1-11參考文獻
1M. Pope, P. Magnante, & H. P. Kallmann. Electroluminescence in Organic Crystals. Journal of Chemical Physics, 38, 2042. (1963).
2C. W. Tang, & S. A. Vanslyke. Organic Electroluminescent Diodes. Applied Physics Letters, 51, 913. (1987).
3J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, & A. B. Holmes. Light-emitting diodes based on conjugated polymers. Nature, 347, 539. (1990).
4C. W. Tang. Two-layer organic photovoltaic cell. Applied Physics Letters, 48, 183. (1986).
5C. Adachi, S. Tokito, T. Tsutsui, & S. Saito. Organic Electroluminescent Device with a Three-Layer Structure. Japanese Journal of Applied Physics, 27, L713. (1988).
6M. Era, C. Adachi, T. Tsutsui, & S. Saito. Double-Heterostructure Electroluminescent Device with Cyanine-Dye Bimolecular Layer as an Emitter. Chemical Physics Letters, 178, 488. (1991).
7J. Kido, M. Kohda, K. Okuyama, & K. Nagai. Organic Electroluminescent Devices Based on Molecularly Doped Polymers. Applied Physics Letters, 61, 761. (1992).
8J. Kido, M. Kimura, & K. Nagai. Multilayer white light-emitting organic electroluminescent device. Science, 267, 1332. (1995).
9J. Kido, H. Shionoya, & K. Nagai. Single-Layer White Light-Emitting Organic Electroluminescent Devices Based on Dye-Dispersed Poly(N-Vinylcarbazole). Applied Physics Letters, 67, 2281. (1995).
10S. Miyata, & H. S. Nalwa. Organic electroluminescent materials and devices: Crc press, (1997).
11K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, & K. Seki. Electronic structures of organic molecular materials for organic electroluminescent devices studied by ultraviolet photoemission spectroscopy. Journal of Applied Physics, 83, 4928. (1998).
12Z. H. Kafafi. Organic electroluminescence: CRC Press, (2005).
13S. M. Sze. Semiconductor devices: physics and technology: John Wiley & Sons, (2008).
14X. W. Chen, W. C. H. Choy, C. J. Liang, P. K. A. Wai, & S. He. Modifications of the exciton lifetime and internal quantum efficiency for organic light-emitting devices with a weak/strong microcavity. Applied Physics Letters, 91, 221112. (2007).
15C. W. Tang, S. A. Vanslyke, & C. H. Chen. Electroluminescence of Doped Organic Thin-Films. Journal of Applied Physics, 65, 3610. (1989).
16陳金鑫、黃孝文, OLED 有機電激發光材料與元件, 五南出版社, (2005)。
17T. Förster. Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik, 437, 55. (1948).
18D. L. Dexter. A Theory of Sensitized Luminescence in Solids. The Journal of Chemical Physics, 21, 836. (1953).
19S. A. Van Slyke, C. H. Chen, & C. W. Tang. Organic electroluminescent devices with improved stability. Applied Physics Letters, 69, 2160. (1996).
20K. A. Higginson, X.-M. Zhang, & F. Papadimitrakopoulos. Thermal and Morphological Effects on the Hydrolytic Stability of Aluminum Tris(8-hydroxyquinoline) (Alq3). Chemistry of Materials, 10, 1017. (1998).
21G. Sakamoto, C. Adachi, T. Koyama, Y. Taniguchi, C. D. Merritt, H. Murata, & Z. H. Kafafi. Significant improvement of device durability in organic light-emitting diodes by doping both hole transport and emitter layers with rubrene molecules. Applied Physics Letters, 75, 766. (1999).
22J. D. Anderson, E. M. McDonald, P. A. Lee, M. L. Anderson, E. L. Ritchie, H. K. Hall, T. Hopkins, E. A. Mash, J. Wang, A. Padias, S. Thayumanavan, S. Barlow, S. R. Marder, G. E. Jabbour, S. Shaheen, B. Kippelen, N. Peyghambarian, R. M. Wightman, & N. R. Armstrong. Electrochemistry and electrogenerated chemiluminescence processes of the components of aluminum quinolate/triarylamine, and related organic light-emitting diodes. Journal of the American Chemical Society, 120, 9646. (1998).
