跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 03:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃智國
研究生(外文):Chih-Kuo Huang
論文名稱:可撓曲式電極與光萃取結構應用於有機電激發光二極體之研究
論文名稱(外文):The Study of Flexible Electrode and Light Extraction Structure in Application of Organic Light-Emitting Devices
指導教授:張美濙
指導教授(外文):Mei-Ying Chang
學位類別:博士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:184
中文關鍵詞:透明導電薄膜可撓式 OLED導電高分子內部光萃取結構準光子晶體結構蛾眼仿生抗反射結構
外文關鍵詞:Conductive polymerFlexible OLEDTransparent conductive filmMoth eye anti-reflection structurePhotonic quasi crystalsInternal light extraction structure
相關次數:
  • 被引用被引用:2
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究主要分為兩個區塊,第一個部分是透明可撓曲式電極,透過對導電高分子PEDOT:PSS進行不同的處理方式,達到提高薄膜電極的導電度,探討PEDOT:PSS導電度提升的機制,並應用此電極進行OLED元件的製作;第二個部分是利用奈米壓印技術製作次微米結構於基板上,利用不同的次微米結構當作內部光萃取結構結合OLED元件,分析該結構對於OLED元件出光效率的影響。
近年來透明可撓曲式電極研究中,導電高分子PEDOT:PSS薄膜透過浸泡酸性溶劑、有機溶劑摻雜或是非直子極性溶劑的浸漬處理等方式,達到導電度提升的效果。這三種不同架構下的處理方式分別都能使導電度提升二到四個數量級。而導電率大幅提升的原因在於PEDOT及PSS混合溶液比例的數量變化及分子間的排列情況,利用量測分析證實PEDOT:PSS導電率提升機制,得到穩定且高導電性的PEDOT:PSS薄膜,並應用於ITO-free有機元件具有極大的優勢。
在此部分研究中使用酸性溶劑對PEDOT:PSS薄膜進行浸泡處理,使薄膜導電度由未處理0.3 S/cm提升至1242 S/cm;而極性非質子溶劑DMSO經摻雜及浸漬處理兩種不同的方式分別對PEDOT:PSS溶液及薄膜進行摻雜及浸漬處理,成功的將導電度提升至718及1255 S/cm,有效的提升PEDOT:PSS薄膜導電性,最高達四個數量級,製程方式簡單、穩定、耗時短且窗口廣。後續對處理後的PEDOT:PSS薄膜進行UV-Vis、功函數、表面粗糙度等方面量測比較不同導電度之影響,並利用XPS及UV-vis光譜探討PEDOT:PSS薄膜導電度提升的機制,並使用反應式離子蝕刻機對PEDOT:PSS薄膜進行圖形化乾蝕刻處理,同以高導電性PEDOT:PSS薄膜作為陽極,製作有機發光元件並探討PEDOT:PSS薄膜特性對元件效率的影響,最後成功製成磷光藍光OLED,酸性溶劑浸泡處理之PEDOT:PSS陽極元件在亮度為1000 cd/m2時電流效率為13.4 cd/A,功率效率為6.8 lm/W,EQE為6.7%;DMSO摻雜及浸漬處理之PEDOT:PSS導電陽極元件在亮度為1000 cd/m2時電流效率為20.8 cd/A與15.4 cd/A,功率效率6.7 lm/W及6.3 lm/W,EQE為9.7%與7.7%;最後將DMSO摻雜處理之PEDOT:PSS薄膜陽極成長於PET基板上,並製作可撓式磷光藍光OLED元件,其亮度為1000 cd/m2時電流效率為15.7 cd/A,功率效率3.8 lm/W,EQE為7.9%。
而另一部分的研究主要是應用工研院機械所提供的次微米結構的準光子晶體 (Photonic Quasi Crystals, PQC) 與蛾眼仿生抗反射結構 (Moth Eye Anti-Reflection Structure, AR) 結構基板,將其應用於製作具內部光萃取結構之OLED元件,藉由陽極製程上的優化以及元件結構之設計,使得此種光萃取結構能夠有效降低元件內部的光損耗,提升有機發光二極體元件的光萃取效率及發光效率,達成高發光效率且輕薄的可撓式發光元件。
本研究分為五個階段:
1. 分別對PQC及AR結構基板進行穿透度、表面型態之量測與探討。
2. 使用光固化高折射率材料作為填平層:將光固化材料旋轉塗佈於PQC及AR結構基板上,再以室溫濺鍍製程成長銦錫氧化物薄膜 (ITO),接著量測並觀察其穿透率、表面粗糙度以及片電阻值之變化。
3. 對於OLED標準元件的製作上,進行藍光及綠光OLED元件發光效率的最佳化,然後分別應用在填平後的PQC及AR結構基板上製作出具有內部光萃取結構之藍光及綠光OLED元件,接著進行元件的光電特性量測,探討光萃取結構對於發綠光及藍光OLED元件的電性、亮度和發光效率之影響。
4. 將AR結構壓印在PET基板上,進行穿透度、表面型態之量測與探討。
5. 進行藍光以及白光OLED元件應用在PET AR結構基板上製作出具有內部光萃取結構之藍光與白光可撓OLED元件,接著進行元件的光電特性量測,探討光萃取結構對於發藍光及白光可撓OLED元件的電性、亮度和發光效率之影響。
最後本實驗成功的在具填平層之PQC及AR結構基板上分別製作具有內部光萃取結構之藍光和綠光OLED元件,其外部量子效率在亮度為1000cd/m2時的增進比例分別為 45.9%和19.8%,並成功製作出具有內部光萃取PET AR結構基板之藍光和白光可撓OLED元件,其中以白光可撓OLED元件的取光效率最為顯著,其外部量子效率在亮度為1000 cd/m2時的增進比例為27.8%。另外我們也提出各種改善元件光萃取效率之辦法,以達到更高的光耦合輸出。
In order to obtain an anode with flexibility and high conductivity, lots of groups try to enhance the conductivity of PEDOT:PSS with adding polar solvents─such as glycol, ethanol and using post-treatment by immersing acid, dopant solvents and dipping process. These results show that, by varying the arrangement and ratio between PEDOT and PSS, those three different ways are all can enhance the conductivity more than four orders. In recent years has been measured and confirmed.
