|
1.Ulug U, Ben-Shlomo I, Turan E, Erden HF, Akman MA, Bahceci M. Conception rates following assisted reproduction in poor responder patients: a retrospective study in 300 consecutive cycles. Reproductive biomedicine online 2003;6:439-43. 2.Saldeen P, Kallen K, Sundstrom P. The probability of successful IVF outcome after poor ovarian response. Acta obstetricia et gynecologica Scandinavica 2007;86:457-61. 3.Garcia JE, Jones GS, Acosta AA, Wright G, Jr. Human menopausal gonadotropin/human chorionic gonadotropin follicular maturation for oocyte aspiration: phase II, 1981. Fertility and sterility 1983;39:174-9. 4.Surrey ES, Schoolcraft WB. Evaluating strategies for improving ovarian response of the poor responder undergoing assisted reproductive techniques. Fertility and sterility 2000;73:667-76. 5.Kamble L, Gudi A, Shah A, Homburg R. Poor responders to controlled ovarian hyperstimulation for in vitro fertilisation (IVF). Human fertility (Cambridge, England) 2011;14:230-45. 6.Polyzos NP, Devroey P. A systematic review of randomized trials for the treatment of poor ovarian responders: is there any light at the end of the tunnel? Fertility and sterility 2011;96:1058-61.e7. 7.Loutradis D, Vomvolaki E, Drakakis P. Poor responder protocols for in-vitro fertilization: options and results. Current opinion in obstetrics & gynecology 2008;20:374-8. 8.Tarlatzis BC, Zepiridis L, Grimbizis G, Bontis J. Clinical management of low ovarian response to stimulation for IVF: a systematic review. Human reproduction update 2003;9:61-76. 9.Ferraretti AP, La Marca A, Fauser BC, Tarlatzis B, Nargund G, Gianaroli L. ESHRE consensus on the definition of ''poor response'' to ovarian stimulation for in vitro fertilization: the Bologna criteria. Human reproduction 2011;26:1616-24. 10.Yang S, Chen X, Zhen X, et al. The Prognosis of IVF in Poor Responders Depending on the Bologna Criteria: A Large Sample Retrospective Study from China. BioMed research international 2015;2015:296173. 11.Younis JS, Ben-Ami M, Ben-Shlomo I. The Bologna criteria for poor ovarian response: a contemporary critical appraisal. Journal of ovarian research 2015;8:76. 12.Busnelli A, Papaleo E, Del Prato D, et al. A retrospective evaluation of prognosis and cost-effectiveness of IVF in poor responders according to the Bologna criteria. Human reproduction 2015;30:315-22. 13.La Marca A, Grisendi V, Giulini S, et al. Live birth rates in the different combinations of the Bologna criteria poor ovarian responders: a validation study. Journal of assisted reproduction and genetics 2015;32:931-7. 14.Alviggi C, Andersen CY, Buehler K, et al. A new more detailed stratification of low responders to ovarian stimulation: from a poor ovarian response to a low prognosis concept. Fertility and sterility 2016;105:1452-3. 15.Polyzos NP, Nwoye M, Corona R, et al. Live birth rates in Bologna poor responders treated with ovarian stimulation for IVF/ICSI. Reproductive biomedicine online 2014;28:469-74. 16.Pandian Z, McTavish AR, Aucott L, Hamilton MP, Bhattacharya S. Interventions for ''poor responders'' to controlled ovarian hyper stimulation (COH) in in-vitro fertilisation (IVF). The Cochrane database of systematic reviews 2010:Cd004379. 17.Hu L, Bu Z, Guo Y, Su Y, Zhai J, Sun Y. Comparison of different ovarian hyperstimulation protocols efficacy in poor ovarian responders according to the Bologna criteria. International journal of clinical and experimental medicine 2014;7:1128-34. 18.Song D, Shi Y, Zhong Y, Meng Q, Hou S, Li H. Efficiency of mild ovarian stimulation with clomiphene on poor ovarian responders during IVFICSI procedures: a meta-analysis. European journal of obstetrics, gynecology, and reproductive biology 2016;204:36-43. 19.Li Y, Yang W, Chen X, Li L, Zhang Q, Yang D. Comparison between follicular stimulation and luteal stimulation protocols with clomiphene and HMG in women with poor ovarian response. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology 2016;32:74-7. 20.Kuang Y, Chen Q, Hong Q, et al. Double stimulations during the follicular and luteal phases of poor responders in IVF/ICSI programmes (Shanghai protocol). Reproductive biomedicine online 2014;29:684-91. 