23C. Giebeler, H. Antoniadis, D. D. C. Bradley, & Y. Shirota. Influence of the hole transport layer on the performance of organic light-emitting diodes. Journal of Applied Physics, 85, 608. (1999).
24Z. Yoshida, & Y. Shirota. Chemistry of Functional Dyes, Vol. 2: Proceedings of the Second International Symposium on Chemistry of Functional Dyes (Vol. 2, pp. 536): Mita Press, (1993).
25A. A. Shoustikov, Y. J. You, & M. E. Thompson. Electroluminescence color tuning by dye doping in organic light-emitting diodes. IEEE Journal of Selected Topics in Quantum Electronics, 4, 3. (1998).
26M. A. Baldo, C. Adachi, & S. R. Forrest. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Physical Review B, 62, 10967. (2000).
27Y. r. Sun, & S. R. Forrest. High-efficiency white organic light emitting devices with three separate phosphorescent emission layers. Applied Physics Letters, 91, 263503. (2007).
28顧鴻壽, 光電有機電激發光顯示器技術及應用, 新文京開發, (2001)。
3-9參考文獻
1S.-I. Na, S.-S. Kim, J. Jo, & D.-Y. Kim. Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes. Advanced Materials, 20, 4061. (2008).
2A. Andersson, N. Johansson, P. Broms, N. Yu, D. Lupo, & W. R. Salaneck. Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs. Advanced Materials, 10, 859. (1998).
3Y. Galagan, J. Rubingh, R. Andriessen, C. C. Fan, P. W. M. Blom, S. C. Veenstra, & J. M. Kroon. ITO-free flexible organic solar cells with printed current collecting grids. Solar Energy Materials and Solar Cells, 95, 1339. (2011).
4Y. Y. Choi, S. J. Kang, H. K. Kim, W. M. Choi, & S. I. Na. Multilayer graphene films as transparent electrodes for organic photovoltaic devices. Solar Energy Materials and Solar Cells, 96, 281. (2012).
5M. W. Rowell, M. A. Topinka, M. D. McGehee, H.-J. Prall, G. Dennler, N. S. Sariciftci, L. Hu, & G. Gruner. Organic solar cells with carbon nanotube network electrodes. Applied Physics Letters, 88, 233506. (2006).
6N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, & B. P. Rand. Design of Transparent Anodes for Resonant Cavity Enhanced Light Harvesting in Organic Solar Cells. Advanced Materials, 24, 728. (2012).
7L. A. A. Pettersson, S. Ghosh, & O. Inganas. Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate). Organic Electronics, 3, 143. (2002).
8A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, & R. A. J. Janssen. Conductivity, work function, and environmental stability of PEDOT: PSS thin films treated with sorbitol. Organic Electronics, 9, 727. (2008).
9J. J. Luo, D. Billep, T. Waechtler, T. Otto, M. Toader, O. Gordan, E. Sheremet, J. Martin, M. Hietschold, D. R. T. Zahnd, & T. Gessner. Enhancement of the thermoelectric properties of PEDOT:PSS thin films by post-treatment. Journal of Materials Chemistry A, 1, 7576. (2013).
10J. Huang, P. F. Miller, J. C. de Mello, A. J. de Mello, & D. D. C. Bradley. Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films. Synthetic Metals, 139, 569. (2003).
11D. Alemu, H. Y. Wei, K. C. Ho, & C. W. Chu. Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy & Environmental Science, 5, 9662. (2012).
12Y. J. Xia, K. Sun, & J. Y. Ouyang. Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices. Advanced Materials, 24, 2436. (2012).
13王仁宏, & 李正中(1999)。PET 塑膠片導電透光膜 (ITO) 應用、設計及製造。載於 光訊。(第80冊,頁 5)。14H. K. Kim, S. H. Han, T. Y. Seong, & W. K. Choi. Low-resistance Ti/Au ohmic contacts to Al-doped ZnO layers. Applied Physics Letters, 77, 1647. (2000).
15Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, & H. W. White. Synthesis of p-type ZnO films. Journal of Crystal Growth, 216, 330. (2000).
16H. K. Kim, K. K. Kim, S. J. Park, T. Y. Seong, & I. Adesida. Formation of low resistance nonalloyed Al/Pt ohmic contacts on n-type ZnO epitaxial layer. Journal of Applied Physics, 94, 4225. (2003).
