|
[1]B. Soffer, "Giant pulse laser operation by a passive, reversibly bleachable absorber," Journal of applied physics, vol. 35, no. 8, pp. 2551-2551, 1964. [2]G. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, "Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers," Journal of the Optical Society of America B, vol. 16, no. 3, pp. 376-388, 1999. [3]S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Set, "Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers," Optics letters, vol. 29, no. 14, pp. 1581-1583, 2004. [4]J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y.-Z. Wu, Y. Yang, and K.-J. Yang, "Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser," Applied Physics Letters, vol. 99, no. 26, p. 261107, 2011. [5]J.-L. Xu, X.-L. Li, Y.-Z. Wu, X.-P. Hao, J.-L. He, and K.-J. Yang, "Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser," Optics letters, vol. 36, no. 10, pp. 1948-1950, 2011. [6]R. I. Woodward and E. J. Kelleher, "2D saturable absorbers for fibre lasers," Applied Sciences, vol. 5, no. 4, pp. 1440-1456, 2015. [7]D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, "Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential," arXiv preprint arXiv:1004.1767, 2010. [8]F. Bernard, H. Zhang, S.-P. Gorza, and P. Emplit, "Towards mode-locked fiber laser using topological insulators," in Nonlinear Photonics, 2012, p. NTh1A. 5: Optical Society of America. [9]C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, "Ultra-short pulse generation by a topological insulator based saturable absorber," Applied Physics Letters, vol. 101, no. 21, p. 211106, 2012. [10]D. Wu, Z. Cai, Y. Zhong, J. Peng, J. Weng, Z. Luo, N. Chen, and H. Xu, "635 nm visible Pr3+-doped ZBLAN fiber lasers Q-switched by topological insulators SAs," IEEE Photon. Technol. Lett., vol. 27, no. 22, pp. 2379-2382, 2015. [11]B. Xu, Y. Wang, J. Peng, Z. Luo, H. Xu, Z. Cai, and J. Weng, "Topological insulator Bi2Se3 based Q-switched Nd: LiYF 4 nanosecond laser at 1313 nm," Optics express, vol. 23, no. 6, pp. 7674-7680, 2015. [12]Y.-Y. Lin, P. Lee, J.-L. Xu, C.-L. Wu, C.-M. Chou, C.-Y. Tu, M. M. Chou, and C.-K. Lee, "High-Pulse-Energy Topological Insulator Bi2Te3-Based Passive Q-Switched Solid-State Laser," IEEE Photonics Journal, vol. 8, no. 4, pp. 1-10, 2016. [13]M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, "A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi 2 Te 3 topological insulator," Optics express, vol. 22, no. 7, pp. 7865-7874, 2014. [14]S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, "Broadband optical and microwave nonlinear response in topological insulator," Optical Materials Express, vol. 4, no. 4, pp. 587-596, 2014. [15]X. He, H. Zhang, R. Wei, Z. Ma, J. Qiu, M. Zhang, Q. Zeng, and R. He, "Nonlinear saturable absorption of nanoscaled Bi 2 Te 3/PMMA composite film," Physica E: Low-dimensional Systems and Nanostructures, vol. 81, pp. 71-76, 2016. [16]Y. Wang, S. Liu, J. Yuan, P. Wang, J. Chen, J. Li, S. Xiao, Q. Bao, Y. Gao, and J. He, "Ultra-broadband Nonlinear Saturable Absorption for Two-dimensional Bi2TexSe3− x Nanosheets," Scientific Reports, vol. 6, 2016. [17]X. He, H. Zhang, W. Lin, R. Wei, J. Qiu, M. Zhang, and B. Hu, "PVP-assisted solvothermal synthesis of high-yielded Bi2Te3 hexagonal nanoplates: application in passively Q-switched fiber laser," Scientific reports, vol. 5, 2015. [18]Q. Wang, Y. Chen, L. Miao, G. Jiang, S. Chen, J. Liu, X. Fu, C. Zhao, and H. Zhang, "Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer," Optics express, vol. 23, no. 6, pp. 7681-7693, 2015. [19]C. Chi, J. Lee, J. Koo, and J. H. Lee, "All-normal-dispersion dissipative-soliton fiber laser at 1.06 µm using a bulk-structured Bi2Te3 topological insulator-deposited side-polished fiber," Laser Physics, vol. 24, no. 10, p. 105106, 2014. [20]J. Boguslawski, J. Sotor, G. Sobon, R. Zybala, M. Kowalczyk, J. Tarka, D. Sliwinska, and