跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 13:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李朋
研究生(外文):Peng Lee
論文名稱:透過甩膜-共還原法製備碲化鉍拓樸絕緣體以及雷射測試
論文名稱(外文):Preparation of Topological Insulator Bi2Te3 films by Spin Coating-Coreduction Approach(SCCA) and Laser Test.
指導教授:李晁逵林元堯
指導教授(外文):Chao-Kuei LeeYuan-Yao Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:110
中文關鍵詞:甩膜-共還原法可飽和吸收體Q開關雷射過飽和行為被動鎖模雷射拓樸絕緣體
外文關鍵詞:passive Q-switched laserssaturable absorbersTopological insulatorsSpin Coating-Coreduction Approachover-saturation propertypassive mode-locked lasers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們利用甩膜-共還原法製備碲化鉍拓樸絕緣體作為飽和吸收體,並探討其飽和吸收特性及其鎖模研究提出。首先,我們利用甩膜-共還原法於藍寶石基板上製備大範圍均勻碲化鉍奈米薄片,並透過SEM、AFM、TEM、XRD、EDS、拉曼光譜,做樣品形貌表徵以及樣品定性分析,證明我們已經製備出不同優勢厚度的碲化鉍薄膜樣品。接著對其不同樣品形貌下的碲化鉍樣品做非線性飽和吸收行為探討,並利用線性直腔展示其Q開關雷射輸出。我們分析出厚度越厚的樣品,體態的低飽和光激發特性主宰,其飽和強度越低,調製深度越大,並成功展示了對拓樸絕緣體的形貌控制,達到對拓樸絕緣體飽和吸收體的雷射優化。其後,有鑑於水熱法的脈衝消失行為,我們提出了低閾值過飽和概念,並了解低閾值過飽和行為造成的脈衝崩潰,使腔內能量不足以鎖模。我們並基於低飽和吸收特性,提出了低飽和吸收特性的鎖模方法,並實際測試鎖模應用,於光譜看到展寬現象,首度報導拓樸絕緣體在固態雷射的連續波鎖模輸出。
Recently, topological insulators (TIs) are discovered saturable absorption due to its unique band structure and particularly interesting for using as saturable absorber (SA) in varies wavelength of fiber laser and solid-state laser to realize pulsed lasers. In this thesis, using Spin Coating-Coreduction Approach(SCCA), high quality Bi2Te3 Topological Insulators saturable absorbers(TISAs) was prepared and realized as starter for solid state mode-locked laser.
First, using Spin Coating-Coreduction Approach (SCCA) method, high-purity few layers Bi2Te3 thin film saturable absorber was successfully prepared. Compare with the typical method of preparing SA, the SCCA method can prepare TISA with a high optical quality, large area consistency and controllable thickness, which is very important to pulsed lasers. To our best knowledge, the clear thickness dependent optical nonlinearity is observed and discussed for the first time. In addition, the Q-switched bulk Nd:YAG laser using the prepared TISAs as absorber are demonstrated and investigated. The stable pulse laser not only in timing jitter also in amplitude fluctuation indicate SCCA is an appropriate method to fabricate Bi2Te3 saturable absorber. Second, the transition from Q-switch to continuous wave operation of TISA based solid state laser as increasing pump power was discussed. Modulation instability was used to interpreted the behavior resulting from the low saturation absorption of TISAs. This is first time to our best knowledge that one can investigate the passive pulse laser dynamics variation of over-saturation not only theoretically but also in experimentally. In the last part, based on the nature of low saturation due to co-exist of bulk state and surface state for TIs, we tempt to engineer laser cavity for avoiding over-saturation as increasing pump power. The cw mode-locked solid-state laser was realized and studied for the first time. This also open the new window for investigating two dimensional materials and their application for pulsing solid-state lasers.