21.Luo S, Li S, Li X, Qin L, Jin S. Effect of pretreatment with transdermal testosterone on poor ovarian responders undergoing IVF/ICSI: A meta-analysis. Experimental and therapeutic medicine 2014;8:187-94. 22.Bosdou JK, Venetis CA, Dafopoulos K, et al. Transdermal testosterone pretreatment in poor responders undergoing ICSI: a randomized clinical trial. Human reproduction 2016;31:977-85. 23.Li J, Yuan H, Chen Y, Wu H, Wu H, Li L. A meta-analysis of dehydroepiandrosterone supplementation among women with diminished ovarian reserve undergoing in vitro fertilization or intracytoplasmic sperm injection. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics 2015;131:240-5. 24.Nagels HE, Rishworth JR, Siristatidis CS, Kroon B. Androgens (dehydroepiandrosterone or testosterone) for women undergoing assisted reproduction. The Cochrane database of systematic reviews 2015;11:Cd009749. 25.Zhang M, Niu W, Wang Y, et al. Dehydroepiandrosterone treatment in women with poor ovarian response undergoing IVF or ICSI: a systematic review and meta-analysis. Journal of assisted reproduction and genetics 2016;33:981-91. 26.Bosch E, Labarta E, Kolibianakis E, Rosen M, Meldrum D. Regimen of ovarian stimulation affects oocyte and therefore embryo quality. Fertility and sterility 2016;105:560-70. 27.Duffy JM, Ahmad G, Mohiyiddeen L, Nardo LG, Watson A. Growth hormone for in vitro fertilization. The Cochrane database of systematic reviews 2010:CD000099. 28.Lehert P, Kolibianakis EM, Venetis CA, et al. Recombinant human follicle-stimulating hormone (r-hFSH) plus recombinant luteinizing hormone versus r-hFSH alone for ovarian stimulation during assisted reproductive technology: systematic review and meta-analysis. Reproductive biology and endocrinology : RB&E 2014;12:17. 29.Labrie F. All sex steroids are made intracellularly in peripheral tissues by the mechanisms of intracrinology after menopause. The Journal of steroid biochemistry and molecular biology 2014. 30.Labrie F, Martel C, Belanger A, Pelletier G. Androgens in women are essentially made from DHEA in each peripheral tissue according to intracrinology. The Journal of steroid biochemistry and molecular biology 2017. 31.Kroboth PD, Salek FS, Pittenger AL, Fabian TJ, Frye RF. DHEA and DHEA-S: a review. Journal of clinical pharmacology 1999;39:327-48. 32.Panjari M, Davis SR. DHEA therapy for women: effect on sexual function and wellbeing. Human reproduction update 2007;13:239-48. 33.Labrie F, Luu-The V, Belanger A, et al. Is dehydroepiandrosterone a hormone? The Journal of endocrinology 2005;187:169-96. 34.Prizant H, Gleicher N, Sen A. Androgen actions in the ovary: balance is key. Journal of Endocrinology 2014;222:R141-R51. 35.Walters KA, Allan CM, Handelsman DJ. Androgen actions and the ovary. Biol Reprod 2008;78:380-9. 36.Alexaki VI, Charalampopoulos I, Panayotopoulou M, Kampa M, Gravanis A, Castanas E. Dehydroepiandrosterone protects human keratinocytes against apoptosis through membrane binding sites. Experimental cell research 2009;315:2275-83. 37.Liu D, Si H, Reynolds KA, Zhen W, Jia Z, Dillon JS. Dehydroepiandrosterone protects vascular endothelial cells against apoptosis through a Galphai protein-dependent activation of phosphatidylinositol 3-kinase/Akt and regulation of antiapoptotic Bcl-2 expression. Endocrinology 2007;148:3068-76. 38.Charalampopoulos I, Tsatsanis C, Dermitzaki E, et al. Dehydroepiandrosterone and allopregnanolone protect sympathoadrenal medulla cells against apoptosis via antiapoptotic Bcl-2 proteins. Proc Natl Acad Sci U S A 2004;101:8209-14. 39.Tsui KH, Lin LT, Horng HC, et al. Gene expression of cumulus cells in women with poor ovarian response after dehydroepiandrosterone supplementation. Taiwan J Obstet Gynecol 2014;53:559-65. 40.Labrie F, Archer DF, Koltun W, et al. Efficacy of intravaginal dehydroepiandrosterone (DHEA) on moderate to severe dyspareunia and vaginal dryness, symptoms of vulvovaginal atrophy, and of the genitourinary syndrome of menopause. Menopause 2016;23:243-56. 