17H. Sheng, N. W. Emanetoglu, S. Muthukumar, B. V. Yakshinskiy, S. Feng, & Y. Lu. Ta/Au ohmic contacts to n-type ZnO. Journal of Electronic Materials, 32, 935. (2003).
18Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, & B. K. Tay. Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing. Journal of Crystal Growth, 259, 335. (2003).
19曲喜新, 楊邦朝, 姜節儉, & 張懷武 (1996)。電子薄膜材料。載於 北京科學出版社出版。(頁 93)。
20K. L. Chopra, S. Major, & D. K. Pandya. TRANSPARENT CONDUCTORS - A STATUS REVIEW. Thin Solid Films, 102, 1. (1983).
21H. Hartnagel, A. Dawar, A. Jain, & C. Jagadish. Semiconducting transparent thin films: Institute of Physics Bristol, (1995).
22史月艷, 潘文輝, & 殷志強 (1994)。氧化銦錫 (ITO) 膜的光學及電學性能。載於 真空科學技術。(第14冊,頁 35)。
23A. N. H. AlAjili, & S. C. Bayliss. A study of the optical, electrical and structural properties of reactively sputtered InOx and ITOx films. Thin Solid Films, 305, 116. (1997).
24D. C. Paine, T. Whitson, D. Janiac, R. Beresford, C. W. Ow-Yang, & B. Lewis. A study of low temperature crystallization of amorphous thin film indium-tin-oxide. Journal of Applied Physics, 85, 8445. (1999).
25K. H. Kim, S. W. Lee, D. W. Shin, & C. G. Park. EFFECT OF ANTIMONY ADDITION ON ELECTRICAL AND OPTICAL-PROPERTIES OF TIN OXIDE FILM. Journal of the American Ceramic Society, 77, 915. (1994).
26C. Terrier, J. P. Chatelon, J. A. Roger, R. Berjoan, & C. Dubois. Analysis of antimony doping in tin oxide thin films obtained by the sol-gel method. Journal of Sol-Gel Science and Technology, 10, 75. (1997).
27B. Mayer. HIGHLY CONDUCTIVE AND TRANSPARENT FILMS OF TIN AND FLUORINE DOPED INDIUM OXIDE PRODUCED BY APCVD. Thin Solid Films, 221, 166. (1992).
28A. E. Rakhshani, Y. Makdisi, & H. A. Ramazaniyan. Electronic and optical properties of fluorine-doped tin oxide films. Journal of Applied Physics, 83, 1049. (1998).
29Y. Djaoued, V. H. Phong, S. Badilescu, P. V. Ashrit, F. E. Girouard, & V. V. Truong. Sol-gel-prepared ITO films for electrochromic systems. Thin Solid Films, 293, 108. (1997).
30S. S. Kim, S. Y. Choi, C. G. Park, & H. W. Jin. Transparent conductive ITO thin films through the sol-gel process using metal salts. Thin Solid Films, 347, 155. (1999).
31S. R. Ramanan. Dip coated ITO thin-films through sol-gel process using metal salts. Thin Solid Films, 389, 207. (2001).
32H. Tomonaga, & T. Morimoto. Indium-tin oxide coatings via chemical solution deposition. Thin Solid Films, 392, 243. (2001).
33J. Y. Lee, S. T. Connor, Y. Cui, & P. Peumans. Solution-processed metal nanowire mesh transparent electrodes. Nano Letters, 8, 689. (2008).
34S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, & J. N. Coleman. Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. Acs Nano, 3, 1767. (2009).
35M. G. Kang, & L. J. Guo. Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Advanced Materials, 19, 1391. (2007).
36S. B. Yang, B. S. Kong, D. H. Jung, Y. K. Baek, C. S. Han, S. K. Oh, & H. T. Jung. Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale, 3, 1361. (2011).
37F. Bonaccorso, Z. Sun, T. Hasan, & A. C. Ferrari. Graphene photonics and optoelectronics. Nature Photonics, 4, 611. (2010).
38H. Shirakawa, & S. Ikeda. INFRARED SPECTRA OF POLY(ACETYLENE). Polymer Journal, 2, 231. (1971).
39K. Y. Jen, G. G. Miller, & R. L. Elsenbaumer. HIGHLY CONDUCTING, SOLUBLE, AND ENVIRONMENTALLY-STABLE POLY(3-ALKYLTHIOPHENES). Journal of the Chemical Society-Chemical Communications, 1346. (1986).