In this research, we use the polar aprotic solvents to treat the PEDOT:PSS solution and film by doping and dipping treatment. Through optimization of the parameters, we can effectively enhance the conductivity of PEDOT:PSS from 0.3 to 718 S/cm and 1255 S/cm by an easy, stable, fast and height adaptation method. Four orders of conductivity can be enhanced. The films with different treatment were investigated and compared with each other in the difference of optical conductivity, transmittance, work function, surface roughness, surface morphology, and stability. The films also use XPS and UV-vis absorption to analyze the conductivity enhancement mechanism. When the doping and dipping treatment PEDOT:PSS as anode of device at the luminance of 1000 cd/m2, the performance of current efficiency are 20.8 cd/A and 15.4 cd/A, power efficiency are 6.7 lm/W and 6.3 lm/W and EQE are 9.7% and 7.7%.
In this other side of study, we fabricated organic light-emitting diodes (OLEDs) with internal light extraction structure by using the plastic substrate with photonic quasi crystals (PQC) and moth eye anti-reflection structure (AR) provided by Industrial Technology Research Institute (ITRI) of Taiwan. Anodes fabrication and design of OLED device structure are optimized so that the optical losses inside the OLEDs with internal light extraction structure are minimized and light extraction efficiency of the OLEDs are enhanced. The study was divided into five stages:
1. The transmittance and morphology of PQC and AR nanostructure were measured and studied.
2. High refractive index material spin coated onto PQC and AR substrates as filled layer, then sputter-deposited of Indium Tin Oxide (ITO). The transmittance, morphology and sheet resistance of PQC and AR nanosubstrates covered by filled layer and ITO were measured and studied. And then, design and fabrication of ITO anodes were performed.
3. The optimized standard blue and green OLED device structures were chosen to fabricate green and blue OLEDs with internal light extraction structure. The opto-electrical properties of the devices were measured and studied.
4. The transmittance and morphology of AR on PET substrate were measured and studied.
5. The optimized standard blue and white OLED device structures were chosen to fabricate blue and white flexible OLEDs with internal light extraction structure. The opto-electrical properties of the devices were measured and studied.
Finally, we successfully fabricated blue OLEDs with PQC structure and green OLEDs with AR structure respectively. The blue and green OLEDs with internal light extraction structure have outstanding light extraction efficiency, which increase the external quantum efficiency (EQE) by 45.9% and 19.8% compared to standard OLEDs at 1000cd/m2 respectively, and we fabricated blue and white FOLEDs with internal light extraction AR nanostructure with ITO anode. Significantly, the white flexible OLEDs with internal light extraction structure have outstanding light extraction efficiency, which increase the external quantum efficiency (EQE) by 27.8% compared to white OLEDs on PET substrates at 1000 cd/m2. We also proposed various methods to improve light extraction efficiency of OLEDs.
致 謝 i
中文摘要 ii
Abstract iv
目 錄 vi
圖 目 錄 x
表 目 錄 xviii
第一章 緒論 1
1-1 前言 1
1-2 有機發光二極體的發展與歷史沿革 2
1-3 OLED 元件的基本結構 3
1-4 OLED 元件基本發光原理 4
1-4-1 有機及無機電激發光機制概略比較 6
1-4-2 OLED發光機制簡述 8
1-4-3 OLED之能量轉移機制 9
1-5 OLED 元件材料之介紹 14
1-5-1 高分子發光材料 14
1-5-2 小分子發光材料介紹 15
1-6 OLED 掺雜技術 17
1-7 濃度淬息效應 19
1-8 三重態自我毀滅現象 20
1-9 OLED 發光效率之定義和測量方法 20
1-10 OLED的色彩學原理 22
1-10-1 色彩學原理 22
1-10-2 CIE1931 色座標 23
1-11 參考文獻 26
第二章 實驗方法與步驟 30
2-1 實驗材料 30
2-2 實驗設備 30
2-2-1 製程設備 30