41.Archer DF. Dehydroepiandrosterone intra vaginal administration for the management of postmenopausal vulvovaginal atrophy. The Journal of steroid biochemistry and molecular biology 2015;145:139-43. 42.Casson PR, Lindsay MS, Pisarska MD, Carson SA, Buster JE. Dehydroepiandrosterone supplementation augments ovarian stimulation in poor responders: a case series. Human reproduction 2000;15:2129-32. 43.Barad DH, Gleicher N. Increased oocyte production after treatment with dehydroepiandrosterone. Fertility and sterility 2005;84:756. 44.Lin LT, Tsui KH, Wang PH. Clinical application of dehydroepiandrosterone in reproduction: A review of the evidence. Journal of the Chinese Medical Association : JCMA 2015;78:446-53. 45.Zhang HH, Xu PY, Wu J, et al. Dehydroepiandrosterone improves follicular fluid bone morphogenetic protein-15 and accumulated embryo score of infertility patients with diminished ovarian reserve undergoing in vitro fertilization: a randomized controlled trial. Journal of ovarian research 2014;7:93. 46.Xu B, Li Z, Yue J, et al. Effect of dehydroepiandrosterone administration in patients with poor ovarian response according to the Bologna criteria. PloS one 2014;9:e99858. 47.Vlahos N, Papalouka M, Triantafyllidou O, et al. Dehydroepiandrosterone administration before IVF in poor responders: a prospective cohort study. Reproductive biomedicine online 2015;30:191-6. 48.Tsui KH, Lin LT, Chang R, Huang BS, Cheng JT, Wang PH. Effects of dehydroepiandrosterone supplementation on women with poor ovarian response: A preliminary report and review. Taiwan J Obstet Gynecol 2015;54:131-6. 49.Mamas L, Mamas E. Premature ovarian failure and dehydroepiandrosterone. Fertility and sterility 2009;91:644-6. 50.Yeung TW, Li RH, Lee VC, Ho PC, Ng EH. A randomized double-blinded placebo-controlled trial on the effect of dehydroepiandrosterone for 16 weeks on ovarian response markers in women with primary ovarian insufficiency. The Journal of clinical endocrinology and metabolism 2013;98:380-8. 51.Tartagni M, Cicinelli MV, Baldini D, et al. Dehydroepiandrosterone decreases the age-related decline of the in vitro fertilization outcome in women younger than 40 years old. Reproductive biology and endocrinology : RB&E 2015;13:18. 52.Yeung T, Chai J, Li R, Lee V, Ho PC, Ng E. A double-blind randomised controlled trial on the effect of dehydroepiandrosterone on ovarian reserve markers, ovarian response and number of oocytes in anticipated normal ovarian responders. BJOG 2015. 53.Gleicher N, Weghofer A, Barad DH. Dehydroepiandrosterone (DHEA) reduces embryo aneuploidy: direct evidence from preimplantation genetic screening (PGS). Reproductive biology and endocrinology : RB&E 2010;8:140. 54.Yilmaz N, Uygur D, Inal H, Gorkem U, Cicek N, Mollamahmutoglu L. Dehydroepiandrosterone supplementation improves predictive markers for diminished ovarian reserve: serum AMH, inhibin B and antral follicle count. European journal of obstetrics, gynecology, and reproductive biology 2013;169:257-60. 55.Key TJ, Appleby PN, Reeves GK, et al. Sex hormones and risk of breast cancer in premenopausal women: a collaborative reanalysis of individual participant data from seven prospective studies. The Lancet. Oncology 2013;14:1009-19. 56.Folkerd E, Dowsett M. Sex hormones and breast cancer risk and prognosis. Breast (Edinburgh, Scotland) 2013;22 Suppl 2:S38-43. 57.Brown SB, Hankinson SE. Endogenous estrogens and the risk of breast, endometrial, and ovarian cancers. Steroids 2015;99:8-10. 58.Fragouli E, Lalioti MD, Wells D. The transcriptome of follicular cells: biological insights and clinical implications for the treatment of infertility. Human reproduction update 2014;20:1-11. 59.Uyar A, Torrealday S, Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertility and sterility 2013;99:979-97. 60.Zuccotti M, Merico V, Cecconi S, Redi CA, Garagna S. What does it take to make a developmentally competent mammalian egg? Human reproduction update 2011;17:525-40. 61.Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D. Gene expression in human cumulus cells: one approach to oocyte competence. Human reproduction 2007;22:3069-77. 