跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 04:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯皓翔
研究生(外文):Hao-hsiang Hou
論文名稱:整合液晶之可調模態共振光柵元件
論文名稱(外文):Integration of the Liquid Crystal Tunable Guided-Mode Resonance Grating Device
指導教授:林宗賢林宗賢引用關係
指導教授(外文):Tsung-Hsien Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:111
中文關鍵詞:全像干涉液晶波導模態共振效應波導光學濾波器
外文關鍵詞:guided-mode resonanceliquid crystaloptical filterinterference lithographical systemwaveguide
相關次數:
  • 被引用被引用:2
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
光學濾波器是一種能夠選擇特定波長光線穿透或反射的元件。有別於需以精準厚度薄膜堆疊而成的傳統薄膜濾波器,波導模態共振濾波器僅包含了光柵與波導結構,即能表現出優異的波長選擇能力。本研究展示了利用面鏡可調之全像干涉系統及蒸鍍介質材料之後製程技術所製作出的波導模態共振光柵。此光柵本身的共振波長對入射光之角度相當敏感,透過改變光入射之角度可容易地調整其波導光柵的共振波長。由於以一維次波長光柵結構所提出的波導模態共振濾波器對入射光之偏振有相依性,所以我們進一步提出了結合90°扭轉型液晶結構製作可調變之波導模態共振濾波器。其中波導光柵扮演光學共振器的角色,使共振波長產生強烈的反射,且同時也可當作液晶之配向層。而90°TNLC則作為與波長無關之偏振旋轉器以改變入射光的偏振。因此,本研究所製作之濾波器的共振波長和反射效率可以分別透過選擇入射角及驅動90° TNLC進行調控。且我們使用嚴格耦合波分析(RCWA)軟體(Rsoft軟體)對結合液晶的波導模態共振濾波器之光學特性和波導光柵結構進行了模擬及優化,以實現全彩濾波器之製作。此外,本研究也嘗試對液晶材料之反應時間進行優化。由於液晶分子的反應時間會隨著液晶層厚度增加而增長,所以我們提出以晶圓貼合之技術製作出次微米間距的液晶盒縮短液晶的反應時間。而向列型液晶材料E7在此次微米間距中展現了次毫秒等級的反應時間。期望此晶圓貼合技術能使液晶在超快光學與光電元件上拓展應用。
An optical filter is a device which is capable of choosing specific wavelength in transmission or reflection. Unlike traditional multilayer thin-film optical filters that consist of many layers with precise thicknesses, guided-mode resonance (GMR) filters, which only comprise a grating and a waveguide structure, exhibit an excellent wavelength-selecting ability. Therefore, this work demonstrates a GMR using a mirror-tunable interference lithographical system and the deposition of dielectric material process technology. The resonance wavelengths of the such a GMR filter depend strongly on angle of incidence, and thus the resonance wavelength can be easily chosen by changing the angle of incidence. The proposed GMR filter with the one-dimensional SWG structure also depends on polarization of incidence. Thus, this work further proposes a tunable guided-mode resonant (GMR) filter that incorporates a 90° twisted nematic liquid crystal (TNLC). The GMR grating acts as an optical resonator that reflects strongly at the resonance wavelength and as an alignment layer for LC. The 90° TNLC functions as an achromic polarization rotator that alters the polarization of incident light. The resonance wavelength and reflectance of such a filter can be controlled by setting the angle of incidence and driving the 90° TNLC, respectively. The optical properties and waveguide structure of the LC-based GMR filter were simulated and optimized using Rigorous Coupled Wave Analysis (RCWA) software (Rsoft software). Further, this work tries to optimize the response time of the liquid crystal medium. The response time of the liquid crystal medium will increase with the growth of the thickness of liquid crystal layer, so we propose a sub-micron cell gap of the liquid crystal cell using the wafer-bonding technique to shorten the response time. The liquid crystal (E7) cell with sub-micron cell gap exhibits a sub-millisecond response time. Such a wafer-bonding technique makes liquid crystal possible to expand its application in ultra-fast photonics and optoelectronic devices.