40J. Roncali, R. Garreau, D. Delabouglise, F. Garnier, & M. Lemaire. A MOLECULAR APPROACH OF POLY(THIOPHENE) FUNCTIONALIZATION. Synthetic Metals, 28, C341. (1989).
41C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, & A. G. Macdiarmid. ELECTRICAL-CONDUCTIVITY IN DOPED POLYACETYLENE. Physical Review Letters, 39, 1098. (1977).
42Y. Cao, G. Yu, C. Zhang, R. Menon, & A. J. Heeger. Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode. Synthetic Metals, 87, 171. (1997).
43A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, & S. Thurm. PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes. Synthetic Metals, 111, 139. (2000).
44J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem, & J. A. Goitia. Degradation and failure of MEH-PPV light-emitting diodes. Journal of Applied Physics, 79, 2745. (1996).
45G. Heywang, & F. Jonas. POLY(ALKYLENEDIOXYTHIOPHENE)S - NEW, VERY STABLE CONDUCTING POLYMERS. Advanced Materials, 4, 116. (1992).
46J. C. Gustafsson, B. Liedberg, & O. Inganas. IN-SITU SPECTROSCOPIC INVESTIGATIONS OF ELECTROCHROMISM AND ION-TRANSPORT IN A POLY(3,4-ETHYLENEDIOXYTHIOPHENE) ELECTRODE IN A SOLID-STATE ELECTROCHEMICAL-CELL. Solid State Ionics, 69, 145. (1994).
47H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, & A. J. Heeger. SYNTHESIS OF ELECTRICALLY CONDUCTING ORGANIC POLYMERS - HALOGEN DERIVATIVES OF POLYACETYLENE, (CH)X. Journal of the Chemical Society-Chemical Communications, 578. (1977).
48B. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, & J. R. Reynolds. Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Advanced Materials, 12, 481. (2000).
49F. Jonas, & G. Heywang. TECHNICAL APPLICATIONS FOR CONDUCTIVE POLYMERS. Electrochimica Acta, 39, 1345. (1994).
50A. N. Aleshin, S. R. Williams, & A. J. Heeger. Transport properties of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate). Synthetic Metals, 94, 173. (1998).
51S. Kirchmeyer, & K. Reuter. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). Journal of Materials Chemistry, 15, 2077. (2005).
52C. Ionescu-Zanetti, A. Mechler, S. A. Carter, & R. Lal. Semiconductive polymer blends: Correlating structure with transport properties at the nanoscale. Advanced Materials, 16, 385. (2004).
53S. Timpanaro, M. Kemerink, F. J. Touwslager, M. M. De Kok, & S. Schrader. Morphology and conductivity of PEDOT/PSS films studied by scanning-tunneling microscopy. Chemical Physics Letters, 394, 339. (2004).
54X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, & M. Berggren. The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT- PSS) plastic electrodes. Chemistry of Materials, 18, 4354. (2006).
55J. Ouyang, Q. F. Xu, C. W. Chu, Y. Yang, G. Li, & J. Shinar. On the mechanism of conductivity enhancement in poly (3,4-ethylenedioxythiophene): poly(styrene sulfonate) film through solvent treatment. Polymer, 45, 8443. (2004).
56M. Lapkowski, & A. Pron. Electrochemical oxidation of poly(3,4-ethylenedioxythiophene) - "in situ" conductivity and spectroscopic investigations. Synthetic Metals, 110, 79. (2000).
57B. Y. Ouyang, C. W. Chi, F. C. Chen, Q. F. Xi, & Y. Yang. High-conductivity poly (3,4-ethylenedioxythiophene): poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Advanced Functional Materials, 15, 203. (2005).
58J. Y. Kim, J. H. Jung, D. E. Lee, & J. Joo. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synthetic Metals, 126, 311. (2002).
59G. Greczynski, T. Kugler, M. Keil, W. Osikowicz, M. Fahlman, & W. R. Salaneck. Photoelectron spectroscopy of thin films of PEDOT-PSS conjugated polymer blend: a mini-review and some new results. Journal of Electron Spectroscopy and Related Phenomena, 121, 1. (2001).
60G. Greczynski, T. Kugler, & W. R. Salaneck. Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy. Thin Solid Films, 354, 129. (1999).