2-2-2 量測設備 35
2-3 實驗步驟 43
2-3-1 ITO基板蝕刻 43
2-3-2 ITO 基板清潔 44
2-3-3 小分子有機與金屬薄膜製程 44
2-3-4 元件封裝製程 45
2-3-5 薄膜電阻量測法 45
第三章 可撓式透明電極 47
3-1 前言與研究動機 47
3-2 透明導電薄膜簡介 47
3-2-1 金屬氧化物類 49
3-2-2 奈米金屬類 50
3-2-3 新型碳材料類 51
3-2-4 導電高分子類 51
3-3 導電高分子PEDOT:PSS 54
3-3-1 PEDOT:PSS發展 55
3-3-2 PEDOT:PSS導電機制 57
3-3-3 表面形態的改變 58
3-3-4 共振結構改變 59
3-3-5 分子構形排列 61
3-3-6 溶劑作用力的屏蔽效應 62
3-3-7 PEDOT:PSS電極應用 64
3-4 實驗架構 65
3-5 室溫濺鍍 ITO 製作及光電特性 66
3-6 PEDOT: PSS薄膜以酸性溶液浸泡處理 70
3-6-1 酸性溶液浸泡PEDOT:PSS薄膜製備及圖樣化 70
3-6-2 UV-vis穿透光譜分析 71
3-6-3 導電度量測與機制探討 72
3-6-4 PESA量測HOMO值 77
3-6-5 薄膜導電度穩定度探討 77
3-6-6 甲酸浸泡處理之PEDOT:PSS陽極應用於OLED元件光電特性分析 78
3-7 PEDOT: PSS薄膜以醇類與極性溶劑摻雜及浸漬處理 82
3-7-1 醇類與極性溶劑摻雜及浸漬處理PEDOT:PSS薄膜製備及圖樣化 82
3-7-2 UV-vis穿透光譜分析 83
3-7-3 導電度量測與機制探討 84
3-7-4 PESA量測HOMO值 91
3-7-5 薄膜導電度穩定度探討 91
3-7-6 DMSO摻雜及浸漬處理之PEDOT:PSS陽極應用於OLED元件光電特性分析 92
3-8 DMSO摻雜處理之PEDOT:PSS陽極應用於可撓式OLED元件光電特性分析 97
3-9 參考文獻 99
第四章 OLED結合內部光萃取結構 109
4-1 前言與研究動機 109
4-2 光子晶體簡介 112
4-2-1 光子晶體發展 114
4-2-2 光子晶體結構及特性 116
4-2-3 光子晶體理論基礎 118
4-2-4 光子晶體製程技術現況 121
4-2-5 光子晶體與OLED發光效率 125
4-3 實驗架構 127
4-4 PQC及AR結構基板光學特性與表面分析 128
4-5 光固化高折射率填平材料塗佈於光萃取結構基板上之量測 133
4-6 具填平層之PQC內部光萃取結構基板整合藍光磷光OLED元件製作與光電特性量測 136
4-7 具填平層之AR內部光萃取結構基板整合綠光磷光OLED元件製作與光電特性量測 139
4-8 可撓式PET AR結構基板光學特性與表面分析 142
4-9 可撓式PET AR結構基板整合藍光磷光OLED元件製作與光電特性量測 146
4-10 可撓式PET AR結構基板整合白光磷光OLED元件製作與光電特性量測 149
4-11 參考文獻 152
第五章 總結與展望 159
1-11參考文獻
1M. Pope, P. Magnante, & H. P. Kallmann. Electroluminescence in Organic Crystals. Journal of Chemical Physics, 38, 2042. (1963).
2C. W. Tang, & S. A. Vanslyke. Organic Electroluminescent Diodes. Applied Physics Letters, 51, 913. (1987).
3J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, & A. B. Holmes. Light-emitting diodes based on conjugated polymers. Nature, 347, 539. (1990).
4C. W. Tang. Two-layer organic photovoltaic cell. Applied Physics Letters, 48, 183. (1986).
5C. Adachi, S. Tokito, T. Tsutsui, & S. Saito. Organic Electroluminescent Device with a Three-Layer Structure. Japanese Journal of Applied Physics, 27, L713. (1988).
6M. Era, C. Adachi, T. Tsutsui, & S. Saito. Double-Heterostructure Electroluminescent Device with Cyanine-Dye Bimolecular Layer as an Emitter. Chemical Physics Letters, 178, 488. (1991).
7J. Kido, M. Kohda, K. Okuyama, & K. Nagai. Organic Electroluminescent Devices Based on Molecularly Doped Polymers. Applied Physics Letters, 61, 761. (1992).
8J. Kido, M. Kimura, & K. Nagai. Multilayer white light-emitting organic electroluminescent device. Science, 267, 1332. (1995).
9J. Kido, H. Shionoya, & K. Nagai. Single-Layer White Light-Emitting Organic Electroluminescent Devices Based on Dye-Dispersed Poly(N-Vinylcarbazole). Applied Physics Letters, 67, 2281. (1995).
10S. Miyata, & H. S. Nalwa. Organic electroluminescent materials and devices: Crc press, (1997).
11K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, & K. Seki. Electronic structures of organic molecular materials for organic electroluminescent devices studied by ultraviolet photoemission spectroscopy. Journal of Applied Physics, 83, 4928. (1998).
12Z. H. Kafafi. Organic electroluminescence: CRC Press, (2005).
13S. M. Sze. Semiconductor devices: physics and technology: John Wiley & Sons, (2008).
14X. W. Chen, W. C. H. Choy, C. J. Liang, P. K. A. Wai, & S. He. Modifications of the exciton lifetime and internal quantum efficiency for organic light-emitting devices with a weak/strong microcavity. Applied Physics Letters, 91, 221112. (2007).
15C. W. Tang, S. A. Vanslyke, & C. H. Chen. Electroluminescence of Doped Organic Thin-Films. Journal of Applied Physics, 65, 3610. (1989).
16陳金鑫、黃孝文, OLED 有機電激發光材料與元件, 五南出版社, (2005)。
17T. Förster. Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik, 437, 55. (1948).
