(54.236.58.220) 您好!臺灣時間:2021/03/01 17:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王尹軒
研究生(外文):Yin-Hsuan Wang
論文名稱:在神經母細胞瘤細胞與多能幹細胞中,透過GSKIP/GSK3介導cAMP/PKA磷酸化Tau S409
論文名稱(外文):The cAMP/PKA-mediated Tau S409 phosphorylation through GSKIP/GSK3 axis in SH-SY5Y and iPS cells.
指導教授:洪義人洪義人引用關係
指導教授(外文):Hong Yi-Ren
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:53
中文關鍵詞:人類誘發多能幹細胞Aβ前驅蛋白阿茲海默氏症TauGSK3βGSKIPPKA
外文關鍵詞:PKATauAlzheimer diseaseHuman induced pluripotent stem (iPS) cellsAβ precursor protein (GSK3βGSKIP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
在先前的文獻描述過PKA/GSKIP/GSK3β複合物作為一個平台,用於磷酸化Drp1錨定,影響粒線體動力學以提供神經保護作用。最近,一種已知PKA/GSK3β基底Tau蛋白質已被揭示,在Tau蛋白Ser409的位置上磷酸化與阿茲海默氏症病中的神經元細胞終止有相關。在本研究中,探討PKA/GSKIP/GSK3β複合物介導Tau蛋白磷酸化。我們的數據顯示,在SH-SY5Y的細胞中過度表達GSKIP-WT基因增加了Tau ser409位點的磷酸化(並非S214; S262; S396; S404; T205 和 T212位點),PKA與GSK3β結合的位點(GSKIP V41/L45和L130),表明PKA與GSK3β結合位點與Tau ser409磷酸化位點有相關。而令人注意的是,在SH-SY5Y細胞中過度表達GSKIP-WT這個基因,使用活化劑(Foskion)處理,磷酸化Tau ser409位點表現量增加。然而移除GSK3β會導致Tau s409磷酸化降低,揭示GSKIP和GSK3β都是PKA/GSKIP/GSK3β/Tau複合物的關鍵。此外在SH-SY5Y細胞中表達GSK3β K85R(保留與GSKIP的結合能力)與K85M(喪失與GSKIP結合能力)基因,在表達GSK3β K85R的條件下,Tau ser409位點磷酸化明顯增加,確保GSK3β是作為錨定結合蛋白。綜合起來,我們的數據表明GSKIP和GSK3β作為錨定蛋白,促進cAMP/PKA/Tau複合物信號作用,再者由於文獻指出Protein Kinase會使Tau多個位點磷酸化,因此我進行了In vitro kinase assay實驗,得知兩個結果(1) .這些結果與以前研究的結果相同,PKA確實是可以使Tau Ser409、Ser214、Ser262這三個位置磷酸化。(2) 在PKA Kinase 與GSK3B kinase共同存在的情形下,使PKA構型產生變化,而使PKA磷酸化位點被遮蔽了,而使Tau Ser409這個磷酸位點無法被偵測。 由此結果而更進一步在誘導多能幹細胞中將基因利用CRISPR/Case9方式將帶有APP WT/D678H基因型病人,轉譯成APP WT/D678H、APP WT/WT與APP D678H/D678H、三種,結果顯示在Tau Ser214、Ser262、Ser409這三個磷酸位點在阿茲海默氏症患者腦中磷酸化,特別是Tau Ser409這個位置表現更強烈,而這三個磷酸位點屬於PKA相關,也證實PKA/GSKIP/GSK3β/Tau複合物,在阿茲海默氏症發病過程中,預期扮演一重要角色。
We previously described that PKA/GSKIP/GSK3β complex serves as a platform to anchor and phosphorylate Drp1 affecting mitochondria dynamics to provide neuroprotection. Recently, a known PKA/GSK3β substrate, Tau, has been revealed its S409 phosphorylation is associating with the termination of neuron cells in Alzheimer disease. In this study, we attempt to extend that Tau phosphorylation is also mediated by PKA/GSKIP/GSK3β working complex. Our data showed that GSKIP-WT overexpression in SH-SY5Y cells increased phosphorylation of Tau S409 site (not S214; S262; S396; S404; T205 and T212 sites) over that of PKA- and GSK3β binding-defective mutants (V41/L45 and L130) under forskolin challenge, indicating that both PKA and GSK3β bindings may be associated to phosphorylate Tau at S409 site. Surprisingly, treatment with foskion in GSKIP-WT-overexpressing SH-SY5Y cells were significantly increase Tau phosphorylation at S409, suggesting that only PKA kinase activity, but not GSK3β, is required in the GSKIP-mediated Tau phosphorylation. However, silencing of GSK3β resulted in a dramatic