K. Abramski, "Sub-200 fs dissipative soliton Er-doped fiber laser mode-locked by Sb 2 Te 3 topological insulator," in The European Conference on Lasers and Electro-Optics, 2015, p. CF_P_5: Optical Society of America. [21]J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, "A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator," Optics express, vol. 22, no. 5, pp. 6165-6173, 2014. [22]J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, "Femtosecond harmonic mode-locking of a fiber laser based on a bulk-structured Bi2Te3 topological insulator," Optics express, vol. 23, no. 5, pp. 6359-6369, 2015. [23]Z.-C. Luo, M. Liu, H. Liu, X.-W. Zheng, A.-P. Luo, C.-J. Zhao, H. Zhang, S.-C. Wen, and W.-C. Xu, "2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber," Optics letters, vol. 38, no. 24, pp. 5212-5215, 2013. [24]P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, "A practical topological insulator saturable absorber for mode-locked fiber laser," Scientific reports, vol. 5, p. 8690, 2015. [25]P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, "A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film," Optics express, vol. 23, no. 1, pp. 154-164, 2015. [26]K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, and J. Hou, "Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2 μm," Photonics Research, vol. 3, no. 3, pp. 72-76, 2015. [27]J.-L. Xu, Y.-J. Sun, J.-L. He, Y. Wang, Z.-J. Zhu, Z.-Y. You, J.-F. Li, M. Chou, C.-K. Lee, and C.-Y. Tu, "Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers," Scientific reports, vol. 5, pp. 14856-14856, 2014. [28]P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, "Q-Switched Mode-Locked Nd: YVO 4 Laser by Topological Insulator Bi2Te3 Saturable Absorber," IEEE Photonics Technology Letters, vol. 26, no. 19, pp. 1912-1915, 2014. [29]K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, and W. Zou, "High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective," Optics Communications, 2017. [30]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," science, vol. 306, no. 5696, pp. 666-669, 2004. [31]D. Pacile, J. Meyer, Ç. Girit, and A. Zettl, "The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes," Applied Physics Letters, vol. 92, no. 13, p. 133107, 2008. [32]J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, and R. J. Smith, "Two-dimensional nanosheets produced by liquid exfoliation of layered materials," Science, vol. 331, no. 6017, pp. 568-571, 2011. [33]L. Ren, X. Qi, Y. Liu, G. Hao, Z. Huang, X. Zou, L. Yang, J. Li, and J. Zhong, "Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route," Journal of Materials Chemistry, vol. 22, no. 11, pp. 4921-4926, 2012. [34]J. Peng, Y. Xiong, Z. Lin, L. Sun, and J. Weng, "Few-layer bismuth selenides exfoliated by hemin inhibit amyloid-β1–42 fibril formation," Scientific reports, vol. 5, 2015. [35]L. Sun, Z. Lin, J. Peng, J. Weng, Y. Huang, and Z. Luo, "Preparation of few-layer bismuth selenide by liquid-phase-exfoliation and its optical absorption properties," Scientific reports, vol. 4, p. 4794, 2014. [36]S. Cho, N. P. Butch, J. Paglione, and M. S. Fuhrer, "Insulating behavior in ultrathin bismuth selenide field effect transistors," Nano letters, vol. 11, no. 5, pp. 1925-1927, 2011. [37]Y. Guo, Z. Liu, and H. Peng, "A roadmap for controlled production of topological insulator nanostructures and thin films," small, vol. 11, no. 27, pp. 3290-3305, 2015. [38]C. Zang, X. Qi, L. Ren, G. Hao, Y. Liu, J. Li, and J. Zhong, "Photoresponse properties of ultrathin Bi2Se3 nanosheets synthesized by hydrothermal intercalation and exfoliation route," Applied Surface Science, vol. 316, no. , pp. 341-347, 2014. [39]K. Shahil, M. Hossain, D. Teweldebrhan, and A. Balandin, "Crystal symmetry breaking in few-quintuple Bi2Te3 films: Applications in nanometrology of topological insulators," Applied Physics Letters, vol. 96, no. 15, p. 153103, 2010. [40]Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, and W.