第一章 緒論 1
1.1. 前言 1
1.2. 研究動機 3
1.3 論文架構 8
第二章 甩膜-共還原法製備拓樸絕緣體奈米薄膜與其特性表徵 9
2.0 前言 9
2.1 甩膜-共還原法介紹與樣品製備 9
2.1.1 甩膜-共還原法介紹 9
2.1.2 樣品製備流程 11
2.1.3 Bi2Te3薄膜的合成機制 14
2.1.4 Bi2Te3薄膜初步分析 15
2.2不同厚度拓樸絕緣體奈米薄膜之製備 16
2.2.1樣品條件與參數與製程可重複性測試結果 16
2.2.2 實驗結果與分析 20
2.3 拓樸絕緣體奈米薄膜定性分析 24
2.3.1 X射線繞射圖譜 24
2.3.2 拉曼光譜 26
2.3.3 能量色散X-射線光譜 28
2.4 反射式拓樸元件製備 29
2.5 總結 30
第三章 不同厚度碲化鉍奈米薄膜之非線性飽和吸收特性及其雷射Q開關測試 31
3.0 前言 31
3.1 不同厚度碲化鉍元件非線性飽和吸收特性量測 31
3.1.1 非線性飽和吸收機制 31
3.1.2 實驗結果與討論 34
3.2 不同厚度穿透式碲化鉍薄膜一微米固態Q開關雷射實驗研究 42
3.2.1 被動Q開關技術 42
3.2.2 實驗結果與討論 46
3.3 總結 52
第四章 碲化鉍拓樸絕緣體固態雷射過飽和吸收行為探討 53
4.0 前言 53
4.1 過飽和吸收行為背景回顧以及實驗印證 53
4.2 透過數值模擬分析過飽和行為 57
4.3 甩膜共還原法樣品過飽和行為實測以及Cr:YAG晶體過飽和脈衝行為比較 64
4.4 空腔下雷射馳閾震盪行為分析 67
4.5 總結 70
第五章 碲化鉍奈米薄膜鎖模測試 71
5.0 前言 71
5.1 鎖模技術與碲化鉍鎖模雷射研製 71
5.2 被動鎖模共振腔設計 75
5.3 實驗結果與討論 77
5.4 總結 82
第六章 結論以及未來展望 83
[1]B. Soffer, "Giant pulse laser operation by a passive, reversibly bleachable absorber," Journal of applied physics, vol. 35, no. 8, pp. 2551-2551, 1964.
[2]G. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, "Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers," Journal of the Optical Society of America B, vol. 16, no. 3, pp. 376-388, 1999.
[3]S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Set, "Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers," Optics letters, vol. 29, no. 14, pp. 1581-1583, 2004.
[4]J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y.-Z. Wu, Y. Yang, and K.-J. Yang, "Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser," Applied Physics Letters, vol. 99, no. 26, p. 261107, 2011.
[5]J.-L. Xu, X.-L. Li, Y.-Z. Wu, X.-P. Hao, J.-L. He, and K.-J. Yang, "Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser," Optics letters, vol. 36, no. 10, pp. 1948-1950, 2011.
[6]R. I. Woodward and E. J. Kelleher, "2D saturable absorbers for fibre lasers," Applied Sciences, vol. 5, no. 4, pp. 1440-1456, 2015.
[7]D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, "Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential," arXiv preprint arXiv:1004.1767, 2010.
[8]F. Bernard, H. Zhang, S.-P. Gorza, and P. Emplit, "Towards mode-locked fiber laser using topological insulators," in Nonlinear Photonics, 2012, p. NTh1A. 5: Optical Society of America.
[9]C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, "Ultra-short pulse generation by a topological insulator based saturable absorber," Applied Physics Letters, vol. 101, no. 21, p. 211106, 2012.
[10]D. Wu, Z. Cai, Y. Zhong, J. Peng, J. Weng, Z. Luo, N. Chen, and H. Xu, "635 nm visible Pr3+-doped ZBLAN fiber lasers Q-switched by topological insulators SAs," IEEE Photon. Technol. Lett., vol. 27, no. 22, pp. 2379-2382, 2015.
