|
1.Deen, W., M. Bohrer, and N. Epstein, Effects of molecular size and configuration on diffusion in microporous membranes. AIChE Journal, 1981. 27(6): p. 952-959. 2.Cox, I.J., Development and applications of in vivo clinical magnetic resonance spectroscopy. Progress in biophysics and molecular biology, 1996. 65(1-2): p. 45-81. 3.Bashir, A., et al., Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magnetic resonance in medicine, 1999. 41(5): p. 857-865. 4.Dale, B.M., M.A. Brown, and R.C. Semelka, MRI: basic principles and applications. 2015: John Wiley & Sons. 5.Doan, B.-T., S. Meme, and J.-C. Beloeil, General principles of MRI. John Wiley & Sons, Ltd, Kap, 2013. 1: p. 1-23. 6.Lee, S.Y., High cell-density culture of Escherichia coli. Trends in biotechnology, 1996. 14(3): p. 98-105. 7.Dix, J.A. and A. Verkman, Crowding effects on diffusion in solutions and cells. Annu. Rev. Biophys., 2008. 37: p. 247-263. 8.Elcock, A.H., Models of macromolecular crowding effects and the need for quantitative comparisons with experiment. Current opinion in structural biology, 2010. 20(2): p. 196-206. 9.van den Berg, B., R.J. Ellis, and C.M. Dobson, Effects of macromolecular crowding on protein folding and aggregation. The EMBO journal, 1999. 18(24): p. 6927-6933. 10.Sarkar, M., J. Lu, and G.J. Pielak, Protein crowder charge and protein stability. Biochemistry, 2014. 53(10): p. 1601-1606. 11.Wang, Y., et al., Macromolecular crowding and protein stability. Journal of the American Chemical Society, 2012. 134(40): p. 16614-16618. 12.方立維, 利用核磁共振研究離子, 水, 高分子擁擠劑和磁共振造影劑之間的交互作用. 中山大學化學系研究所學位論文, 2015: p. 1-146. 13.Günther, H., NMR spectroscopy: basic principles, concepts and applications in chemistry. 2013: John Wiley & Sons. 14.Stevens, K., The theory of paramagnetic relaxation. Reports on Progress in Physics, 1967. 30(1): p. 189. 15.Levitt, M.H., Spin dynamics: basics of nuclear magnetic resonance. 2001: John Wiley & Sons. 16.Meiboom, S. and D. Gill, Modified spin‐echo method for measuring nuclear relaxation times. Review of scientific instruments, 1958. 29(8): p. 688-691. 17.Merbach, A.S., L. Helm, and É. Tóth, The chemistry of contrast agents in medical magnetic resonance imaging. 2013: John Wiley & Sons. 18.Ansell, G., et al., The current status of reactions to intravenous contrast media. Investigative Radiology, 1980. 15: p. S32-S39. 19.Moshage, W., et al., Coronary artery stenoses: three-dimensional imaging with electrocardiographically triggered, contrast agent-enhanced, electron-beam CT. Radiology, 1995. 196(3): p. 707-714. 20.Taylor, A.M., et al., Safety and preliminary findings with the intravascular contrast agent NC100150 injection for MR coronary angiography. Journal of Magnetic Resonance Imaging, 1999. 9(2): p. 220-227. 21.Flacke, S., et al., Novel MRI contrast agent for molecular imaging of fibrin. Circulation, 2001. 104(11): p. 1280-1285. 22.Bolskar, R.D., et al., First soluble M@ C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@ C60 [C (COOH) 2] 10 as a MRI contrast agent. Journal of the American Chemical Society, 2003. 125(18): p. 5471-5478. 23.Zhou, Z. and Z.R. Lu, Gadolinium‐based contrast agents for magnetic resonance cancer imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013. 5(1): p. 1-18. 24.Hamm, B., et al., Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: safety, pharmacokinetics, and MR imaging. Radiology, 1995. 195(3): p. 785-792. 