|
1.Varga, J. & Pasche, B. Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol 5, 200-6 (2009). 2.Gorelik, L. & Flavell, R.A. Transforming growth factor-β in T-cell biology. Nature Reviews Immunology 2, 46-53 (2002). 3.Derynck, R. & Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577-584 (2003). 4.Li, H., Sekine, M., Seng, S., Avraham, S. & Avraham, H.K. BRCA1 Interacts with Smad3 and Regulates Smad3-Mediated TGF-β Signaling during Oxidative Stress Responses. PloS one 4, e7091 (2009). 5.Annes, J.P., Chen, Y., Munger, J.S. & Rifkin, D.B. Integrin αVβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1. The Journal of cell biology 165, 723-734 (2004). 6.Rifkin, D.B. Latent transforming growth factor-β (TGF-β) binding proteins: orchestrators of TGF-β availability. Journal of Biological Chemistry 280, 7409-7412 (2005). 7.Fink, S.P., Mikkola, D., Willson, J.K. & Markowitz, S. TGF-β-induced nuclear localization of Smad2 and Smad3 in Smad4 null cancer cell lines. Oncogene 22, 1317-1323 (2003). 8.Heldin, C.-H., Miyazono, K. & Ten Dijke, P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465-471 (1997). 9.Attisano, L. & Wrana, J.L. Mads and Smads in TGFβ signalling. Current opinion in cell biology 10, 188-194 (1998). 10.Attisano, L. & Wrana, J.L. Signal transduction by the TGF-β superfamily. Science 296, 1646-1647 (2002). 11.Singh, P., Wig, J. & Srinivasan, R. The Smad family and its role in pancreatic cancer. Indian journal of cancer 48, 351 (2011). 12.Derynck, R., Zhang, Y. & Feng, X.-H. Transcriptional activators of TGF-β responses: Smads. Cell 95, 737-740 (1998). 13.Massagué, J., Seoane, J. & Wotton, D. Smad transcription factors. Genes & development 19, 2783-2810 (2005). 14.Yang, L. & Moses, H.L. Transforming growth factor beta: tumor suppressor or promoter? Are host immune cells the answer? Cancer Res 68, 9107-11 (2008). 15.Bierie, B. & Moses, H.L. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6, 506-20 (2006). 16.Nacif, M. & Shaker, O. Targeting transforming growth factor-β (TGF-β) in cancer and non-neoplastic diseases. Journal of Cancer Therapy 2014 (2014). 17.Roberts, A.B. & Wakefield, L.M. The two faces of transforming growth factor β in carcinogenesis. Proceedings of the National Academy of Sciences 100, 8621-8623 (2003). 18.Xu, J., Lamouille, S. & Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell research 19, 156-172 (2009). 19.Lamouille, S. & Derynck, R. Cell size and invasion in TGF-β–induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. The Journal of cell biology 178, 437-451 (2007). 20.Seoane, J. & Gomis, R.R. TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harbor Perspectives in Biology, a022277 (2017). 21.Wakefield, L.M. & Roberts, A.B. TGF-β signaling: positive and negative effects on tumorigenesis. Current opinion in genetics & development 12, 22-29 (2002). 22.Ikushima, H. & Miyazono, K. TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10, 415-24 (2010). 23.Meng, X.-m., Nikolic-Paterson, D.J. & Lan, H.Y. TGF-[beta]: the master regulator of fibrosis. Nature Reviews Nephrology (2016). 24.Border, W.A. & Noble, N.A. Transforming growth factor β in tissue fibrosis. New England Journal of Medicine 331, 1286-1292 (1994). 25.Akhurst, R.J. & Hata, A. Targeting the TGFβ signalling pathway in disease. Nature reviews Drug discovery 11, 790-811 (2012). 26.Angadi, P.V. & Kale, A.D. Epithelial-mesenchymal transition-A fundamental mechanism in cancer progression: An overview. Indian Journal of Health Sciences 8, 77 (2015). 27.Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proceedings of the National Academy of Sciences of the United States of America 101, 13306-13311 (2004). 