[11]B. Xu, Y. Wang, J. Peng, Z. Luo, H. Xu, Z. Cai, and J. Weng, "Topological insulator Bi2Se3 based Q-switched Nd: LiYF 4 nanosecond laser at 1313 nm," Optics express, vol. 23, no. 6, pp. 7674-7680, 2015.
[12]Y.-Y. Lin, P. Lee, J.-L. Xu, C.-L. Wu, C.-M. Chou, C.-Y. Tu, M. M. Chou, and C.-K. Lee, "High-Pulse-Energy Topological Insulator Bi2Te3-Based Passive Q-Switched Solid-State Laser," IEEE Photonics Journal, vol. 8, no. 4, pp. 1-10, 2016.
[13]M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, "A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi 2 Te 3 topological insulator," Optics express, vol. 22, no. 7, pp. 7865-7874, 2014.
[14]S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, "Broadband optical and microwave nonlinear response in topological insulator," Optical Materials Express, vol. 4, no. 4, pp. 587-596, 2014.
[15]X. He, H. Zhang, R. Wei, Z. Ma, J. Qiu, M. Zhang, Q. Zeng, and R. He, "Nonlinear saturable absorption of nanoscaled Bi 2 Te 3/PMMA composite film," Physica E: Low-dimensional Systems and Nanostructures, vol. 81, pp. 71-76, 2016.
[16]Y. Wang, S. Liu, J. Yuan, P. Wang, J. Chen, J. Li, S. Xiao, Q. Bao, Y. Gao, and J. He, "Ultra-broadband Nonlinear Saturable Absorption for Two-dimensional Bi2TexSe3− x Nanosheets," Scientific Reports, vol. 6, 2016.
[17]X. He, H. Zhang, W. Lin, R. Wei, J. Qiu, M. Zhang, and B. Hu, "PVP-assisted solvothermal synthesis of high-yielded Bi2Te3 hexagonal nanoplates: application in passively Q-switched fiber laser," Scientific reports, vol. 5, 2015.
[18]Q. Wang, Y. Chen, L. Miao, G. Jiang, S. Chen, J. Liu, X. Fu, C. Zhao, and H. Zhang, "Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer," Optics express, vol. 23, no. 6, pp. 7681-7693, 2015.
[19]C. Chi, J. Lee, J. Koo, and J. H. Lee, "All-normal-dispersion dissipative-soliton fiber laser at 1.06 µm using a bulk-structured Bi2Te3 topological insulator-deposited side-polished fiber," Laser Physics, vol. 24, no. 10, p. 105106, 2014.
[20]J. Boguslawski, J. Sotor, G. Sobon, R. Zybala, M. Kowalczyk, J. Tarka, D. Sliwinska, and K. Abramski, "Sub-200 fs dissipative soliton Er-doped fiber laser mode-locked by Sb 2 Te 3 topological insulator," in The European Conference on Lasers and Electro-Optics, 2015, p. CF_P_5: Optical Society of America.
[21]J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, "A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator," Optics express, vol. 22, no. 5, pp. 6165-6173, 2014.
[22]J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, "Femtosecond harmonic mode-locking of a fiber laser based on a bulk-structured Bi2Te3 topological insulator," Optics express, vol. 23, no. 5, pp. 6359-6369, 2015.
[23]Z.-C. Luo, M. Liu, H. Liu, X.-W. Zheng, A.-P. Luo, C.-J. Zhao, H. Zhang, S.-C. Wen, and W.-C. Xu, "2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber," Optics letters, vol. 38, no. 24, pp. 5212-5215, 2013.
[24]P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, "A practical topological insulator saturable absorber for mode-locked fiber laser," Scientific reports, vol. 5, p. 8690, 2015.
[25]P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, "A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film," Optics express, vol. 23, no. 1, pp. 154-164, 2015.
[26]K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, and J. Hou, "Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2 μm," Photonics Research, vol. 3, no. 3, pp. 72-76, 2015.