62.Hasegawa J, Yanaihara A, Iwasaki S, Mitsukawa K, Negishi M, Okai T. Reduction of connexin 43 in human cumulus cells yields good embryo competence during ICSI. Journal of assisted reproduction and genetics 2007;24:463-6. 63.Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 2010;139:685-95. 64.Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction 2001;122:829-38. 65.Tanghe S, Van Soom A, Nauwynck H, Coryn M, de Kruif A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Molecular reproduction and development 2002;61:414-24. 66.Russell DL, Salustri A. Extracellular matrix of the cumulus-oocyte complex. Seminars in reproductive medicine 2006;24:217-27. 67.Barrett SL, Albertini DF. Cumulus cell contact during oocyte maturation in mice regulates meiotic spindle positioning and enhances developmental competence. Journal of assisted reproduction and genetics 2010;27:29-39. 68.Wathlet S, Adriaenssens T, Segers I, et al. Cumulus cell gene expression predicts better cleavage-stage embryo or blastocyst development and pregnancy for ICSI patients. Human reproduction 2011;26:1035-51. 69.Cillo F, Brevini TA, Antonini S, Paffoni A, Ragni G, Gandolfi F. Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction 2007;134:645-50. 70.Adriaenssens T, Wathlet S, Segers I, et al. Cumulus cell gene expression is associated with oocyte developmental quality and influenced by patient and treatment characteristics. Human reproduction 2010;25:1259-70. 71.Anderson RA, Sciorio R, Kinnell H, et al. Cumulus gene expression as a predictor of human oocyte fertilisation, embryo development and competence to establish a pregnancy. Reproduction 2009;138:629-37. 72.Fragouli E, Wells D, Iager AE, Kayisli UA, Patrizio P. Alteration of gene expression in human cumulus cells as a potential indicator of oocyte aneuploidy. Human reproduction 2012;27:2559-68. 73.Feuerstein P, Puard V, Chevalier C, et al. Genomic assessment of human cumulus cell marker genes as predictors of oocyte developmental competence: impact of various experimental factors. PloS one 2012;7:e40449. 74.Li SH, Lin MH, Hwu YM, et al. Correlation of cumulus gene expression of GJA1, PRSS35, PTX3, and SERPINE2 with oocyte maturation, fertilization, and embryo development. Reproductive biology and endocrinology : RB&E 2015;13:93. 75.McKenzie LJ, Pangas SA, Carson SA, et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Human reproduction 2004;19:2869-74. 76.Assou S, Haouzi D, Mahmoud K, et al. A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Molecular human reproduction 2008;14:711-9. 77.van Montfoort AP, Geraedts JP, Dumoulin JC, Stassen AP, Evers JL, Ayoubi TA. Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: a microarray analysis. Molecular human reproduction 2008;14:157-68. 78.Gebhardt KM, Feil DK, Dunning KR, Lane M, Russell DL. Human cumulus cell gene expression as a biomarker of pregnancy outcome after single embryo transfer. Fertility and sterility 2011;96:47-52 e2. 79.Iager AE, Kocabas AM, Otu HH, et al. Identification of a novel gene set in human cumulus cells predictive of an oocyte''s pregnancy potential. Fertility and sterility 2013;99:745-52 e6. 80.Wathlet S, Adriaenssens T, Segers I, et al. New candidate genes to predict pregnancy outcome in single embryo transfer cycles when using cumulus cell gene expression. Fertility and sterility 2012;98:432-9 e1-4. 81.Wathlet S, Adriaenssens T, Segers I, et al. Pregnancy prediction in single embryo transfer cycles after ICSI using QPCR: validation in oocytes from the same cohort. PloS one 2013;8:e54226. 82.Kordus RJ, LaVoie HA. Granulosa cell biomarkers to predict pregnancy in ART: pieces to solve the puzzle. Reproduction 2017;153:R69-r83. 83.Birkinshaw RW, Czabotar PE. The BCL-2 family of proteins and mitochondrial outer membrane permeabilisation. Seminars in cell & developmental biology 2017. 84.Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nature reviews. Molecular cell biology 2008;9:47-59. 85.Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nature reviews. Molecular cell biology 2008;9:231-41. 