-Y. Shan, "Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit," Nature Physics, vol. 6, no. 8, pp. 584-588, 2010. [41]H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.-X. Shen, and Y. Cui, "Aharonov-Bohm interference in topological insulator nanoribbons," Nature materials, vol. 9, no. 3, pp. 225-229, 2010. [42]D. Kong, J. C. Randel, H. Peng, J. J. Cha, S. Meister, K. Lai, Y. Chen, Z.-X. Shen, H. C. Manoharan, and Y. Cui, "Topological insulator nanowires and nanoribbons," Nano letters, vol. 10, no. 1, pp. 329-333, 2009. [43]Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, and X. C. Ma, "Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit," Advanced materials, vol. 22, no. 36, pp. 4002-4007, 2010. [44]Y. Zhao, H. Liu, H. Qin, X. Chu, X. Wang, X. Wang, K. Cai, D. Liu, C. Wang, and J. Wang, "Spin coating-Co-reduction approach: A general strategy for preparation of oriented chalcogenide thin film on arbitrary substrates," Rare Metals, vol. 30, pp. 651-656, 2011. [45]D. W. Schubert, "Spin coating as a method for polymer molecular weight determination," Polymer Bulletin, journal article vol. 38, no. 2, pp. 177-184, 1997. [46]D. B. Mitzi, L. L. Kosbar, C. E. Murray, M. Copel, and A. Afzali, "High-mobility ultrathin semiconducting films prepared by spin coating," Nature, 10.1038/nature02389 vol. 428, no. 6980, pp. 299-303, 03/18/print 2004. [47]D. F. S. Petri, "Characterization of Spin-Coated Polymer Films," Journal of the Brazilian Chemical Society, vol. 13, pp. 695-699, 2002. [48]S. R. Marder, J. E. Sohn, and G. D. Stucky, "Materials for nonlinear optics chemical perspectives," DTIC Document1991. [49]H. Yang, S. W. LeFevre, C. Y. Ryu, and Z. Bao, "Solubility-driven thin film structures of regioregular poly(3-hexyl thiophene) using volatile solvents," Applied Physics Letters, vol. 90, no. 17, p. 172116, 2007. [50]Y. Jae Hyung, J. Woo Sik, P. Jung Soo, P. Ramchandra, and K. Jang Hyuk, "Low-Voltage, Simple-Structure, High-Efficiency p–i–n-Type Electrophosphorescent Blue Organic Light-Emitting Diodes," Japanese Journal of Applied Physics, vol. 49, no. 10R, p. 102102, 2010. [51]X. Jiang, Q. Zeng, and A. Yu, "A self-seeding coreduction method for shape control of silver nanoplates," Nanotechnology, vol. 17, no. 19, p. 4929, 2006. [52]Q. Peng, Y. Dong, and Y. Li, "Synthesis of uniform CoTe and NiTe semiconductor nanocluster wires through a novel coreduction method," Inorganic chemistry, vol. 42, no. 7, pp. 2174-2175, 2003. [53]赵越, "化学方法制备硫族化合物纳米薄膜的研究," 万方数据资源系统, 2010. [54]B. E. Warren, X-ray Diffraction. Courier Corporation, 1969. [55]D. J. Gardiner, P. R. Graves, and H. J. Bowley, Practical Raman spectroscopy. Berlin; New York: Springer-Verlag, 1989. [56]C. Wang, X. Zhu, L. Nilsson, J. Wen, G. Wang, X. Shan, Q. Zhang, S. Zhang, J. Jia, and Q. Xue, "In situ Raman spectroscopy of topological insulator Bi2Te3 films with varying thickness," Nano Research, vol. 6, no. 9, pp. 688-692, 2013. [57]K. M. F. Shahil, M. Z. Hossain, D. Teweldebrhan, and A. A. Balandin, "Crystal symmetry breaking in few-quintuple Bi2Te3 films: Applications in nanometrology of topological insulators," Applied Physics Letters, vol. 96, no. 15, p. 153103, 2010. [58]J. Goldstein, Scanning Electron Microscopy and X-ray Microanalysis: Third Edition. Plenum, 2003. [59]H.-R. Chen, C.-Y. Tsai, H.-M. Cheng, K.-H. Lin, P.-H. Yen, C.-H. Chen, and W.-F. Hsieh, "High-quality and Large-size Topological Insulator Bi2Te3-Gold Saturable Absorber Mirror for Mode-Locking Fiber Laser," Scientific Reports, vol. 6, p. 38444, 2016. [60]B. Zhang, F. Lou, R. Zhao, J. He, J. Li, X. Su, J. Ning, and K. Yang, "Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser," Optics letters, vol. 40, no. 16, pp. 3691-3694, 2015. [61]李淳飞 and 张雷, "非线性光吸收研究的新进展," 物理, vol. 23, no. 12, pp. 0-0, 1994. [62]J.