18D. L. Dexter. A Theory of Sensitized Luminescence in Solids. The Journal of Chemical Physics, 21, 836. (1953).
19S. A. Van Slyke, C. H. Chen, & C. W. Tang. Organic electroluminescent devices with improved stability. Applied Physics Letters, 69, 2160. (1996).
20K. A. Higginson, X.-M. Zhang, & F. Papadimitrakopoulos. Thermal and Morphological Effects on the Hydrolytic Stability of Aluminum Tris(8-hydroxyquinoline) (Alq3). Chemistry of Materials, 10, 1017. (1998).
21G. Sakamoto, C. Adachi, T. Koyama, Y. Taniguchi, C. D. Merritt, H. Murata, & Z. H. Kafafi. Significant improvement of device durability in organic light-emitting diodes by doping both hole transport and emitter layers with rubrene molecules. Applied Physics Letters, 75, 766. (1999).
22J. D. Anderson, E. M. McDonald, P. A. Lee, M. L. Anderson, E. L. Ritchie, H. K. Hall, T. Hopkins, E. A. Mash, J. Wang, A. Padias, S. Thayumanavan, S. Barlow, S. R. Marder, G. E. Jabbour, S. Shaheen, B. Kippelen, N. Peyghambarian, R. M. Wightman, & N. R. Armstrong. Electrochemistry and electrogenerated chemiluminescence processes of the components of aluminum quinolate/triarylamine, and related organic light-emitting diodes. Journal of the American Chemical Society, 120, 9646. (1998).
23C. Giebeler, H. Antoniadis, D. D. C. Bradley, & Y. Shirota. Influence of the hole transport layer on the performance of organic light-emitting diodes. Journal of Applied Physics, 85, 608. (1999).
24Z. Yoshida, & Y. Shirota. Chemistry of Functional Dyes, Vol. 2: Proceedings of the Second International Symposium on Chemistry of Functional Dyes (Vol. 2, pp. 536): Mita Press, (1993).
25A. A. Shoustikov, Y. J. You, & M. E. Thompson. Electroluminescence color tuning by dye doping in organic light-emitting diodes. IEEE Journal of Selected Topics in Quantum Electronics, 4, 3. (1998).
26M. A. Baldo, C. Adachi, & S. R. Forrest. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Physical Review B, 62, 10967. (2000).
27Y. r. Sun, & S. R. Forrest. High-efficiency white organic light emitting devices with three separate phosphorescent emission layers. Applied Physics Letters, 91, 263503. (2007).
28顧鴻壽, 光電有機電激發光顯示器技術及應用, 新文京開發, (2001)。
3-9參考文獻
1S.-I. Na, S.-S. Kim, J. Jo, & D.-Y. Kim. Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes. Advanced Materials, 20, 4061. (2008).
2A. Andersson, N. Johansson, P. Broms, N. Yu, D. Lupo, & W. R. Salaneck. Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs. Advanced Materials, 10, 859. (1998).
3Y. Galagan, J. Rubingh, R. Andriessen, C. C. Fan, P. W. M. Blom, S. C. Veenstra, & J. M. Kroon. ITO-free flexible organic solar cells with printed current collecting grids. Solar Energy Materials and Solar Cells, 95, 1339. (2011).
4Y. Y. Choi, S. J. Kang, H. K. Kim, W. M. Choi, & S. I. Na. Multilayer graphene films as transparent electrodes for organic photovoltaic devices. Solar Energy Materials and Solar Cells, 96, 281. (2012).
5M. W. Rowell, M. A. Topinka, M. D. McGehee, H.-J. Prall, G. Dennler, N. S. Sariciftci, L. Hu, & G. Gruner. Organic solar cells with carbon nanotube network electrodes. Applied Physics Letters, 88, 233506. (2006).
6N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, & B. P. Rand. Design of Transparent Anodes for Resonant Cavity Enhanced Light Harvesting in Organic Solar Cells. Advanced Materials, 24, 728. (2012).
7L. A. A. Pettersson, S. Ghosh, & O. Inganas. Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate). Organic Electronics, 3, 143. (2002).
8A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, & R. A. J. Janssen. Conductivity, work function, and environmental stability of PEDOT: PSS thin films treated with sorbitol. Organic Electronics, 9, 727. (2008).
9J. J. Luo, D. Billep, T. Waechtler, T. Otto, M. Toader, O. Gordan, E. Sheremet, J. Martin, M. Hietschold, D. R. T. Zahnd, & T. Gessner. Enhancement of the thermoelectric properties of PEDOT:PSS thin films by post-treatment. Journal of Materials Chemistry A, 1, 7576. (2013).
10J. Huang, P. F. Miller, J. C. de Mello, A. J. de Mello, & D. D. C. Bradley. Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films. Synthetic Metals, 139, 569. (2003).
11D. Alemu, H. Y. Wei, K. C. Ho, & C. W. Chu. Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy & Environmental Science, 5, 9662. (2012).
12Y. J. Xia, K. Sun, & J. Y. Ouyang. Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices. Advanced Materials, 24, 2436. (2012).
13王仁宏, & 李正中(1999)。PET 塑膠片導電透光膜 (ITO) 應用、設計及製造。載於 光訊。(第80冊,頁 5)。
14H. K. Kim, S. H. Han, T. Y. Seong, & W. K. Choi. Low-resistance Ti/Au ohmic contacts to Al-doped ZnO layers. Applied Physics Letters, 77, 1647. (2000).
15Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, & H. W. White. Synthesis of p-type ZnO films. Journal of Crystal Growth, 216, 330. (2000).
16H. K. Kim, K. K. Kim, S. J. Park, T. Y. Seong, & I. Adesida. Formation of low resistance nonalloyed Al/Pt ohmic contacts on n-type ZnO epitaxial layer. Journal of Applied Physics, 94, 4225. (2003).
17H. Sheng, N. W. Emanetoglu, S. Muthukumar, B. V. Yakshinskiy, S. Feng, & Y. Lu. Ta/Au ohmic contacts to n-type ZnO. Journal of Electronic Materials, 32, 935. (2003).
18Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, & B. K. Tay. Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing. Journal of Crystal Growth, 259, 335. (2003).
19曲喜新, 楊邦朝, 姜節儉, & 張懷武 (1996)。電子薄膜材料。載於 北京科學出版社出版。(頁 93)。
20K. L. Chopra, S. Major, & D. K. Pandya. TRANSPARENT CONDUCTORS - A STATUS REVIEW. Thin Solid Films, 102, 1. (1983).
21H. Hartnagel, A. Dawar, A. Jain, & C. Jagadish. Semiconducting transparent thin films: Institute of Physics Bristol, (1995).
22史月艷, 潘文輝, & 殷志強 (1994)。氧化銦錫 (ITO) 膜的光學及電學性能。載於 真空科學技術。(第14冊,頁 35)。
23A. N. H. AlAjili, & S. C. Bayliss. A study of the optical, electrical and structural properties of reactively sputtered InOx and ITOx films. Thin Solid Films, 305, 116. (1997).
24D. C. Paine, T. Whitson, D. Janiac, R. Beresford, C. W. Ow-Yang, & B. Lewis. A study of low temperature crystallization of amorphous thin film indium-tin-oxide. Journal of Applied Physics, 85, 8445. (1999).
25K. H. Kim, S. W. Lee, D. W. Shin, & C. G. Park. EFFECT OF ANTIMONY ADDITION ON ELECTRICAL AND OPTICAL-PROPERTIES OF TIN OXIDE FILM. Journal of the American Ceramic Society, 77, 915. (1994).
26C. Terrier, J. P. Chatelon, J. A. Roger, R. Berjoan, & C. Dubois. Analysis of antimony doping in tin oxide thin films obtained by the sol-gel method. Journal of Sol-Gel Science and Technology, 10, 75. (1997).
27B. Mayer. HIGHLY CONDUCTIVE AND TRANSPARENT FILMS OF TIN AND FLUORINE DOPED INDIUM OXIDE PRODUCED BY APCVD. Thin Solid Films, 221, 166. (1992).
28A. E. Rakhshani, Y. Makdisi, & H. A. Ramazaniyan. Electronic and optical properties of fluorine-doped tin oxide films. Journal of Applied Physics, 83, 1049. (1998).
29Y. Djaoued, V. H. Phong, S. Badilescu, P. V. Ashrit, F. E. Girouard, & V. V. Truong. Sol-gel-prepared ITO films for electrochromic systems. Thin Solid Films, 293, 108. (1997).
30S. S. Kim, S. Y. Choi, C. G. Park, & H. W. Jin. Transparent conductive ITO thin films through the sol-gel process using metal salts. Thin Solid Films, 347, 155. (1999).
31S. R. Ramanan. Dip coated ITO thin-films through sol-gel process using metal salts. Thin Solid Films, 389, 207. (2001).
32H. Tomonaga, & T. Morimoto. Indium-tin oxide coatings via chemical solution deposition. Thin Solid Films, 392, 243. (2001).
33J. Y. Lee, S. T. Connor, Y. Cui, & P. Peumans. Solution-processed metal nanowire mesh transparent electrodes. Nano Letters, 8, 689. (2008).
34S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, & J. N. Coleman. Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. Acs Nano, 3, 1767. (2009).
35M. G. Kang, & L. J. Guo. Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Advanced Materials, 19, 1391. (2007).
36S. B. Yang, B. S. Kong, D. H. Jung, Y. K. Baek, C. S. Han, S. K. Oh, & H. T. Jung. Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale, 3, 1361. (2011).
37F. Bonaccorso, Z. Sun, T. Hasan, & A. C. Ferrari. Graphene photonics and optoelectronics. Nature Photonics, 4, 611. (2010).
38H. Shirakawa, & S. Ikeda. INFRARED SPECTRA OF POLY(ACETYLENE). Polymer Journal, 2, 231. (1971).
39K. Y. Jen, G. G. Miller, & R. L. Elsenbaumer. HIGHLY CONDUCTING, SOLUBLE, AND ENVIRONMENTALLY-STABLE POLY(3-ALKYLTHIOPHENES). Journal of the Chemical Society-Chemical Communications, 1346. (1986).
40J. Roncali, R. Garreau, D. Delabouglise, F. Garnier, & M. Lemaire. A MOLECULAR APPROACH OF POLY(THIOPHENE) FUNCTIONALIZATION. Synthetic Metals, 28, C341. (1989).
41C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, & A. G. Macdiarmid. ELECTRICAL-CONDUCTIVITY IN DOPED POLYACETYLENE. Physical Review Letters, 39, 1098. (1977).
42Y. Cao, G. Yu, C. Zhang, R. Menon, & A. J. Heeger. Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode. Synthetic Metals, 87, 171. (1997).
43A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, & S. Thurm. PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes. Synthetic Metals, 111, 139. (2000).