86.Xiong S, Mu T, Wang G, Jiang X. Mitochondria-mediated apoptosis in mammals. Protein & cell 2014;5:737-49. 87.Hussein MR. Apoptosis in the ovary: molecular mechanisms. Human reproduction update 2005;11:162-77. 88.Nandedkar TD, Dharma SJ. Expression of bcl(xs) and c-myc in atretic follicles of mouse ovary. Reproductive biomedicine online 2001;3:221-25. 89.Van Nassauw L, Tao L, Harrisson F. Distribution of apoptosis-related proteins in the quail ovary during folliculogenesis: BCL-2, BAX and CPP32. Acta histochemica 1999;101:103-12. 90.Sugino N, Suzuki T, Kashida S, Karube A, Takiguchi S, Kato H. Expression of Bcl-2 and Bax in the human corpus luteum during the menstrual cycle and in early pregnancy: regulation by human chorionic gonadotropin. The Journal of clinical endocrinology and metabolism 2000;85:4379-86. 91.Roy MJ, Vom A, Czabotar PE, Lessene G. Cell death and the mitochondria: therapeutic targeting of the BCL-2 family-driven pathway. British journal of pharmacology 2014;171:1973-87. 92.Collins TJ, Berridge MJ, Lipp P, Bootman MD. Mitochondria are morphologically and functionally heterogeneous within cells. The EMBO journal 2002;21:1616-27. 93.Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A. Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Human reproduction update 2009;15:553-72. 94.Saki M, Prakash A. DNA damage related crosstalk between the nucleus and mitochondria. Free radical biology & medicine 2016. 95.St John JC, Facucho-Oliveira J, Jiang Y, Kelly R, Salah R. Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Human reproduction update 2010;16:488-509. 96.Li X, Fang P, Yang WY, et al. Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells. Canadian journal of physiology and pharmacology 2017;95:247-52. 97.May-Panloup P, Boucret L, Chao de la Barca JM, et al. Ovarian ageing: the role of mitochondria in oocytes and follicles. Human reproduction update 2016;22:725-43. 98.Sun QY, Wu GM, Lai L, et al. Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction 2001;122:155-63. 99.Lynch M, Koskella B, Schaack S. Mutation pressure and the evolution of organelle genomic architecture. Science (New York, N.Y.) 2006;311:1727-30. 100.Jansen RP, de Boer K. The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Molecular and cellular endocrinology 1998;145:81-8. 101.Steffann J, Monnot S, Bonnefont JP. mtDNA mutations variously impact mtDNA maintenance throughout the human embryofetal development. Clin Genet 2015;88:416-24. 102.Cummins JM. Mitochondria: potential roles in embryogenesis and nucleocytoplasmic transfer. Human reproduction update 2001;7:217-28. 103.Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 2011;11:797-813. 104.Ferraretti AP, La Marca A, Fauser BC, et al. ESHRE consensus on the definition of ''poor response'' to ovarian stimulation for in vitro fertilization: the Bologna criteria. Human reproduction 2011;26:1616-24. 105.The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Human reproduction 2011;26:1270-83. 106.Campbell CT, Kolesar JE, Kaufman BA. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta 2012;1819:921-9. 107.Yang Y, Sun X, Cui L, et al. Younger poor ovarian response women achieved better pregnancy results in the first three IVF cycles. Reproductive biomedicine online 2016;32:532-7. 108.Wiser A, Gonen O, Ghetler Y, Shavit T, Berkovitz A, Shulman A. Addition of dehydroepiandrosterone (DHEA) for poor-responder patients before and during IVF treatment improves the pregnancy rate: a randomized prospective study. Human reproduction 2010;25:2496-500. 109.Singh N, Zangmo R, Kumar S, et al. A prospective study on role of dehydroepiandrosterone (DHEA) on improving the ovarian reserve markers in infertile patients with poor ovarian reserve. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology 2013;29:989-92. 110.Sonmezer M, Ozmen B, Cil AP, et al. Dehydroepiandrosterone supplementation improves ovarian response and cycle outcome in poor responders. Reproductive biomedicine online 2009;19:508-13. 