61Y. F. Lim, S. Lee, D. J. Herman, M. T. Lloyd, J. E. Anthony, & G. G. Malliaras. Spray-deposited poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) top electrode for organic solar cells. Applied Physics Letters, 93, 3. (2008).
62A. Colsmann, F. Stenzel, G. Balthasar, H. Do, & U. Lemmer. Plasma patterning of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) anodes for efficient polymer solar cells. Thin Solid Films, 517, 1750. (2009).
63X. Crispin, S. Marciniak, W. Osikowicz, G. Zotti, A. W. D. Van der Gon, F. Louwet, M. Fahlman, L. Groenendaal, F. De Schryver, & W. R. Salaneck. Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study. Journal of Polymer Science Part B-Polymer Physics, 41, 2561. (2003).
64U. Voigt, W. Jaeger, G. H. Findenegg, & R. V. Klitzing. Charge effects on the formation of multilayers containing strong polyelectrolytes. Journal of Physical Chemistry B, 107, 5273. (2003).
65Y. G. Liao, Z. H. Su, X. G. Ye, Y. Q. Li, J. C. You, T. F. Shi, & L. J. An. Kinetics of surface phase separation for PMMA/SAN thin films studied by in situ atomic force microscopy. Macromolecules, 38, 211. (2005).
66Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Muller-Meskamp, & K. Leo. Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. Advanced Functional Materials, 21, 1076. (2011).
67S. Garreau, G. Louarn, J. P. Buisson, G. Froyer, & S. Lefrant. In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules, 32, 6807. (1999).
68J. L. Duvail, P. Retho, S. Garreau, G. Louarn, C. Godon, & S. Demoustier-Champagne. Transport and vibrational properties of poly(3,4-ethylenedioxythiophene) nanofibers. Synthetic Metals, 131, 123. (2002).
4-11參考文獻
1B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, & I. D. W. Samuel. Increased efficiency and controlled light output from a microstructured light-emitting diode. Advanced Materials, 13, 123. (2001).
2Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, & Y. R. Do. A high-extraction-efficiency nanopatterned organic light-emitting diode. Applied Physics Letters, 82, 3779. (2003).
3J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, & J. I. Lee. Random nano-structures as light extraction functionals for organic light-emitting diode applications. Organic Electronics, 15, 196. (2014).
4T. Höfler, M. Weinberger, W. Kern, S. Rentenberger, & A. Pogantsch. Modifying the Output Characteristics of an Organic Light-Emitting Device by Refractive-Index Modulation. Advanced Functional Materials, 16, 2369. (2006).
5S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, C. K. Lee, J. R. Lin, M. K. Wei, & T. L. Chiu. Directional photoluminescence enhancement of organic emitters via surface plasmon coupling. Applied Physics Letters, 94, 103304. (2009).
6H. J. Peng, Y. L. Ho, X. J. Yu, & H. S. Kwok. Enhanced coupling of light from organic light emitting diodes using nanoporous films. Journal of Applied Physics, 96, 1649. (2004).
7D.-H. Kim, J. Y. Kim, D.-Y. Kim, J. H. Han, & K. C. Choi. Solution-based nanostructure to reduce waveguide and surface plasmon losses in organic light-emitting diodes. Organic Electronics, 15, 3183. (2014).
8W. Zhu, X. Wu, W. Sun, L. Sun, K. Guo, M. Tang, & P. Zhou. A simple effective method to improve light out-coupling in organic light-emitting diodes by introducing pyramid-based texture structure. Organic Electronics, 15, 1113. (2014).
9F. Galeotti, W. Mróz, G. Scavia, & C. Botta. Microlens arrays for light extraction enhancement in organic light-emitting diodes: A facile approach. Organic Electronics, 14, 212. (2013).
10M. Slootsky, & S. R. Forrest. Enhancing waveguided light extraction in organic LEDs using an ultra-low-index grid. Optics Letters, 35, 1052. (2010).
11J. Zhou, N. Ai, L. Wang, H. Zheng, C. Luo, Z. Jiang, S. Yu, Y. Cao, & J. Wang. Roughening the white OLED substrate’s surface through sandblasting to improve the external quantum efficiency. Organic Electronics, 12, 648. (2011).