中文摘要 i
Abstract ii
第一章 緒論 1
第二章 液晶簡介 3
2-1 液晶的發現 3
2-2 何謂液晶 4
2-3 液晶的分類 5
2-3.1 向列相(Nematic phase) 6
2-3.2 層列相(Smectic phase) 7
2-3.3 膽固醇相(Cholesteric phase) 9
2-4 液晶基本物理特性 11
2-4.1 液晶的秩序參數 11
2-4.2 折射率異向性 13
2-4.3 介電係數異向性 15
2-4.4 黏滯係數異向性 16
2-4.5 連續彈性體理論 17
2-5 液晶的配向 18
2-5.1 配向形式 19
2-5.2 溝槽理論 20
2-5.3 扭轉型向列型液晶(TN-LC)介紹 21
2-5.4 瓊斯矩陣運算 23
2-5.5 Gooch-Tarry condition 26
2-5.6 Mauguin condition 27
第三章 波導模態共振基本原理 29
3-1 波導理論 31
3-2 等效介質理論 37
3-2.1 TE 模態等效折射率 38
3-2.2 TM 模態等效折射率 39
3-3 嚴格耦合波分析 40
3-4 波導模態共振原理之特性 46
3-4.1 偏振選擇性 46
3-4.2 共振位置 47
3-4.3 共振線寬 48
第四章 元件設計、製程與量測 51
4-1 元件設計模擬 52
4-2 元件製作方法與過程 55
4-2.1 全像術介紹 55
4-2.2 全像干涉系統之架設 56
4-3 樣品製作過程及步驟 58
4-3.1 ITO玻璃清洗 58
4-3.2 光柵結構製作 59
4-3.3 液晶盒製作 60
4-4 液晶元件優化製作 62
4-5 元件量測系統之架設 64
4-5.1 光阻光柵配向之觀察 64
4-5.2 穿透頻譜量測 65
4-5.3 V-T curve量測 67
4-5.4 反應時間量測 68
第五章 實驗結果與討論 69
5-1 光柵結構對液晶配向之影響 69
5-2 以液晶作為覆蓋層製作波導模態共振元件 71
5-2.1 水平配向液晶元件 72
5-2.2 扭轉型向列型液晶元件 79
5-3 液晶元件反應時間優化實驗 88
第六章 結論 92
參考資料 94
[1]H. A. MacLeod, Thin-film optical filters, 3rd ed. CRC Press, 2001.
[2]S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A Opt. Image Sci. Vis., Vol. 7, pp. 1470-1474, 1990.
[3]R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett., vol. 61, pp. 1022-1024, 1992.
[4]S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt., vol. 32, pp. 2606-2613, 1993.
[5]J. Inoue, T. Ogura, T. Kondo, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Reflection characteristics of guided-mode resonance filter combined with bottom mirror,” Opt. Lett. , vol. 39, pp. 1893-1896, 2014.
[6]K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett., vol. 20, pp. 1857-1859, 2008.
[7]T. Kobayashi, Y. Kanamori, and K. Hane, “Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure,” Appl. Phys. Lett., vol. 87, 2005.
[8]S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A Opt. Image Sci. Vis., vol. 14, pp. 1617-1626, 1997.
[9]S. Boonruang and W. S. Mohammed, “Multiwavelength guided mode resonance sensor array,” Appl. Phys. Express, vol. 8, 2015.
[10]M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express, vol. 22, pp. 12307-12315, 2014.
[11]M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” IEEE Photon. Technol. Lett., vol. 24, pp. 1552-1554, 2012.
[12]A. S. P. Chang, K. J. Morton, H. Tan, P. E. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photon. Technol. Lett., vol. 19, pp. 1457-1459, 2007.
[13]F. Y. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplicamolding,” Appl. Phys. Lett., vol. 90, 2007.
[14]A. S. P. Chang, H. Tan, S. F. Bai, W. Wu, Z. N. Yu, and S. Y. Chou, “Tunable external cavity laser with a liquid-crystal subwavelength resonant grating filter as wavelength-selective mirror,” IEEE Photon. Technol. Lett., vol. 19, pp. 1099-1101, 2007.
[15]F. Y. Yang, G. Yen, G. Rasigade, J. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett., vol. 92, 2008.
[16]I. Abdulhalim, “Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter,” Chin. Opt. Lett., vol. 7, pp. 667-670, 2009.
[17]Q. Wang, D. W. Zhang, Y. S. Huang, Z. J. Ni, J. B. Chen, Y. W. Zhong, and S. L. Zhuang, “Type of tunable guided-mode resonance filter based on electro-optic characteristic of polymer-dispersed liquid crystal,” Opt. Lett., vol. 35, pp. 1236-1238, 2010.