25.Briguori, C., et al., Standard vs double dose of N-acetylcysteine to prevent contrast agent associated nephrotoxicity. European heart journal, 2004. 25(3): p. 206-211. 26.Alexander, R.D., S.L. Berkes, and J.G. Abuelo, Contrast media-induced oliguric renal failure. Archives of internal medicine, 1978. 138(3): p. 381-384. 27.Bashir, M.R., et al., Emerging applications for ferumoxytol as a contrast agent in MRI. Journal of Magnetic Resonance Imaging, 2015. 41(4): p. 884-898. 28.Na, H.B., et al., Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angewandte Chemie, 2007. 119(28): p. 5493-5497. 29.Na, H.B., I.C. Song, and T. Hyeon, Inorganic nanoparticles for MRI contrast agents. Advanced materials, 2009. 21(21): p. 2133-2148. 30.Lauffer, R.B., Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chemical Reviews, 1987. 87(5): p. 901-927. 31.Caravan, P., et al., Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chemical reviews, 1999. 99(9): p. 2293-2352. 32.Freed, J.H., Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. II. Finite jumps and independent T 1 processes. The Journal of Chemical Physics, 1978. 68(9): p. 4034-4037. 33.Luz, Z. and S. Meiboom, Proton relaxation in dilute solutions of cobalt (II) and nickel (II) ions in methanol and the rate of methanol exchange of the solvation sphere. The Journal of Chemical Physics, 1964. 40(9): p. 2686-2692. 34.Swift, T.J. and R.E. Connick, NMR‐Relaxation Mechanisms of O17 in Aqueous Solutions of Paramagnetic Cations and the Lifetime of Water Molecules in the First Coordination Sphere. The Journal of Chemical Physics, 1962. 37(2): p. 307-320. 35.Minton, A.P., The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. Journal of biological chemistry, 2001. 276(14): p. 10577-10580. 36.Thuy, B.P., H.T.T. Huong, and T.X. Hoang. Effects of macromolecular crowding on protein folding. in Journal of Physics: Conference Series. 2015. IOP Publishing. 37.McMillan Jr, W.G. and J.E. Mayer, The statistical thermodynamics of multicomponent systems. The Journal of Chemical Physics, 1945. 13(7): p. 276-305. 38.Minton, A.P., Excluded volume as a determinant of macromolecular structure and reactivity. Biopolymers, 1981. 20(10): p. 2093-2120. 39.Zhou, H.-X., G. Rivas, and A.P. Minton, Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys., 2008. 37: p. 375-397. 40.Zhou, H.X., G.N. Rivas, and A.P. Minton, Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences. Annual Review of Biophysics, 2008. 37: p. 375-397. 41.DeVita, M., et al., Incidence and etiology of hyponatremia in an intensive care unit. Clinical nephrology, 1990. 34(4): p. 163-166. 42.Lodish, H., et al., Molecular cell biology 4th edition. National Center for Biotechnology InformationÕs Bookshelf, 2000. 43.Bakker, H., Structural dynamics of aqueous salt solutions. Chemical reviews, 2008. 108(4): p. 1456-1473. 44.Waldron, R.D., Infrared Spectra of HDO in water and ionic solutions. The Journal of Chemical Physics, 1957. 26(4): p. 809-814. 45.Walrafen, G.E., Raman spectral studies of the effects of electrolytes on water. The Journal of Chemical Physics, 1962. 36(4): p. 1035-1042. 46.Jones, G. and M. Dole, The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. Journal of the American Chemical Society, 1929. 51(10): p. 2950-2964. 47.Falkenhagen, H., Theorie der Elektrolyte: 90 Tabellen. 1971: Hirzel. 48.Jenkins, H.D.B. and Y. Marcus, Viscosity B-coefficients of ions in solution. Chemical Reviews, 1995. 95(8): p. 2695-2724. 