|
1.Jemal, A., et al., Global cancer statistics. CA: a cancer journal for clinicians, 2011. 61(2): p. 69-90. 2.Ye, N., et al., Functional roles of long non-coding RNA in human breast cancer. Asian Pacific Journal of Cancer Prevention, 2014. 15(15): p. 5993-5997. 3.Cai, Y., J. He, and D. Zhang, Long noncoding RNA CCAT2 promotes breast tumor growth by regulating the Wnt signaling pathway. OncoTargets & Therapy, 2015. 8. 4.Gibb, E.A., C.J. Brown, and W.L. Lam, The functional role of long non-coding RNA in human carcinomas. Molecular cancer, 2011. 10(1): p. 38. 5.Zhang, H., et al., Long non-coding RNA: a new player in cancer. Journal of hematology & oncology, 2013. 6(1): p. 37. 6.Jia, H., et al., Genome-wide computational identification and manual annotation of human long noncoding RNA genes. Rna, 2010. 16(8): p. 1478-1487. 7.Dey, B.K., A.C. Mueller, and A. Dutta, Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription, 2014. 5(4): p. e944014. 8.Schmitz, S.U., P. Grote, and B.G. Herrmann, Mechanisms of long noncoding RNA function in development and disease. Cellular and Molecular Life Sciences, 2016. 73(13): p. 2491-2509. 9.Ponting, C.P., P.L. Oliver, and W. Reik, Evolution and functions of long noncoding RNAs. Cell, 2009. 136(4): p. 629-641. 10.Hauptman, N. and D. Glavač, Long non-coding RNA in cancer. International journal of molecular sciences, 2013. 14(3): p. 4655-4669. 11.Derrien, T., et al., The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome research, 2012. 22(9): p. 1775-1789. 12.Wilusz, J.E., H. Sunwoo, and D.L. Spector, Long noncoding RNAs: functional surprises from the RNA world. Genes & development, 2009. 23(13): p. 1494-1504. 13.Gibb, E.A., et al., Human cancer long non-coding RNA transcriptomes. PloS one, 2011. 6(10): p. e25915. 14.Prensner, J.R. and A.M. Chinnaiyan, The emergence of lncRNAs in cancer biology. Cancer discovery, 2011. 1(5): p. 391-407. 15.Qi, P. and X. Du, The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Modern Pathology, 2013. 26(2): p. 155-165. 16.Rinn, J.L., et al., Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 2007. 129(7): p. 1311-1323. 17.Tsai, M.-C., et al., Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010. 329(5992): p. 689-693. 18.Gupta, R.A., et al., Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010. 464(7291): p. 1071-1076. 19.Zhou, Y., X. Zhang, and A. Klibanski, MEG3 noncoding RNA: a tumor suppressor. Journal of molecular endocrinology, 2012. 48(3): p. R45-R53. 20.Ling, H., et al., CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome research, 2013. 23(9): p. 1446-1461. 21.Schneider, C., R.M. King, and L. Philipson, Genes specifically expressed at growth arrest of mammalian cells. Cell, 1988. 54(6): p. 787-793. 22.Mourtada-Maarabouni, M., et al., GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene, 2009. 28(2): p. 195-208. 23.Chan, S., et al., MicroRNA-149 targets GIT1 to suppress integrin signaling and breast cancer metastasis. Oncogene, 2014. 33(36): p. 4496-4507. 24.Li, Y., et al., Epithelial–mesenchymal transition markers expressed in circulating tumor cells in hepatocellular carcinoma patients with different stages of disease. Cell death & disease, 2013. 4(10): p. e831. 25.Chen, L.-L., Linking Long Noncoding RNA Localization and Function. Trends in Biochemical Sciences, 2016. 41(9): p. 761-772. 26.Chen, L.-L. and G.G. Carmichael, Decoding the function of nuclear long non-coding RNAs. Current opinion in cell biology, 2010. 22(3): p. 357-364. 27.Jeffrey, P.D., et al., Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature, 1995. 376(6538): p. 313. 28.Coqueret, O., New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends in cell biology, 2003. 13(2): p. 65-70. 29.Pacek, M., T.A. Prokhorova, and J.C. Walter, Cdk1: unsung hero of S phase? Cell Cycle, 2004. 3(4): p. 399-401. 30.Gavet, O. and J. Pines, Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Developmental cell, 2010. 18(4): p. 533-543. 