|
1.Lawson, N.D. and B.M. Weinstein, Arteries and veins: making a difference with zebrafish. Nat Rev Genet, 2002. 3(9): p. 674-82. 2.Wilkinson, R.N. and F.J. van Eeden, The zebrafish as a model of vascular development and disease. Prog Mol Biol Transl Sci, 2014. 124: p. 93-122. 3.Brown, D.R., et al., Advances in the Study of Heart Development and Disease Using Zebrafish. J Cardiovasc Dev Dis, 2016. 3(2). 4.Lieschke, G.J. and P.D. Currie, Animal models of human disease: zebrafish swim into view. Nat Rev Genet, 2007. 8(5): p. 353-67. 5.Howe, K., et al., The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013. 496(7446): p. 498-503. 6.Adams, R.H. and K. Alitalo, Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol, 2007. 8(6): p. 464-78. 7.Ellertsdottir, E., et al., Vascular morphogenesis in the zebrafish embryo. Dev Biol, 2010. 341(1): p. 56-65. 8.Blanco, R. and H. Gerhardt, VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med, 2013. 3(1): p. a006569. 9.Kashiwada, T., et al., beta-Catenin-dependent transcription is central to Bmp-mediated formation of venous vessels. Development, 2015. 142(3): p. 497-509. 10.Wiley, D.M., et al., Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat Cell Biol, 2011. 13(6): p. 686-92. 11.Shibuya, M., Tyrosine Kinase Receptor Flt/VEGFR Family: Its Characterization Related to Angiogenesis and Cancer. Genes Cancer, 2010. 1(11): p. 1119-23. 12.Kuchler, A.M., et al., Development of the zebrafish lymphatic system requires VEGFC signaling. Curr Biol, 2006. 16(12): p. 1244-8. 13.Kume, T., Novel insights into the differential functions of Notch ligands in vascular formation. J Angiogenes Res, 2009. 1: p. 8. 14.Lee, C.Y., et al., Notch signaling functions as a cell-fate switch between the endothelial and hematopoietic lineages. Curr Biol, 2009. 19(19): p. 1616-22. 15.Leslie, J.D., et al., Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development, 2007. 134(5): p. 839-44. 16.Siekmann, A.F. and N.D. Lawson, Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature, 2007. 445(7129): p. 781-4. 17.Lawson, N.D., et al., Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development, 2001. 128(19): p. 3675-83. 18.Kume, T., Specification of arterial, venous, and lymphatic endothelial cells during embryonic development. Histol Histopathol, 2010. 25(5): p. 637-46. 19.Wakayama, Y., et al., Cdc42 mediates Bmp-induced sprouting angiogenesis through Fmnl3-driven assembly of endothelial filopodia in zebrafish. Dev Cell, 2015. 32(1): p. 109-22. 20.Wang, R.N., et al., Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis, 2014. 1(1): p. 87-105. 21.Cai, J., et al., BMP signaling in vascular diseases. FEBS Lett, 2012. 586(14): p. 1993-2002. 22.Dyer, L.A., X. Pi, and C. Patterson, The role of BMPs in endothelial cell function and dysfunction. Trends Endocrinol Metab, 2014. 25(9): p. 472-80. 23.Flynn, M., O. Saha, and P. Young, Molecular evolution of the LNX gene family. BMC Evol Biol, 2011. 11: p. 235. 24.Kansaku, A., et al., Ligand-of-Numb protein X is an endocytic scaffold for junctional adhesion molecule 4. Oncogene, 2006. 25(37): p. 5071-84. 25.Dho, S.E., et al., The mammalian numb phosphotyrosine-binding domain. Characterization of binding specificity and identification of a novel PDZ domain-containing numb binding protein, LNX. J Biol Chem, 1998. 273(15): p. 9179-87. 26.Nie, J., S.S. Li, and C.J. McGlade, A novel PTB-PDZ domain interaction mediates isoform-specific ubiquitylation of mammalian Numb. J Biol Chem, 2004. 279(20): p. 20807-15. 27.Lai, E.C., Protein degradation: four E3s for the notch pathway. Curr Biol, 2002. 12(2): p. R74-8. 28.Nie, J., et al., LNX functions as a RING type E3 ubiquitin ligase that targets the cell fate determinant Numb for ubiquitin-dependent degradation. Embo j, 2002. 21(1-2): p. 93-102. 29.Guo, Z., et al., Proteomics strategy to identify substrates of LNX, a PDZ domain-containing E3 ubiquitin ligase. J Proteome Res, 2012. 11(10): p. 4847-62. 30.Wolting, C.D., et al., Biochemical and computational analysis of LNX1 interacting proteins. PLoS One, 2011. 6(11): p. e26248. 31.Giles, F.J., The vascular endothelial growth factor (VEGF) signaling pathway: a therapeutic target in patients with hematologic malignancies. Oncologist, 2001. 6 Suppl 5: p. 32-9. 32.Cantley, L.C., The phosphoinositide 3-kinase pathway. Science, 2002. 296(5573): p. 1655-7. 33.Cuadrado, A. and A.R. Nebreda, Mechanisms and functions of p38 MAPK signalling. Biochem J, 2010. 429(3): p. 403-17. 34.Coffman, J.A., et al., Evaluation of developmental phenotypes produced by morpholino antisense targeting of a sea urchin Runx gene. BMC Biol, 2004. 2: p. 6. 35.Rice, D.S., G.M. Northcutt, and C. Kurschner, The Lnx family proteins function as molecular scaffolds for Numb family proteins. Mol Cell Neurosci, 2001. 18(5): p. 525-40. 36.D''Agostino, M., et al., Ligand of Numb proteins LNX1p80 and LNX2 interact with the human glycoprotein CD8alpha and promote its ubiquitylation and endocytosis. J Cell Sci, 2011. 124(Pt 21): p. 3545-56. 37.Won, M., H. Ro, and I.B. Dawid, Lnx2 ubiquitin ligase is essential for exocrine cell differentiation in the early zebrafish pancreas. Proc Natl Acad Sci U S A, 2015. 112(40): p. 12426-31. 38.Hellstrom, M., et al., Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 2007. 445(7129): p. 776-80. 39.Bresciani, E., et al., Zebrafish numb and numblike are involved in primitive erythrocyte differentiation. PLoS One, 2010. 5(12): p. e14296. 40.Xu, H., et al., Protein kinase C alpha promotes angiogenic activity of human endothelial cells via induction of vascular endothelial growth factor. Cardiovasc Res, 2008. 78(2): p. 349-55. 41.Wong, C. and Z.G. Jin, Protein kinase C-dependent protein kinase D activation modulates ERK signal pathway and endothelial cell proliferation by vascular endothelial growth factor. J Biol Chem, 2005. 280(39): p. 33262-9.
|