28.Sordella, R., Bell, D.W., Haber, D.A. & Settleman, J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305, 1163-1167 (2004). 29.Shepherd, F.A. et al. Erlotinib in previously treated non–small-cell lung cancer. New England Journal of Medicine 353, 123-132 (2005). 30.Llovet, J.M. et al. Sorafenib in advanced hepatocellular carcinoma. New England journal of medicine 359, 378-390 (2008). 31.Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. New England Journal of Medicine 356, 125-134 (2007). 32.Motzer, R.J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. New England Journal of Medicine 356, 115-124 (2007). 33.Demetri, G.D. et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. The Lancet 368, 1329-1338 (2006). 34.Suzuki, E. et al. A novel small-molecule inhibitor of transforming growth factor beta type I receptor kinase (SM16) inhibits murine mesothelioma tumor growth in vivo and prevents tumor recurrence after surgical resection. Cancer Research 67, 2351-2359 (2007). 35.Byfield, S.D., Major, C., Laping, N.J. & Roberts, A.B. SB-505124 is a selective inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7. Molecular Pharmacology 65, 744-752 (2004). 36.Laping, N. et al. Inhibition of transforming growth factor (TGF)-β1–induced extracellular matrix with a novel inhibitor of the TGF-β type I receptor kinase activity: SB-431542. Molecular pharmacology 62, 58-64 (2002). 37.Yingling, J.M., Blanchard, K.L. & Sawyer, J.S. Development of TGF-β signalling inhibitors for cancer therapy. Nature reviews Drug discovery 3, 1011-1022 (2004). 38.Neuzillet, C. et al. Targeting the TGFβ pathway for cancer therapy. Pharmacology & therapeutics 147, 22-31 (2015). 39.Herbertz, S. et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug design, development and therapy 9, 4479 (2015). 40.Tolcher, A.W. et al. A phase 1 study of anti-TGFβ receptor type-II monoclonal antibody LY3022859 in patients with advanced solid tumors. Cancer chemotherapy and pharmacology 79, 673-680 (2017). 41.Goff, L. et al. Phase I study of PF-03446962, a fully human mab against ALK 1, a TGFβ receptor involved in tumor angiogenesis. Journal of Clinical Oncology 28, 3034-3034 (2010). 42.Chen, C.-L. et al. Euphol from euphorbia tirucalli negatively modulates TGF-β responsiveness via TGF-β receptor segregation inside membrane rafts. PloS one 10, e0140249 (2015). 43.Ahn, M.Y., Jung, J.H., Na, Y.J. & Kim, H.S. A natural histone deacetylase inhibitor, Psammaplin A, induces cell cycle arrest and apoptosis in human endometrial cancer cells. Gynecologic oncology 108, 27-33 (2008). 44.Shankar, S. & Srivastava, R.K. in Programmed Cell Death in Cancer Progression and Therapy 261-298 (Springer, 2008). 45.Córdoba, R., Tormo, N.S., Medarde, A.F. & Plumet, J. Antiangiogenic versus cytotoxic activity in analogues of aeroplysinin-1. Bioorganic & medicinal chemistry 15, 5300-5315 (2007). 46.Martínez-Poveda, B., Rodríguez-Nieto, S., García-Caballero, M., Medina, M.-Á. & Quesada, A.R. The antiangiogenic compound aeroplysinin-1 induces apoptosis in endothelial cells by activating the mitochondrial pathway. Marine drugs 10, 2033-2046 (2012). 47.Su, J.-H. et al. Towards the small and the beautiful: A small dibromotyrosine derivative from Pseudoceratina sp. sponge exhibits potent apoptotic effect through targeting IKK/NFκB signaling pathway. Marine drugs 11, 3168-3185 (2013). 48.Teeyapant, R. et al. Antibiotic and cytotoxic activity of brominated compounds from the marine sponge Verongia aerophoba. Zeitschrift für Naturforschung C 48, 939-945 (1993). 49.Galeano, E., Thomas, O.P., Robledo, S., Munoz, D. & Martinez, A. Antiparasitic bromotyrosine derivatives from the marine sponge Verongula rigida. Marine drugs 9, 1902-1913 (2011). 