31.Westrate, L.M., et al., Persistent mitochondrial hyperfusion promotes G2/M accumulation and caspase-dependent cell death. PloS one, 2014. 9(3): p. e91911. 32.Bray, F., et al., Global estimates of cancer prevalence for 27 sites in the adult population in 2008. International journal of cancer, 2013. 132(5): p. 1133-1145. 33.Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2016. CA: a cancer journal for clinicians, 2016. 66(1): p. 7-30. 34.Schmitt, A.M. and H.Y. Chang, Long noncoding RNAs in cancer pathways. Cancer Cell, 2016. 29(4): p. 452-463. 35.Wapinski, O. and H.Y. Chang, Long noncoding RNAs and human disease. Trends in cell biology, 2011. 21(6): p. 354-361. 36.Mourtada-Maarabouni, M., et al., Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). Journal of cell science, 2008. 121(7): p. 939-946. 37.Adriaenssens, E., et al., H19 overexpression in breast adenocarcinoma stromal cells is associated with tumor values and steroid receptor status but independent of p53 and Ki-67 expression. The American journal of pathology, 1998. 153(5): p. 1597-1607. 38.Loi, S., et al., Definition of clinically distinct molecular subtypes in estrogen receptor–positive breast carcinomas through genomic grade. Journal of clinical oncology, 2007. 25(10): p. 1239-1246. 39.Silva, J.M., et al., LSINCT5 is over expressed in breast and ovarian cancer and affects cellular proliferation. RNA biology, 2011. 8(3): p. 496-505. 40.Wang, F., et al., UCA1, a non‐protein‐coding RNA up‐regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS letters, 2008. 582(13): p. 1919-1927. 41.Benoît, M.-H., et al., Global analysis of chromosome X gene expression in primary cultures of normal ovarian surface epithelial cells and epithelial ovarian cancer cell lines. International journal of oncology, 2007. 30(1): p. 5-18. 42.Godinho, M., et al., Characterization of BCAR4, a novel oncogene causing endocrine resistance in human breast cancer cells. Journal of cellular physiology, 2011. 226(7): p. 1741-1749. 43.Yang, L., et al., High Expression of LINC01420 indicates an unfavorable prognosis and modulates cell migration and invasion in nasopharyngeal carcinoma. Journal of Cancer, 2017. 8(1): p. 97. 44.Kawakami, T., et al., Characterization of loss-of-inactive X in Klinefelter syndrome and female-derived cancer cells. Oncogene, 2004. 23(36): p. 6163-6169. 45.Ren, C., et al., Functions and mechanisms of long noncoding RNAs in ovarian cancer. International journal of gynecological cancer, 2015. 25(4): p. 566-569. 46.Tantai, J., et al., Combined identification of long non-coding RNA XIST and HIF1A-AS1 in serum as an effective screening for non-small cell lung cancer. International journal of clinical and experimental pathology, 2015. 8(7): p. 7887. 47.Yao, Y., et al., Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152. Cancer letters, 2015. 359(1): p. 75-86. 48.Zhu, Z., et al., Discovery of a novel genetic susceptibility locus on X chromosome for systemic lupus erythematosus. Arthritis research & therapy, 2015. 17(1): p. 349. 49.Brooks, W.H. and Y. Renaudineau, Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus. Frontiers in genetics, 2015. 6: p. 22. 50.Toren, P. and A. Zoubeidi, Targeting the PI3K/Akt pathway in prostate cancer: Challenges and opportunities (Review). International journal of oncology, 2014. 45(5): p. 1793-1801. 51.Barnum, K.J. and M.J. O’Connell, Cell cycle regulation by checkpoints. Cell Cycle Control: Mechanisms and Protocols, 2014: p. 29-40. 52.De Boer, L., et al., Cyclin A/cdk2 coordinates centrosomal and nuclear mitotic events. Oncogene, 2008. 27(31): p. 4261-4268. 53.Santamaría, D., et al., Cdk1 is sufficient to drive the mammalian cell cycle. Nature, 2007. 448(7155): p. 811-815. 54.Elledge, S.J., Cell cycle checkpoints: preventing an identity crisis. Science, 1996. 274(5293): p. 1664. 55.Sørensen, C.S. and R.G. Syljuåsen, Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic acids research, 2012. 40(2): p. 477-486. 56.Watanabe, N., M. Broome, and T. Hunter, Regulation of the human WEE1Hu CDK tyrosine 15-kinase during the cell cycle. The EMBO journal, 1995. 