-C. Chiu, Y.-F. Lan, C.-M. Chang, X.-Z. Chen, C.-Y. Yeh, C.-K. Lee, G.-R. Lin, J.-J. Lin, and W.-H. Cheng, "Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse," Optics Express, vol. 18, no. 4, pp. 3592-3600, 2010. [63]陈檬, 张丙元, 李港, and 王勇刚, "半导体可饱和吸收镜被动锁模Nd∶YAG激光器的研究," 中国激光, vol. 31, no. 6, pp. 646-648, 2004. [64]S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, "Broadband few-layer MoS2 saturable absorbers," Adv Mater, vol. 26, no. 21, pp. 3538-44, Jun 04 2014. [65]H. Zhang, X. He, W. Lin, R. Wei, F. Zhang, X. Du, G. Dong, and J. Qiu, "Ultrafast saturable absorption in topological insulator Bi(2)SeTe(2) nanosheets," Opt Express, vol. 23, no. 10, pp. 13376-83, May 18 2015. [66]Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, "Monolayer graphene as a saturable absorber in a mode-locked laser," Nano Research, vol. 4, no. 3, pp. 297-307, 2010. [67]J. A. Sobota, S. Yang, J. G. Analytis, Y. Chen, I. R. Fisher, P. S. Kirchmann, and Z.-X. Shen, "Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi 2 Se 3," Physical review letters, vol. 108, no. 11, p. 117403, 2012. [68]Y. D. Glinka, S. Babakiray, T. A. Johnson, A. D. Bristow, M. B. Holcomb, and D. Lederman, "Ultrafast carrier dynamics in thin-films of the topological insulator Bi2Se3," Applied Physics Letters, vol. 103, no. 15, p. 151903, 2013. [69]J. L. Xu, Y. J. Sun, J. L. He, Y. Wang, Z. J. Zhu, Z. Y. You, J. F. Li, M. M. Chou, C. K. Lee, and C. Y. Tu, "Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers," Sci Rep, vol. 5, p. 14856, 2015. [70]M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. Chen, and A. Taleb-Ibrahimi, "Ultrafast surface carrier dynamics in the topological insulator Bi2Te3," arXiv preprint arXiv:1206.4561, 2012. [71]H. Plaessmann, K. S. Yamada, C. E. Rich, and W. M. Grossman, "Subnanosecond pulse generation from diode-pumped acousto-optically Q-switched solid-state lasers," Applied Optics, vol. 32, no. 33, pp. 6616-6619, 1993. [72]D.-Y. Shen, S.-C. Tam, Y.-L. Lam, and T. Kobayashi, "Diode-Pumped Passively Q-switched Single-Frequency Nd:YAG Lasers," Optical Review, journal article vol. 7, no. 5, pp. 451-454, 2000. [73]F. J. McClung and R. W. Hellwarth, "Giant Optical Pulsations from Ruby," Applied Optics, vol. 1, no. S1, pp. 103-105, 1962. [74]J. J. Degnan, "Optimization of passively Q-switched lasers," IEEE Journal of Quantum Electronics, vol. 31, no. 11, pp. 1890-1901, 1995. [75]W. Koechner and M. Bass, Solid-State Lasers: A Graduate Text. Springer Science & Business Media, 2003. [76]U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. Der Au, "Semiconductor saturable absorber mirrors (SESAM''s) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE Journal of selected topics in QUANTUM ELECTRONICS, vol. 2, no. 3, pp. 435-453, 1996. [77]Y. S. Kivshar and G. Agrawal, Optical solitons: from fibers to photonic crystals. Academic press, 2003. [78]H. S, C. Webb, Laser Physics. 2010. [79]O. Wood and S. Schwarz, "PASSIVE Q‐SWITCHING OF A CO2 LASER," Applied Physics Letters, vol. 11, no. 3, pp. 88-89, 1967. [80]H. Powell and G. Wolga, "Repetitive passive Q switching of single-frequency lasers," IEEE Journal of Quantum Electronics, vol. 7, no. 6, pp. 213-219, 1971. [81]N. Karlov, G. Kuz''min, Y. N. Petrov, and A. Prokhorov, "Q-switching of a CO 2 laser with a saturating filter based on boron trichloride," JETP Lett., vol. 7, pp. 134-136, 1968. [82]A. Bakasov and N. Abraham, "Laser second threshold: Its exact analytical dependence on detuning and relaxation rates," Physical Review A, vol. 48, no. 2, p. 1633, 1993. [83]范明纹, "掺 Nd3+(Yb3+) 的 CaF2 晶体激光特性研究," 万方数据资源系统, 2014. [84]杨英, "全固态 1.3 μm 波段锁模激光特性研究," 山东大学, 2013. [85]C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," JOSA B, vol. 16, no. 1, pp. 46-56, 1999.
|