44J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem, & J. A. Goitia. Degradation and failure of MEH-PPV light-emitting diodes. Journal of Applied Physics, 79, 2745. (1996).
45G. Heywang, & F. Jonas. POLY(ALKYLENEDIOXYTHIOPHENE)S - NEW, VERY STABLE CONDUCTING POLYMERS. Advanced Materials, 4, 116. (1992).
46J. C. Gustafsson, B. Liedberg, & O. Inganas. IN-SITU SPECTROSCOPIC INVESTIGATIONS OF ELECTROCHROMISM AND ION-TRANSPORT IN A POLY(3,4-ETHYLENEDIOXYTHIOPHENE) ELECTRODE IN A SOLID-STATE ELECTROCHEMICAL-CELL. Solid State Ionics, 69, 145. (1994).
47H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, & A. J. Heeger. SYNTHESIS OF ELECTRICALLY CONDUCTING ORGANIC POLYMERS - HALOGEN DERIVATIVES OF POLYACETYLENE, (CH)X. Journal of the Chemical Society-Chemical Communications, 578. (1977).
48B. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, & J. R. Reynolds. Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Advanced Materials, 12, 481. (2000).
49F. Jonas, & G. Heywang. TECHNICAL APPLICATIONS FOR CONDUCTIVE POLYMERS. Electrochimica Acta, 39, 1345. (1994).
50A. N. Aleshin, S. R. Williams, & A. J. Heeger. Transport properties of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate). Synthetic Metals, 94, 173. (1998).
51S. Kirchmeyer, & K. Reuter. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). Journal of Materials Chemistry, 15, 2077. (2005).
52C. Ionescu-Zanetti, A. Mechler, S. A. Carter, & R. Lal. Semiconductive polymer blends: Correlating structure with transport properties at the nanoscale. Advanced Materials, 16, 385. (2004).
53S. Timpanaro, M. Kemerink, F. J. Touwslager, M. M. De Kok, & S. Schrader. Morphology and conductivity of PEDOT/PSS films studied by scanning-tunneling microscopy. Chemical Physics Letters, 394, 339. (2004).
54X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, & M. Berggren. The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT- PSS) plastic electrodes. Chemistry of Materials, 18, 4354. (2006).
55J. Ouyang, Q. F. Xu, C. W. Chu, Y. Yang, G. Li, & J. Shinar. On the mechanism of conductivity enhancement in poly (3,4-ethylenedioxythiophene): poly(styrene sulfonate) film through solvent treatment. Polymer, 45, 8443. (2004).
56M. Lapkowski, & A. Pron. Electrochemical oxidation of poly(3,4-ethylenedioxythiophene) - "in situ" conductivity and spectroscopic investigations. Synthetic Metals, 110, 79. (2000).
57B. Y. Ouyang, C. W. Chi, F. C. Chen, Q. F. Xi, & Y. Yang. High-conductivity poly (3,4-ethylenedioxythiophene): poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Advanced Functional Materials, 15, 203. (2005).
58J. Y. Kim, J. H. Jung, D. E. Lee, & J. Joo. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synthetic Metals, 126, 311. (2002).
59G. Greczynski, T. Kugler, M. Keil, W. Osikowicz, M. Fahlman, & W. R. Salaneck. Photoelectron spectroscopy of thin films of PEDOT-PSS conjugated polymer blend: a mini-review and some new results. Journal of Electron Spectroscopy and Related Phenomena, 121, 1. (2001).
60G. Greczynski, T. Kugler, & W. R. Salaneck. Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy. Thin Solid Films, 354, 129. (1999).
61Y. F. Lim, S. Lee, D. J. Herman, M. T. Lloyd, J. E. Anthony, & G. G. Malliaras. Spray-deposited poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) top electrode for organic solar cells. Applied Physics Letters, 93, 3. (2008).
62A. Colsmann, F. Stenzel, G. Balthasar, H. Do, & U. Lemmer. Plasma patterning of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) anodes for efficient polymer solar cells. Thin Solid Films, 517, 1750. (2009).
63X. Crispin, S. Marciniak, W. Osikowicz, G. Zotti, A. W. D. Van der Gon, F. Louwet, M. Fahlman, L. Groenendaal, F. De Schryver, & W. R. Salaneck. Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study. Journal of Polymer Science Part B-Polymer Physics, 41, 2561. (2003).
64U. Voigt, W. Jaeger, G. H. Findenegg, & R. V. Klitzing. Charge effects on the formation of multilayers containing strong polyelectrolytes. Journal of Physical Chemistry B, 107, 5273. (2003).
65Y. G. Liao, Z. H. Su, X. G. Ye, Y. Q. Li, J. C. You, T. F. Shi, & L. J. An. Kinetics of surface phase separation for PMMA/SAN thin films studied by in situ atomic force microscopy. Macromolecules, 38, 211. (2005).
66Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Muller-Meskamp, & K. Leo. Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. Advanced Functional Materials, 21, 1076. (2011).
67S. Garreau, G. Louarn, J. P. Buisson, G. Froyer, & S. Lefrant. In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules, 32, 6807. (1999).
68J. L. Duvail, P. Retho, S. Garreau, G. Louarn, C. Godon, & S. Demoustier-Champagne. Transport and vibrational properties of poly(3,4-ethylenedioxythiophene) nanofibers. Synthetic Metals, 131, 123. (2002).
4-11參考文獻
1B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, & I. D. W. Samuel. Increased efficiency and controlled light output from a microstructured light-emitting diode. Advanced Materials, 13, 123. (2001).
2Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, & Y. R. Do. A high-extraction-efficiency nanopatterned organic light-emitting diode. Applied Physics Letters, 82, 3779. (2003).
3J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, & J. I. Lee. Random nano-structures as light extraction functionals for organic light-emitting diode applications. Organic Electronics, 15, 196. (2014).
4T. Höfler, M. Weinberger, W. Kern, S. Rentenberger, & A. Pogantsch. Modifying the Output Characteristics of an Organic Light-Emitting Device by Refractive-Index Modulation. Advanced Functional Materials, 16, 2369. (2006).
5S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, C. K. Lee, J. R. Lin, M. K. Wei, & T. L. Chiu. Directional photoluminescence enhancement of organic emitters via surface plasmon coupling. Applied Physics Letters, 94, 103304. (2009).
6H. J. Peng, Y. L. Ho, X. J. Yu, & H. S. Kwok. Enhanced coupling of light from organic light emitting diodes using nanoporous films. Journal of Applied Physics, 96, 1649. (2004).
7D.-H. Kim, J. Y. Kim, D.-Y. Kim, J. H. Han, & K. C. Choi. Solution-based nanostructure to reduce waveguide and surface plasmon losses in organic light-emitting diodes. Organic Electronics, 15, 3183. (2014).
8W. Zhu, X. Wu, W. Sun, L. Sun, K. Guo, M. Tang, & P. Zhou. A simple effective method to improve light out-coupling in organic light-emitting diodes by introducing pyramid-based texture structure. Organic Electronics, 15, 1113. (2014).
9F. Galeotti, W. Mróz, G. Scavia, & C. Botta. Microlens arrays for light extraction enhancement in organic light-emitting diodes: A facile approach. Organic Electronics, 14, 212. (2013).
10M. Slootsky, & S. R. Forrest. Enhancing waveguided light extraction in organic LEDs using an ultra-low-index grid. Optics Letters, 35, 1052. (2010).
11J. Zhou, N. Ai, L. Wang, H. Zheng, C. Luo, Z. Jiang, S. Yu, Y. Cao, & J. Wang. Roughening the white OLED substrate’s surface through sandblasting to improve the external quantum efficiency. Organic Electronics, 12, 648. (2011).
12T. Bocksrocker, J. B. Preinfalk, J. Asche-Tauscher, A. Pargner, C. Eschenbaum, F. Maier-Flaig, & U. Lemme. White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and Lambertian emission. Optics Express, 20, A932. (2012).
13A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, & N. Nicorovici. Photonic engineering. Aphrodite''s iridescence. Nature, 409, 36. (2001).
14P. Vukusic, & J. R. Sambles. Photonic structures in biology. Nature, 424, 852. (2003).
15C. C. Chen, C. Y. Chen, W. K. Wang, F. H. Huang, C. K. Lin, W. Y. Chiu, & Y. J. Chan. Photonic crystal directional couplers formed by InAlGaAs nano-rods. Optics Express, 13, 38. (2005).
16X. D. Cui, C. Hafner, & R. Vahldieck. Design of ultra-compact metallo-dielectric photonic crystal filters. Optics Express, 13, 6175. (2005).
17P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpoth, Y. X. Zhuang, M. Kristensen, & H. M. H. Chong. Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light. Optics Express, 11, 1757. (2003).
18H. K. Cho, J. Jang, J. H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K. D. Lee, S. H. Kim, K. Lee, S. K. Kim, & Y. H. Lee. Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes. Optics Express, 14, 8654. (2006).
19Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Kanamoto, K. Asakawa, & K. Inoue. Design, fabrication, and characterization of a two-dimensional photonic-crystal symmetric Mach-Zehnder interferometer for optical integrated circuits. Applied Physics Letters, 86, 3. (2005).
20欒丕綱, & 陳啟昌, 光子晶體, 五南圖書出版股份有限公司, (2005)。
21C. H. Chan, C. C. Chen, C. K. Huang, W. H. Weng, H. S. Wei, H. Chen, H. T. Lin, H. S. Chang, W. Y. Chen, W. H. Chang, & T. M. Hsu. Self-assembled free-standing colloidal crystals. Nanotechnology, 16, 1440. (2005).
22L. Rayleigh. CXII.The problem of the whispering gallery. Philosophical Magazine Series 6, 20, 1001. (1910).
23S. John. STRONG LOCALIZATION OF PHOTONS IN CERTAIN DISORDERED DIELECTRIC SUPERLATTICES. Physical Review Letters, 58, 2486. (1987).
24E. Yablonovitch. INHIBITED SPONTANEOUS EMISSION IN SOLID-STATE PHYSICS AND ELECTRONICS. Physical Review Letters, 58, 2059. (1987).
25E. Yablonovitch, & T. J. Gmitter. PHOTONIC BAND-STRUCTURE - THE FACE-CENTERED-CUBIC CASE. Physical Review Letters, 63, 1950. (1989).
26K. M. Ho, C. T. Chan, & C. M. Soukoulis. EXISTENCE OF A PHOTONIC GAP IN PERIODIC DIELECTRIC STRUCTURES. Physical Review Letters, 65, 3152. (1990).
27E. Yablonovitch, T. J. Gmitter, & K. M. Leung. PHOTONIC BAND-STRUCTURE - THE FACE-CENTERED-CUBIC CASE EMPLOYING NONSPHERICAL ATOMS. Physical Review Letters, 67, 2295. (1991).