14(9): p. 1878. 57.Tyagi, A., et al., Resveratrol causes Cdc2-tyr15 phosphorylation via ATM/ATR–Chk1/2–Cdc25C pathway as a central mechanism for S phase arrest in human ovarian carcinoma Ovcar-3 cells. Carcinogenesis, 2005. 26(11): p. 1978-1987. 58.Yuan, S.X., et al., Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients'' poor recurrence‐free survival after hepatectomy. Hepatology, 2012. 56(6): p. 2231-2241. 59.De Kok, J.B., et al., DD3PCA3, a very sensitive and specific marker to detect prostate tumors. Cancer research, 2002. 62(9): p. 2695-2698. 60.Geng, Y., et al., Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. Journal of International Medical Research, 2011. 39(6): p. 2119-2128. 61.Ishibashi, M., et al., Clinical significance of the expression of long non-coding RNA HOTAIR in primary hepatocellular carcinoma. Oncology reports, 2013. 29(3): p. 946-950. 62.Kogo, R., et al., Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer research, 2011. 71(20): p. 6320-6326. 63.Niinuma, T., et al., Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer research, 2012. 72(5): p. 1126-1136. 64.Müller-Tidow, C., et al., Genome-wide screening for prognosis-predicting genes in early-stage non-small-cell lung cancer. Lung Cancer, 2004. 45: p. S145-S150. 65.Schmidt, L.H., et al., The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. Journal of thoracic oncology, 2011. 6(12): p. 1984-1992. 66.Lai, M.-c., et al., Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Medical oncology, 2012. 29(3): p. 1810-1816. 67.Gutschner, T., M. Hämmerle, and S. Diederichs, MALAT1—a paradigm for long noncoding RNA function in cancer. Journal of molecular medicine, 2013. 91(7): p. 791-801. 68.Zhang, L., et al., Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis, 2012: p. bgs381. 69.Matouk, I.J., et al., The H19 non-coding RNA is essential for human tumor growth. PloS one, 2007. 2(9): p. e845. 70.Hibi, K., et al., Loss of H19 imprinting in esophageal cancer. Cancer research, 1996. 56(3): p. 480-482. 71.Prensner, J.R., et al., Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nature biotechnology, 2011. 29(8): p. 742-749. 72.Braconi, C., et al., Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proceedings of the National Academy of Sciences, 2011. 108(2): p. 786-791. 73.Flockhart, R.J., et al., BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome research, 2012. 22(6): p. 1006-1014. 74.Yang, F., et al., Characterization of a carcinogenesis-associated long non-coding RNA. RNA biology, 2012. 9(1): p. 110-116. 75.Ellis, B.C., P.L. Molloy, and L.D. Graham, CRNDE: a long non-coding RNA involved in cancer, neurobiology, and development. Frontiers in genetics, 2012. 3: p. 270. 76.Yang, F., et al., Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. Journal of cancer research and clinical oncology, 2013. 139(3): p. 437-445. 77.Du, Y., et al., Elevation of highly up-regulated in liver cancer (HULC) by hepatitis B virus X protein promotes hepatoma cell proliferation via down-regulating p18. Journal of Biological Chemistry, 2012. 287(31): p. 26302-26311. 78.Wang, Y., et al., Long non-coding RNA UCA1a (CUDR) promotes proliferation and tumorigenesis of bladder cancer. International journal of oncology, 2012. 41(1): p. 276. 79.Huarte, M., et al., A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 2010. 142(3): p. 409-419. 80.Zhang, X., et al., Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer research, 2010. 70(6): p. 2350-2358. 81.Wang, P., Z. Ren, and P. Sun, Overexpression of the long non‐coding RNA MEG3 impairs in vitro glioma cell proliferation. Journal of cellular biochemistry, 2012. 113(6): p. 1868-1874. 82.Braconi, C., et al., microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene, 2011. 30(47): p. 4750-4756. 83.Benetatos, L., et al., CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leukemia research, 2010. 34(2): p. 148-153. 84.Poliseno, L., et al., A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 2010. 