49.Cox, W. and J. Wolfenden, The viscosity of strong electrolytes measured by a differential method. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1934. 145(855): p. 475-488. 50.Friedman, H., C. Krishnan, and F. Franks, Water A Comprehensive Treatise, vol. 3Plenum. New York, 1973: p. 1. 51.Conway, B. and E. Ayranci, Effective ionic radii and hydration volumes for evaluation of solution properties and ionic adsorption. Journal of solution chemistry, 1999. 28(3): p. 163-192. 52.Kinrade, S.D., Oxygen-17 NMR study of aqueous potassium silicates. The Journal of Physical Chemistry, 1996. 100(12): p. 4760-4764. 53.Conway, B.E., Ionic hydration in chemistry and biophysics. Vol. 12. 1981: Elsevier Science Ltd. 54.Burgess, J., Ions in solution: basic principles of chemical interactions. 1999: Elsevier. 55.Thaunay, F., G. Ohanessian, and C. Clavaguéra, Dynamics of ions in a water drop using the AMOEBA polarizable force field. Chemical Physics Letters, 2017. 56.Chellan, P. and P.J. Sadler, The elements of life and medicines. Phil. Trans. R. Soc. A, 2015. 373(2037): p. 20140182. 57.Gurney, R., Ionic processes in solution, 1953. Dover Publications, New York. 58.Corey, V.B., Adiabatic compressibilities of some aqueous ionic solutions and their variation with indicated liquid structure of the water. Physical Review, 1943. 64(11-12): p. 350. 59.Ben-Naim, A., Structure-breaking and structure-promoting processes in aqueous solutions. The Journal of Physical Chemistry, 1975. 79(13): p. 1268-1274. 60.Ben-Naim, A., A simple model for demonstrating the relation between solubility, hydrophobic interaction, and structural changes in the solvent. The Journal of Physical Chemistry, 1978. 82(8): p. 874-885. 61.Marcus, Y. and A. Ben‐Naim, A study of the structure of water and its dependence on solutes, based on the isotope effects on solvation thermodynamics in water. The Journal of chemical physics, 1985. 83(9): p. 4744-4759. 62.Mähler, J. and I. Persson, A study of the hydration of the alkali metal ions in aqueous solution. Inorganic Chemistry, 2011. 51(1): p. 425-438. 63.Hofmeister, F., Zur lehre von der wirkung der salze. Naunyn-Schmiedeberg''s Archives of Pharmacology, 1888. 25(1): p. 1-30. 64.Cacace, M., E. Landau, and J. Ramsden, The Hofmeister series: salt and solvent effects on interfacial phenomena. Quarterly reviews of biophysics, 1997. 30(03): p. 241-277. 65.Debye, P.J.W. and E. Hückel, Bemerkungen zu einem Satze über die kataphoretische Wanderungsgeschwindigkeit suspendierter Teilchen. 1924: Hirzel. 66.Onsager, L., Report on a revision of the conductivity theory. Transactions of the Faraday Society, 1927. 23: p. 341-349. 67.Pretlow, T.G., et al., Rate zonal centrifugation in a Ficoll gradient. Analytical biochemistry, 1969. 29(2): p. 230-237. 68.Lam, Y.-F. and G. Kotowycz, Caution concerning the use of sodium 2, 2-dimethyl-2-silapentane-5-sulfonate (DSS) as a reference for proton NMR chemical shift studies. FEBS Letters, 1977. 78(2): p. 181-183. 69.Hayashi, S. and K. Hayamizu, Chemical shift standards in high-resolution solid-state NMR (1) 13C, 29Si, and 1H nuclei. Bulletin of the Chemical Society of Japan, 1991. 64(2): p. 685-687. 70.Bruni, F., et al., Aqueous solutions of divalent chlorides: ions hydration shell and water structure. The Journal of chemical physics, 2012. 136(6): p. 064520. 71.Bloembergen, N., E.M. Purcell, and R.V. Pound, Relaxation effects in nuclear magnetic resonance absorption. Physical review, 1948. 73(7): p. 679.
|