28T. F. Krauss, R. M. DeLaRue, & S. Brand. Two-dimensional photonic-bandgap structures operating at near infrared wavelengths. Nature, 383, 699. (1996).
29W. Jones, & N. H. March. Theoretical solid state physics: Perfect lattices in equilibrium (Vol. 1): Courier Corporation, (1973).
30N. D. Lai, J. H. Lin, & C. C. Hsu. Fabrication of highly rotational symmetric quasi-periodic structures by multiexposure of a three-beam interference technique. Applied Optics, 46, 5645. (2007).
31Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, & D. P. Yu. Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattices on enhancement of surface light extraction. Applied Physics Letters, 88, 3. (2006).
32T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, & S. Kawakami. Photonic crystals for the visible range fabricated by autocloning technique and their application. Optical and Quantum Electronics, 34, 63. (2002).
33P. N. Prasad. Nanophotonics: John Wiley & Sons, (2004).
34T. Kawashima, K. Miura, T. Sato, & S. Kawakami. Self-healing effects in the fabrication process of photonic crystals. Applied Physics Letters, 77, 2613. (2000).
35F. Wang, X. Zhang, J. Zhu & Y. Lin. Preparation of structurally colored films assembled by using polystyrene@silica, air@silica and air@carbon@silica core-shell nanoparticles with enhanced color visibility. RSC Advances 6, 37535. (2016).
36X. Zhang, F. Wang, L. Wang, Y. Lin, & J. F. Zhu. Brilliant Structurally Colored Films with Invariable Stop-Band and Enhanced Mechanical Robustness Inspired by the Cobbled Road. Acs Applied Materials & Interfaces, 8, 22585. (2016).
37P. Rigby. Optics - A photonic crystal fibre. Nature, 396, 415. (1998).
38K. B. Choi, S. J. Shin, T. H. Park, H. J. Lee, J. H. Hwang, J. H. Park, B. Y. Hwang, Y. W. Park, & B. K. Ju. Highly improved light extraction with a reduced spectrum distortion of organic light-emitting diodes composed by the sub-visible wavelength nano-scale periodic (similar to 250 nm) structure and micro-lens array. Organic Electronics, 15, 111. (2014).
39T. Z. N. Sokkar, W. A. Ramadan, M. A. S. El-Din, H. H. Wahba, & S. S. Aboleneen. Bent induced refractive index profile variation and mode field distribution of step-index multimode optical fiber. Optics and Lasers in Engineering, 53, 133. (2014).
40A. Tsargorodska, O. El Zubir, B. Darroch, M. L. Cartron, T. Basova, C. N. Hunter, A. V. Nabok, & G. J. Leggett. Fast, Simple, Combinatorial Routes to the Fabrication of Reusable, Plasmonically Active Gold Nanostructures by Interferometric Lithography of Self-Assembled Monolayers. Acs Nano, 8, 7858. (2014).
41S. Y. Chou, P. R. Krauss, & P. J. Renstrom. Nanoimprint lithography. Journal of Vacuum Science & Technology B, 14, 4129. (1996).
42A. Chen, S. J. Chua, C. G. Fonstad Jr, B. Wang, & O. Wilhelmi. Two-dimensional Photonic Crystals Fabricated by Nanoimprint Lithography. (2005).
43H. H. Park, D. G. Choi, X. Zhang, S. Jeon, S. J. Park, S. W. Lee, S. Kim, K. d. Kim, J. H. Choi, J. Lee, D. K. Yun, K. J. Lee, H. H. Park, R. H. Hill & J. H. Jeong. Photo-induced hybrid nanopatterning of titanium dioxide via direct imprint lithography. J. Mater. Chem. 20, 1921. (2010).
44K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, & N. Shimoji. Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography. Applied Physics Letters, 90, 3. (2007).
45C. H. Lin, H. C. Kuo, C. F. Lai, H. W. Huang, K. M. Leung, C. C. Yu, & J. R. Lo. Light extraction enhancement of InGaN-based green LEDs with a composite omnidirectional reflector. Semiconductor Science and Technology, 21, 1513. (2006).
46D. L. Barton, & A. J. Fischer. Photonic crystals improve LED efficiency. SPIE Newsroom, 10, 0160. (2006).
47C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, & Y. C. Lo. Analysis of the far-field region of LEDs. Optics Express, 17, 13918. (2009).
48N. D. Lai, J. H. Lin, Y. Y. Huang, & C. C. Hsu. Fabrication of two- and three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique. Optics Express, 14, 10746. (2006).
49A. David, C. Meier, R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, C. Weisbuch, & H. Benisty. Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction. Applied Physics Letters, 87, 3. (2005).
50A. David, H. Benisty, & C. Weisbuch. Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs. Journal of Display Technology, 3, 133. (2007).
51M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, & E. Yablonovitch. Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals. Journal of Lightwave Technology, 17, 2096. (1999).
52K. D. Chang, C. Y. Li, J. W. Pan, & K. Y. Cheng. A hybrid simulated method for analyzing the optical efficiency of a head-mounted display with a quasi-crystal OLED panel. Optics Express, 22, A567. (2014).
53T. H. Chou, K. Y. Cheng, T. L. Chang, C. J. Ting, H. C. Hsu, C. J. Wu, J. H. Tsai, & T. Y. Huang. Fabrication of antireflection structures on TCO film for reflective liquid crystal display. Microelectronic Engineering, 86, 628. (2009).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top