decrease in phosphorylation of Tau S409, revealing both GSKIP and GSK3β are crucial of PKA/GSKIP/GSK3β/Tau complex. Further, overexpressed kinase-dead GSK3β K85R (retains capacity to bind GSKIP) in SH-SY5Y cells, but not K85M (loss of capacity to bind GSKIP), has a higher Tau S409 phosphorylation, ensures that GSK3β acts solely as an anchor binding protein rather than its kinase activity in this signaling axis. Due to previous studies showed several different residues of Tau can be phosphorylated by PKA, we conducted In vitro kinase assay and provided two clear results: (1) As similar to early findings, PKA played a phosphorylation role on Ser409, Ser214 and Ser262 residues of Tau. (2) GSK3β provided a conformational shelter in PKA/GSKIP/GSK3β/Tau complex to harbor Tau Ser409 residue so that PKA is failed to phosphorylate Tau Ser409 residue. Furthermore, by using CRISPR/Cas9 system to produce APP WT/D678H and APP WT/WT 、 APP D678H/D678H multifunctional stem cells (modified from an APP patient WT/D678H genotype), the results of analysis showed phosphorylation in Tau Ser262 and Ser214 residues and the Tau Ser409 intense phosphorylation in the brain of Alzheimer’s patients.. Coupling with previous findings of PKA suggested that the PKA/GSKIP/GSK3β/Tau complex may plays a key role on the development of Alzheimer’s disease. Taken together, our data provide compelling evidence to implicate that both GSKIP and GSK3β function as anchoring proteins to enhance cAMP/PKA/Tau axis signaling during Alzheimer pathogenesis.
致謝 ……………………………………………………. ……… i
中文摘要 ………………………………………………………. ii
英文摘要………………………………………..……………… iv
英文縮寫表…………………………………………………….. vi
一、前言 ……………………………………………………….... 1
二、目的 ………………………………………………………… 5
三、材料與方法 ………………………………………………… 6
四、結果 …………………………………………………………17
五、討論 ……………………………………………..................21
六、文獻 ……………………………………………....................23
七、圖表 ……………………………………………........... …...25
八、附錄 ……………………………………………........ ….......30
1.Loh, J.K., et al., GSKIP- and GSK3-mediated anchoring strengthens cAMP/PKA/Drp1 axis signaling in the regulation of mitochondrial elongation. Biochim Biophys Acta, 2015. 1853(8): p. 1796-807.
2.Sztriha, L., Z.S. Boti, and J. Ormos, Histochemical examination of lysosomal exzymes in necrotic proximal renal tubules of albino rats. Br J Exp Pathol, 1975. 56(6): p. 495-501.
3.Kolarova, M., et al., Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimers Dis, 2012. 2012: p. 731526.
4.Simic, G., et al., Tau Protein Hyperphosphorylation and Aggregation in Alzheimer''s Disease and Other Tauopathies, and Possible Neuroprotective Strategies. Biomolecules, 2016. 6(1): p. 6.
5.Chen, Q., et al., The cellular distribution and Ser262 phosphorylation of tau protein are regulated by BDNF in vitro. PLoS One, 2014. 9(3): p. e91793.