465(7301): p. 1033-1038. 85.Jendrzejewski, J., et al., The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proceedings of the National Academy of Sciences, 2012. 109(22): p. 8646-8651. 86.Merry, C.R., et al., DNMT1-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer. Human molecular genetics, 2015: p. ddv343. 87.Hu, X., et al., A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer cell, 2014. 26(3): p. 344-357. 88.Wang, Y., et al., The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell stem cell, 2015. 16(4): p. 413-425. 89.Marín-Béjar, O., et al., Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2. Genome biology, 2013. 14(9): p. R104. 90.Sauvageau, M., et al., Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife, 2013. 2: p. e01749. 91.Yang, L., et al., lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature, 2013. 500(7464): p. 598-602. 92.Prensner, J.R., et al., The lncRNAs PCGEM1 and PRNCR1 are not implicated in castration resistant prostate cancer. Oncotarget, 2014. 5(6): p. 1434-1438. 93.Prensner, J.R., et al., The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nature genetics, 2013. 45(11): p. 1392-1398. 94.Iacoangeli, A., et al., BC200 RNA in invasive and preinvasive breast cancer. Carcinogenesis, 2004. 25(11): p. 2125-2133. 95.Chen, W., et al., Expression of neural BC200 RNA in human tumours. The Journal of pathology, 1997. 183(3): p. 345-351. 96.Kino, T., et al., Noncoding RNA Gas5 is a growth arrest and starvation-associated repressor of the glucocorticoid receptor. Science signaling, 2010. 3(107): p. ra8. 97.Lottin, S., et al., Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis, 2002. 23(11): p. 1885-1895. 98.Ariel, I., et al., The imprinted H19 gene is a market of early recurrence in human bladder carcinoma. Journal of Clinical Pathology, 2000. 53(6): p. 320. 99.Lustig-Yariv, O., et al., The expression of the imprinted genes H19 and IGF-2 in choriocarcinoma cell lines. Is H19 a tumor suppressor gene? Oncogene, 1997. 15(2). 100.Smith, D.I., A Long Stress-Responsive Non-Coding Transcript (NiT 5) and Its Role in the Development of Breast Cancer. 2011, DTIC Document. 101.Xu, S., et al., Downregulation of long noncoding RNA MALAT1 induces epithelial-to-mesenchymal transition via the PI3K-AKT pathway in breast cancer. International journal of clinical and experimental pathology, 2015. 8(5): p. 4881. 102.Tripathi, V., et al., The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Molecular cell, 2010. 39(6): p. 925-938. 103.Tripathi, V., et al., Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet, 2013. 9(3): p. e1003368. 104.Nakagawa, S., et al., Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. The Journal of cell biology, 2011: p. jcb. 201011110. 105.Nakagawa, S., et al., The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development, 2014. 141(23): p. 4618-4627. 106.Huang, J., et al., Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell death & disease, 2014. 5(1): p. e1008. 107.Erwin, J.A. and J.T. Lee, New twists in X-chromosome inactivation. Current opinion in cell biology, 2008. 20(3): p. 349-355. 108.Yildirim, E., et al., Xist RNA is a potent suppressor of hematologic cancer in mice. Cell, 2013. 152(4): p. 727-742. 109.Askarian-Amiri, M.E., et al., SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. Rna, 2011. 17(5): p. 878-891. 110.Hansji, H., et al., ZFAS1: a long noncoding RNA associated with ribosomes in breast cancer cells. Biology Direct, 2016. 11(1): p. 62. 111.Bedrosian, J.W., et al., CCAT2, a novel long non-coding RNA in breast cancer: expression study and clinical correlations. 2013. 112.Xing, Z., et al., lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell, 2014. 159(5): p. 1110-1125. 113.Liu, B., et al., A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer cell, 2015. 27(3): p. 370-381. 114.Dijkstra, J.M. and D.B. Alexander, The “NF-ĸ B interacting long noncoding RNA”(NKILA) transcript is antisense to cancer-associated gene PMEPA1. F1000Research, 2015. 4.
|