[18]C. S. Park, V. R. Shrestha, S. S. Lee, and E. S. Kim, “Transmissive color switch tapping into a polarization-selective spectral filter,” IEEE Photon. Technol. Lett., vol. 26, pp. 1235-1238, 2014.
[19]L. Y. Qian, D. W. Zhang, B. Dai, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Electrically driving bandwidth tunable guided-mode resonance filter based on a twisted nematic liquid crystal polarization rotator,” Opt. Lett., vol. 40, pp. 713-716, 2015.
[20]L. Y. Qian, D. W. Zhang, B. Dai, Q. Wang, Y. S. Huang, and S. L. Zhuang, “Optical notch filter with tunable bandwidth based on guided-mode resonant polarization-sensitive spectral feature,” Opt. Express, vol. 23, pp. 18300-18309, 2015.
[21]F. Reinitzer, Beiträge zur Kenntnis des Cholesterins, Monatshefte für Chemie, 1888.
[22]S. Singh, and D. A. Dunmur, Liquid crystal : fundamentals, World Scientific, 2002.
[23]蔡逸泰, 摻雜奈米粒子及偶氮染料的液晶薄膜之預傾角調變研究, 中山大學光電工程研究所學位碩士論文, 2010.
[24]曾衡逸, 微胞化膽固醇液晶顯示介質型態研究與失效分析, 中山大學光電工程研究所學位碩士論文, 2012.
[25]姚裕馨, 液晶與共振腔發光二極體整合之波長可調紅外光源之研究, 中山大學光電工程研究所學位碩士論文, 2012.
[26]周珮潔, 利用染料摻雜液晶製作可光切換之偏振分光鏡, 中山大學光電工程研究所學位碩士論文, 2014.
[27]Peter J. Collings and Michael Hird, Introduction to liquid crystals : chemistry and physics, CRC Press, 1997.
[28]A. Yariv, Optical electronics in modern communications, Oxford University Press, 1997.
[29]I.C. Khoo, Liquid crystal: physical properties and nonlinear optical phenomena, Wiley, 1995.
[30]L. P. G. de Gennes and J. Prost, The physics of liquid crystal, 2nd ed. Oxford University Press, 1995.
[31]陳怡廷, 利用數位光源處理系統製作大面積多區域的光配向技術與應用, 中山大學光電工程研究所學位碩士論文, 2014.
[32]D. W. Berreman, "Solid surface shape and the alignment of an adjacent nematic liquid crystal, " Phys Rev. vol. 28,1683-1686, 1972.
[33]P. Yeh and C. Gu, Optics of Liquid Crystal Displays, A Wiley Interscience Publication, 1999.
[34]R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Proc. Phys. Soc. London, vol. 18, p. 269, 1902.
[35]A. Hessel and A. Oliner, "A new theory of Wood''s anomalies on optical gratings," Appl. Opt. vol. 4, pp. 1275-1297, 1965.
[36]周柏仰, 波導共振模態濾波器的製作與模擬, 交通大學電子工程學系研究所學位碩士論文, 2010.
[37]賴國偉, 波導模態共振之元件應用, 交通大學電子工程學系研究所學位碩士論文, 2011.
[38]M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am., vol. 71, pp. 811-818, 1981.
[39]D. K. Cheng, Field and wave electromagnetic, Tsinghuna University Press, 1989
[40]M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A Opt. Image Sci. Vis., vol. 12, pp. 1068-1076, 1995.
[41]D. H. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng., vol. 37, pp. 2634-2646, 1998.
[42]林祐農, 新型鏡面可調全像干涉系統及其應用,中山大學光電工程學系研究所學位碩士論文,2015.
[43]張鈵健, 晶圓級次波長光柵結構的製作及其光電應用, 中山大學光電工程學系研究所學位碩士論文, 2016.
[44]D. S. Hobbs, B. D. McLeod, A. F. Kelsey, M. A. Leclerc, E. Sabatino III, and D. P. Resler, “Automated interference lithography systems for generation of sub-micron feature size patterns,” in Symposium on Micromachining and Microfabrication, 1999, pp. 124-135.
[45]N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu and C. H. Lin, “Fabrication of two and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express, vol. 13, pp. 9605-9611, 2005.
[46]Y. N. Lin, Y. J. Hung, C. W. Huang, and P. C. Chang, "Mirror-tunable laser interference lithography system for wafer-scale patterning with flexible periodicity," in 2015 International Symposium on Next-Generation Electronics (ISNE), 2015, pp. 1-4.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