12T. Bocksrocker, J. B. Preinfalk, J. Asche-Tauscher, A. Pargner, C. Eschenbaum, F. Maier-Flaig, & U. Lemme. White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and Lambertian emission. Optics Express, 20, A932. (2012).
13A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, & N. Nicorovici. Photonic engineering. Aphrodite''s iridescence. Nature, 409, 36. (2001).
14P. Vukusic, & J. R. Sambles. Photonic structures in biology. Nature, 424, 852. (2003).
15C. C. Chen, C. Y. Chen, W. K. Wang, F. H. Huang, C. K. Lin, W. Y. Chiu, & Y. J. Chan. Photonic crystal directional couplers formed by InAlGaAs nano-rods. Optics Express, 13, 38. (2005).
16X. D. Cui, C. Hafner, & R. Vahldieck. Design of ultra-compact metallo-dielectric photonic crystal filters. Optics Express, 13, 6175. (2005).
17P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpoth, Y. X. Zhuang, M. Kristensen, & H. M. H. Chong. Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light. Optics Express, 11, 1757. (2003).
18H. K. Cho, J. Jang, J. H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K. D. Lee, S. H. Kim, K. Lee, S. K. Kim, & Y. H. Lee. Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes. Optics Express, 14, 8654. (2006).
19Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Kanamoto, K. Asakawa, & K. Inoue. Design, fabrication, and characterization of a two-dimensional photonic-crystal symmetric Mach-Zehnder interferometer for optical integrated circuits. Applied Physics Letters, 86, 3. (2005).
20欒丕綱, & 陳啟昌, 光子晶體, 五南圖書出版股份有限公司, (2005)。
21C. H. Chan, C. C. Chen, C. K. Huang, W. H. Weng, H. S. Wei, H. Chen, H. T. Lin, H. S. Chang, W. Y. Chen, W. H. Chang, & T. M. Hsu. Self-assembled free-standing colloidal crystals. Nanotechnology, 16, 1440. (2005).
22L. Rayleigh. CXII.The problem of the whispering gallery. Philosophical Magazine Series 6, 20, 1001. (1910).
23S. John. STRONG LOCALIZATION OF PHOTONS IN CERTAIN DISORDERED DIELECTRIC SUPERLATTICES. Physical Review Letters, 58, 2486. (1987).
24E. Yablonovitch. INHIBITED SPONTANEOUS EMISSION IN SOLID-STATE PHYSICS AND ELECTRONICS. Physical Review Letters, 58, 2059. (1987).
25E. Yablonovitch, & T. J. Gmitter. PHOTONIC BAND-STRUCTURE - THE FACE-CENTERED-CUBIC CASE. Physical Review Letters, 63, 1950. (1989).
26K. M. Ho, C. T. Chan, & C. M. Soukoulis. EXISTENCE OF A PHOTONIC GAP IN PERIODIC DIELECTRIC STRUCTURES. Physical Review Letters, 65, 3152. (1990).
27E. Yablonovitch, T. J. Gmitter, & K. M. Leung. PHOTONIC BAND-STRUCTURE - THE FACE-CENTERED-CUBIC CASE EMPLOYING NONSPHERICAL ATOMS. Physical Review Letters, 67, 2295. (1991).
28T. F. Krauss, R. M. DeLaRue, & S. Brand. Two-dimensional photonic-bandgap structures operating at near infrared wavelengths. Nature, 383, 699. (1996).
29W. Jones, & N. H. March. Theoretical solid state physics: Perfect lattices in equilibrium (Vol. 1): Courier Corporation, (1973).
30N. D. Lai, J. H. Lin, & C. C. Hsu. Fabrication of highly rotational symmetric quasi-periodic structures by multiexposure of a three-beam interference technique. Applied Optics, 46, 5645. (2007).
31Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, & D. P. Yu. Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattices on enhancement of surface light extraction. Applied Physics Letters, 88, 3. (2006).
32T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, & S. Kawakami. Photonic crystals for the visible range fabricated by autocloning technique and their application. Optical and Quantum Electronics, 34, 63. (2002).
33P. N. Prasad. Nanophotonics: John Wiley & Sons, (2004).
34T. Kawashima, K. Miura, T. Sato, & S. Kawakami. Self-healing effects in the fabrication process of photonic crystals. Applied Physics Letters, 77, 2613. (2000).