50.Martínez-Poveda, B. et al. The brominated compound aeroplysinin-1 inhibits proliferation and the expression of key pro-inflammatory molecules in human endothelial and monocyte cells. PloS one 8, e55203 (2013). 51.Kreuter, M.-H. et al. Inhibition of intrinsic protein tyrosine kinase activity of EGF-receptor kinase complex from human breast cancer cells by the marine sponge metabolite (+)-aeroplysinin-1. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 97, 151-158 (1990). 52.Hinterding, K., Knebel, A., Herrlich, P. & Waldmann, H. Synthesis and biological evaluation of aeroplysinin analogues: a new class of receptor tyrosine kinase inhibitors. Bioorganic & medicinal chemistry 6, 1153-1162 (1998). 53.Poncelet, A.-C., De Caestecker, M.P. & Schnaper, H.W. The transforming growth factor-βbgr/SMAD signaling pathway is present and functional in human mesangial cells. Kidney international 56, 1354-1365 (1999). 54.Cobbs, S.L. & Gooch, J.L. NFATc is required for TGFβ-mediated transcriptional regulation of fibronectin. Biochemical and biophysical research communications 362, 288-294 (2007). 55.Widom, R.L., Culic, I., Lee, J.Y. & Korn, J.H. Cloning and characterization of hcKrox, a transcriptional regulator of extracellular matrix gene expression. Gene 198, 407-420 (1997). 56.Gao, S. et al. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-β signaling. Molecular cell 36, 457-468 (2009). 57.Korchynskyi, O. & ten Dijke, P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. Journal of Biological Chemistry 277, 4883-4891 (2002). 58.Varley, J., McPherson, C., Zou, H., Niswander, L. & Maxwell, G. Expression of a constitutively active type I BMP receptor using a retroviral vector promotes the development of adrenergic cells in neural crest cultures. Developmental biology 196, 107-118 (1998). 59.Feng, X.-H. & Derynck, R. Ligand-independent activation of transforming growth factor (TGF) β signaling pathways by heteromeric cytoplasmic domains of TGF-β receptors. Journal of Biological Chemistry 271, 13123-13129 (1996). 60.Abe, M. et al. An assay for transforming growth factor-β using cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct. Analytical biochemistry 216, 276-284 (1994). 61.Schreiber, E. et al. Astrocytes and glioblastoma cells express novel octamer-DNA binding proteins distinct from the ubiquitous Oct-1 and B cell type Oct-2 proteins. Nucleic Acids Research 18, 5495-5503 (1990). 62.Yung, S. & Davies, M. Response of the human peritoneal mesothelial cell to injury: an in vitro model of peritoneal wound healing. Kidney International 54, 2160-2169 (1998). 63.Liu, I.M. et al. TGFβ‐stimulated Smad1/5 phosphorylation requires the ALK5 L45 loop and mediates the pro‐migratory TGFβ switch. The EMBO journal 28, 88-98 (2009). 64.Wrighton, K.H., Lin, X., Paul, B.Y. & Feng, X.-H. Transforming growth factor β can stimulate Smad1 phosphorylation independently of bone morphogenic protein receptors. Journal of Biological Chemistry 284, 9755-9763 (2009). 65.Samarakoon, R., Overstreet, J.M. & Higgins, P.J. TGF-β signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cellular signalling 25, 264-268 (2013). 66.Kang, Y. & Massagué, J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118, 277-279 (2004). 67.Liu, R.-Y. et al. JAK/STAT3 signaling is required for TGF-β-induced epithelial-mesenchymal transition in lung cancer cells. International journal of oncology 44, 1643-1651 (2014). 68.Lee, J.M., Dedhar, S., Kalluri, R. & Thompson, E.W. The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell biol 172, 973-981 (2006). 69.Thiery, J.P., Acloque, H., Huang, R.Y. & Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. cell 139, 871-890 (2009).
|