. 19. White, S.; Szewczyk, J. W.; Turner, J. M.; Baird, E. E.; Dervan, P. B. Recognition of the four Watson–Crick base pairs in theDNAminor groove by synthetic ligands. Nature 1998, 391, 468. 20. Goodsell, D; Dickerson, R. E. Isohelical Analysis of DNA Groove-Binding Drugs. J. Med. Chem. 1986, 29, 727. 21. Zakrzewska, K.; Pullman, B. Theoretical Study of the Sequence Selectivity of Isolexins, Isohelical DNA Groove Binding Ligands.Proposal for the GC Minor Groove Specific Compounds. J. Biomol. Struct& Dyn. 1988, 5, 1043. 22. Ong, C. W.; Yang, P. S. Minor-Groove Binding Agents: Rational Design of Carboxamide Bond Isosteres. Current Topics in Medicinal Chemisry 2015, 15, 1359. 23. Yamamoto, Y.; Kimachi, T.; Kanaoka, Y.; Kato, S.; Bessho, K. Synthesis and DNA Binding Properties of Amide Bond-Modified Analogues Related to Distamycin. Tetrahedron Letters 1996, 37, 7801. 24. Anthony, N. G.; Breen, D.; Donoghue, G.; Khalaf, A. I.; Mackay, S. P.; Parkinson, J. A.; Suckling, C. J. A new synthesis of alkene-containing minor-groove binders and essential hydrogen bonding in binding to DNA and in antibacterial activity. Org. Biomol. Chem. 2009, 7, 1843. 25. Khalaf, A. I.; Anthony, N.; Breen, D.; Donoghue, G.; Mackay, S. P.; Scott, F. J.; Suckling, C. J. Amide isosteres in structure-activity studies of antibacterial minor groove binders. Eur. J. Med. Chem. 2011, 46, 5343. 26. Ong, C.W.; Yang, Y. T.; Liu, M.C.; Fox, K. R.; Liu, P. H.; Tung, H. W. Synthesis of directly linked diazine isosteres of pyrrole-polyamide that photochemically cleave DNA. Org. Biomol. Chem. 2012, 10, 1040. 27. Ghosh, S.; Usharani, D.; Paul, A.; De, S.; Jemmis, E. D.; Bhattacharya, S. Design, Synthesis, and DNA Binding Properties of Photoisomerizable Azobenzene-Distamycin Conjugates: An Experimental and Computational Study. Bioconjugate Chem. 2008, 19, 2332. 28.Taniguchi, S.; Hasegawa, H.; Yanagiya, S.; Tabeta, Y.; Nakanoc, Y.; Takahashia, M. The first isolation of unsubstituted porphyrinogen and unsubstituted 21-oxaporphyrinogen by the ‘3+1’ approach from 2,5-bis(hydroxymethyl)pyrrole and tripyrrane derivatives. Tetrahedron 2001, 57, 2103. 29. Miller, R.; Olsson, K. A Convenient Synthesis of Pyrrole-2,5-dicarboxaldehyde. Acta. Chemica. Scandinavica B. 1982, 35, 303. 30. Flitsch, W.; Kenip, H.-G. 2,5-Bis(piperidinomethyl)pyrrol und (2,5-Pyrroldiyldimethylen)bis(tripheny1phosphoniumiodid): Synthesen und Umsetzungen zu [2.2](2,5)Pyrrolophanen und 2,5-bisvinylsubstituierten Pyrrolen. Liebigs Ann. Chem. 1985, 1895- 1903. 31. Nakayama, J.; Fujimori, T. Preparation of a series of Oligo-[Thiophene-2,5-diyl]Vintlenes. Heterocycle 1991, 32, 991. 32. Rowland, G. B.; Barnett, K.; DuPont, J. I.; Akurathi, G.; Le, V. H.; Lewis, E. A. The effect of pyridyl substituents on the thermodynamics of porphyrin binding to G-quadruplex DNA. Bioorganic & Medicinal Chemistry 2013, 21, 7515. 33. Sudhakar, G.; Kadam, V. D.; Bayya, S.; Pranitha, G.; Jagadeesh, B. Org. Lett. 2011, 13, 5452. 34.Silverstein, R. M.; Ryskiewicz, E. E.; Willard, C. Org. Synth. Coll. 1963, 4, 831. 35. Rawat, P.; Singh, R. N. Synthesis, conformation, spectroscopic and chemical reactivity analysis of 2-cyano-3-(1H-pyrrol-2-yl)acrylohydrazide using experimental and quantum chemical approaches. Journal of Molecular Structure. 2015, 1082, 118. 36. Peters, G. M.; Winegrad, J. B.; Gau, M. R.; Imler, G. H.; Xu, B.; Ren, S.; Wayland, B. B.; Zdilla, M. J. Synthesis and Structure of 2,5-Bis[N (2,6- mesityl)iminomethyl]pyrrolylcobalt(II): Evidence for One-ElectronOxidized, Redox Noninnocent Ligand Behavior. Inorg. Chem. 2017, 56, 3377. 37. Abell, A. D.; Nabbs, B. K.; Battersby, A. R. The Reaction of N-Magnesium Derivatives of Pyrroles with N-Mesylchloromethylpyrroles: A Synthesis of Dipyrrylmethanes. J. Org. Chem. 1998, 63, 8163. 38. Starcevic, K.; Boykin, D. W.; Karminski-Zamola, G. New Amidino-Benzimidazolyl Thiophenes: Synthesis and Photochemical Synthesis. Heteroat. Chem. 2003, 14, 218. 39. Jaramillo, D.; Liu, Q.; Janice, A-W.; Tor, Y. Synthesis of N-Methylpyrrole and N-Methylimidazole Amino Acid Suitable for Solid-Phase Synthesis. J. Org. Chem. 2004, 69, 8151. 40. Baird, E. E.; Dervan, P. B. Solid Phase Synthesis of Polyamides Containing Imidazole and Pyrrole Amino Acids. J. Am. Chem. Soc. 1996, 118, 6141. 41. Xiao, J.; Yuan, G.; Huang, W.; Chan, A. S. A Convenient Method for the Synthesis of DNA-Recognizing Polyamides in Solution. J. Org. Chem. 2000, 65, 5506. 42. David, M. W.; Sam, H. I.; Mathias, O. S.; Kevin, M. S. Rational tetraarylporphyrin syntheses: tetraarylporphyrins from the MacDonald route J. Org. Chem. 1993, 58, 7245. 43. Matsumoto, T.; Utsumi, Y.; Sakai, Y.; Toyooka, K.; Shibuya, M. Synthesis of Halogenated Oligo-N-methylpyrrolecarboxamide Derivatives and Their Photochemical DNA Cleaving Activities. Heterocycles 1992 , 9, 1697. 44. Garcia, M. H.; Florindo, P.; Piedade, M. F. M.; Duarte, M. T.; Robalo, M. P.; Goovaerts, E.; Wenseleers, W. Synthesis and structural characterization of ruthenium(II) and iron(II) complexes containing 1,2-di-(2-thienyl)-ethene derived ligands as chromophores. J. Organomet. Chem. 2009, 694, 433. 45.戴均羽碩士論文:國立中山大學 民國一零四年七月。
|