111.Zangmo R, Singh N, Kumar S, Vanamail P, Tiwari A. Role of dehydroepiandrosterone in improving oocyte and embryo quality in IVF cycles. Reproductive biomedicine online 2014. 112.Barad D, Brill H, Gleicher N. Update on the use of dehydroepiandrosterone supplementation among women with diminished ovarian function. Journal of assisted reproduction and genetics 2007;24:629-34. 113.Barad D, Gleicher N. Effect of dehydroepiandrosterone on oocyte and embryo yields, embryo grade and cell number in IVF. Human reproduction 2006;21:2845-9. 114.Gleicher N, Barad DH. Dehydroepiandrosterone (DHEA) supplementation in diminished ovarian reserve (DOR). Reproductive biology and endocrinology : RB&E 2011;9:67. 115.Gleicher N, Weghofer A, Barad DH. Improvement in diminished ovarian reserve after dehydroepiandrosterone supplementation. Reproductive biomedicine online 2010;21:360-5. 116.Ding X, Wang D, Li L, Ma H. Dehydroepiandrosterone ameliorates H2O2-induced Leydig cells oxidation damage and apoptosis through inhibition of ROS production and activation of PI3K/Akt pathways. The international journal of biochemistry & cell biology 2016;70:126-39. 117.Host E, Gabrielsen A, Lindenberg S, Smidt-Jensen S. Apoptosis in human cumulus cells in relation to zona pellucida thickness variation, maturation stage, and cleavage of the corresponding oocyte after intracytoplasmic sperm injection. Fertility and sterility 2002;77:511-5. 118.Corn CM, Hauser-Kronberger C, Moser M, Tews G, Ebner T. Predictive value of cumulus cell apoptosis with regard to blastocyst development of corresponding gametes. Fertility and sterility 2005;84:627-33. 119.Diaz-Fontdevila M, Pommer R, Smith R. Cumulus cell apoptosis changes with exposure to spermatozoa and pathologies involved in infertility. Fertility and sterility 2009;91:2061-8. 120.Lee KS, Joo BS, Na YJ, Yoon MS, Choi OH, Kim WW. Cumulus cells apoptosis as an indicator to predict the quality of oocytes and the outcome of IVF-ET. Journal of assisted reproduction and genetics 2001;18:490-8. 121.Bencomo E, Perez R, Arteaga MF, et al. Apoptosis of cultured granulosa-lutein cells is reduced by insulin-like growth factor I and may correlate with embryo fragmentation and pregnancy rate. Fertility and sterility 2006;85:474-80. 122.Patel MA, Katyare SS. Effect of dehydroepiandrosterone (DHEA) treatment on oxidative energy metabolism in rat liver and brain mitochondria. A dose-response study. Clinical biochemistry 2007;40:57-65. 123.Patel MA, Katyare SS. Treatment with dehydroepiandrosterone (DHEA) stimulates oxidative energy metabolism in the cerebral mitochondria. A comparative study of effects in old and young adult rats. Neuroscience letters 2006;402:131-6. 124.Au HK, Yeh TS, Kao SH, Tzeng CR, Hsieh RH. Abnormal mitochondrial structure in human unfertilized oocytes and arrested embryos. Ann N Y Acad Sci 2005;1042:177-85. 125.Hsieh RH, Au HK, Yeh TS, Chang SJ, Cheng YF, Tzeng CR. Decreased expression of mitochondrial genes in human unfertilized oocytes and arrested embryos. Fertility and sterility 2004;81 Suppl 1:912-8. 126.Santos TA, El Shourbagy S, St John JC. Mitochondrial content reflects oocyte variability and fertilization outcome. Fertility and sterility 2006;85:584-91. 127.Zeng HT, Ren Z, Yeung WS, et al. Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in in vitro matured human oocytes. Human reproduction 2007;22:1681-6. 128.Boucret L, Chao de la Barca JM, Moriniere C, et al. Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Human reproduction 2015;30:1653-64. 129.Ogino M, Tsubamoto H, Sakata K, et al. Mitochondrial DNA copy number in cumulus cells is a strong predictor of obtaining good-quality embryos after IVF. Journal of assisted reproduction and genetics 2016;33:367-71. 130.Tsai HD, Hsieh YY, Hsieh JN, et al. Mitochondria DNA deletion and copy numbers of cumulus cells associated with in vitro fertilization outcomes. The Journal of reproductive medicine 2010;55:491-7. 131.Hsieh RH, Tsai NM, Au HK, Chang SJ, Wei YH, Tzeng CR. Multiple rearrangements of mitochondrial DNA in unfertilized human oocytes. Fertility and sterility 2002;77:1012-7.
|