6.Buee, L., et al., Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev, 2000. 33(1): p. 95-130.
7.Shahani, N. and R. Brandt, Functions and malfunctions of the tau proteins. Cell Mol Life Sci, 2002. 59(10): p. 1668-80.
8.Wilhelmsen, K.C., The tangled biology of tau. Proc Natl Acad Sci U S A, 1999. 96(13): p. 7120-1.
9.Goedert, M., Tau protein and neurodegeneration. Semin Cell Dev Biol, 2004. 15(1): p. 45-9.
10.Martin, L., X. Latypova, and F. Terro, Post-translational modifications of tau protein: implications for Alzheimer''s disease. Neurochem Int, 2011. 58(4): p. 458-71.
11.Cohen, P. and S. Frame, The renaissance of GSK3. Nat Rev Mol Cell Biol, 2001. 2(10): p. 769-76.
12.Billingsley, M.L. and R.L. Kincaid, Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J, 1997. 323 ( Pt 3): p. 577-91.
13.Imahori, K., et al., Possible role of tau protein kinases in pathogenesis of Alzheimer''s disease. Neurobiol Aging, 1998. 19(1 Suppl): p. S93-8.
14.Ali, A., K.P. Hoeflich, and J.R. Woodgett, Glycogen synthase kinase-3: properties, functions, and regulation. Chem Rev, 2001. 101(8): p. 2527-40.
15.Grimes, C.A. and R.S. Jope, The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol, 2001. 65(4): p. 391-426.
16.Iqbal, K., et al., Alzheimer paired helical filaments. Restoration of the biological activity by dephosphorylation. FEBS Lett, 1994. 349(1): p. 104-8.
17.Stambolic, V. and J.R. Woodgett, Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J, 1994. 303 ( Pt 3): p. 701-4.
18.Wang, J.Z., I. Grundke-Iqbal, and K. Iqbal, Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci, 2007. 25(1): p. 59-68.
19.Qureshi, H.Y., et al., Overexpression of 14-3-3z promotes tau phosphorylation at Ser262 and accelerates proteosomal degradation of synaptophysin in rat primary hippocampal neurons. PLoS One, 2013. 8(12): p. e84615.
20.Zhu, B., et al., Protein kinase A phosphorylation of tau-serine 214 reorganizes microtubules and disrupts the endothelial cell barrier. Am J Physiol Lung Cell Mol Physiol, 2010. 299(4): p. L493-501.
21.Lin, C.C., et al., GSKIP, an inhibitor of GSK3beta, mediates the N-cadherin/beta-catenin pool in the differentiation of SH-SY5Y cells. J Cell Biochem, 2009. 108(6): p. 1325-36.
22.Liu, F., et al., PKA modulates GSK-3beta- and cdk5-catalyzed phosphorylation of tau in site- and kinase-specific manners. FEBS Lett, 2006. 580(26): p. 6269-74.
23.O''Brien, R.J. and P.C. Wong, Amyloid precursor protein processing and Alzheimer''s disease. Annu Rev Neurosci, 2011. 34: p. 185-204.
24.Chen, W.T., et al., Amyloid-beta (Abeta) D7H mutation increases oligomeric Abeta42 and alters properties of Abeta-zinc/copper assemblies. PLoS One, 2012. 7(4): p. e35807.
25.Seward, M.E., et al., Amyloid-beta signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer''s disease. J Cell Sci, 2013. 126(Pt 5): p. 1278-86.
26.Woods, J., M. Snape, and M.A. Smith, The cell cycle hypothesis of Alzheimer''s disease: suggestions for drug development. Biochim Biophys Acta, 2007. 1772(4): p. 503-8.

27. Virginia M-Y Lee,1 Michel Goedert,2 NEURODEGENERATIVE
TAUOPATHIES Annu. Rev. Neurosci. 2001. 24:1121–159 Copyright°c
2001 by Annual Reviews. All rights reserved
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