35F. Wang, X. Zhang, J. Zhu & Y. Lin. Preparation of structurally colored films assembled by using polystyrene@silica, air@silica and air@carbon@silica core-shell nanoparticles with enhanced color visibility. RSC Advances 6, 37535. (2016).
36X. Zhang, F. Wang, L. Wang, Y. Lin, & J. F. Zhu. Brilliant Structurally Colored Films with Invariable Stop-Band and Enhanced Mechanical Robustness Inspired by the Cobbled Road. Acs Applied Materials & Interfaces, 8, 22585. (2016).
37P. Rigby. Optics - A photonic crystal fibre. Nature, 396, 415. (1998).
38K. B. Choi, S. J. Shin, T. H. Park, H. J. Lee, J. H. Hwang, J. H. Park, B. Y. Hwang, Y. W. Park, & B. K. Ju. Highly improved light extraction with a reduced spectrum distortion of organic light-emitting diodes composed by the sub-visible wavelength nano-scale periodic (similar to 250 nm) structure and micro-lens array. Organic Electronics, 15, 111. (2014).
39T. Z. N. Sokkar, W. A. Ramadan, M. A. S. El-Din, H. H. Wahba, & S. S. Aboleneen. Bent induced refractive index profile variation and mode field distribution of step-index multimode optical fiber. Optics and Lasers in Engineering, 53, 133. (2014).
40A. Tsargorodska, O. El Zubir, B. Darroch, M. L. Cartron, T. Basova, C. N. Hunter, A. V. Nabok, & G. J. Leggett. Fast, Simple, Combinatorial Routes to the Fabrication of Reusable, Plasmonically Active Gold Nanostructures by Interferometric Lithography of Self-Assembled Monolayers. Acs Nano, 8, 7858. (2014).
41S. Y. Chou, P. R. Krauss, & P. J. Renstrom. Nanoimprint lithography. Journal of Vacuum Science & Technology B, 14, 4129. (1996).
42A. Chen, S. J. Chua, C. G. Fonstad Jr, B. Wang, & O. Wilhelmi. Two-dimensional Photonic Crystals Fabricated by Nanoimprint Lithography. (2005).
43H. H. Park, D. G. Choi, X. Zhang, S. Jeon, S. J. Park, S. W. Lee, S. Kim, K. d. Kim, J. H. Choi, J. Lee, D. K. Yun, K. J. Lee, H. H. Park, R. H. Hill & J. H. Jeong. Photo-induced hybrid nanopatterning of titanium dioxide via direct imprint lithography. J. Mater. Chem. 20, 1921. (2010).
44K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, & N. Shimoji. Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography. Applied Physics Letters, 90, 3. (2007).
45C. H. Lin, H. C. Kuo, C. F. Lai, H. W. Huang, K. M. Leung, C. C. Yu, & J. R. Lo. Light extraction enhancement of InGaN-based green LEDs with a composite omnidirectional reflector. Semiconductor Science and Technology, 21, 1513. (2006).
46D. L. Barton, & A. J. Fischer. Photonic crystals improve LED efficiency. SPIE Newsroom, 10, 0160. (2006).
47C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, & Y. C. Lo. Analysis of the far-field region of LEDs. Optics Express, 17, 13918. (2009).
48N. D. Lai, J. H. Lin, Y. Y. Huang, & C. C. Hsu. Fabrication of two- and three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique. Optics Express, 14, 10746. (2006).
49A. David, C. Meier, R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, C. Weisbuch, & H. Benisty. Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction. Applied Physics Letters, 87, 3. (2005).
50A. David, H. Benisty, & C. Weisbuch. Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs. Journal of Display Technology, 3, 133. (2007).
51M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, & E. Yablonovitch. Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals. Journal of Lightwave Technology, 17, 2096. (1999).
52K. D. Chang, C. Y. Li, J. W. Pan, & K. Y. Cheng. A hybrid simulated method for analyzing the optical efficiency of a head-mounted display with a quasi-crystal OLED panel. Optics Express, 22, A567. (2014).
53T. H. Chou, K. Y. Cheng, T. L. Chang, C. J. Ting, H. C. Hsu, C. J. Wu, J. H. Tsai, & T. Y. Huang. Fabrication of antireflection structures on TCO film for reflective liquid crystal display. Microelectronic Engineering, 86, 628. (2009).