[27]J.-L. Xu, Y.-J. Sun, J.-L. He, Y. Wang, Z.-J. Zhu, Z.-Y. You, J.-F. Li, M. Chou, C.-K. Lee, and C.-Y. Tu, "Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers," Scientific reports, vol. 5, pp. 14856-14856, 2014.
[28]P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, "Q-Switched Mode-Locked Nd: YVO 4 Laser by Topological Insulator Bi2Te3 Saturable Absorber," IEEE Photonics Technology Letters, vol. 26, no. 19, pp. 1912-1915, 2014.
[29]K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, and W. Zou, "High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective," Optics Communications, 2017.
[30]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," science, vol. 306, no. 5696, pp. 666-669, 2004.
[31]D. Pacile, J. Meyer, Ç. Girit, and A. Zettl, "The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes," Applied Physics Letters, vol. 92, no. 13, p. 133107, 2008.
[32]J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, and R. J. Smith, "Two-dimensional nanosheets produced by liquid exfoliation of layered materials," Science, vol. 331, no. 6017, pp. 568-571, 2011.
[33]L. Ren, X. Qi, Y. Liu, G. Hao, Z. Huang, X. Zou, L. Yang, J. Li, and J. Zhong, "Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route," Journal of Materials Chemistry, vol. 22, no. 11, pp. 4921-4926, 2012.
[34]J. Peng, Y. Xiong, Z. Lin, L. Sun, and J. Weng, "Few-layer bismuth selenides exfoliated by hemin inhibit amyloid-β1–42 fibril formation," Scientific reports, vol. 5, 2015.
[35]L. Sun, Z. Lin, J. Peng, J. Weng, Y. Huang, and Z. Luo, "Preparation of few-layer bismuth selenide by liquid-phase-exfoliation and its optical absorption properties," Scientific reports, vol. 4, p. 4794, 2014.
[36]S. Cho, N. P. Butch, J. Paglione, and M. S. Fuhrer, "Insulating behavior in ultrathin bismuth selenide field effect transistors," Nano letters, vol. 11, no. 5, pp. 1925-1927, 2011.
[37]Y. Guo, Z. Liu, and H. Peng, "A roadmap for controlled production of topological insulator nanostructures and thin films," small, vol. 11, no. 27, pp. 3290-3305, 2015.
[38]C. Zang, X. Qi, L. Ren, G. Hao, Y. Liu, J. Li, and J. Zhong, "Photoresponse properties of ultrathin Bi2Se3 nanosheets synthesized by hydrothermal intercalation and exfoliation route," Applied Surface Science, vol. 316, no. , pp. 341-347, 2014.
[39]K. Shahil, M. Hossain, D. Teweldebrhan, and A. Balandin, "Crystal symmetry breaking in few-quintuple Bi2Te3 films: Applications in nanometrology of topological insulators," Applied Physics Letters, vol. 96, no. 15, p. 153103, 2010.
[40]Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, and W.-Y. Shan, "Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit," Nature Physics, vol. 6, no. 8, pp. 584-588, 2010.
[41]H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.-X. Shen, and Y. Cui, "Aharonov-Bohm interference in topological insulator nanoribbons," Nature materials, vol. 9, no. 3, pp. 225-229, 2010.
[42]D. Kong, J. C. Randel, H. Peng, J. J. Cha, S. Meister, K. Lai, Y. Chen, Z.-X. Shen, H. C. Manoharan, and Y. Cui, "Topological insulator nanowires and nanoribbons," Nano letters, vol. 10, no. 1, pp. 329-333, 2009.
[43]Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, and X. C. Ma, "Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit," Advanced materials, vol. 22, no. 36, pp. 4002-4007, 2010.
[44]Y. Zhao, H. Liu, H. Qin, X. Chu, X. Wang, X. Wang, K. Cai, D. Liu, C. Wang, and J. Wang, "Spin coating-Co-reduction approach: A general strategy for preparation of oriented chalcogenide thin film on arbitrary substrates," Rare Metals, vol. 30, pp. 651-656, 2011.
[45]D. W. Schubert, "Spin coating as a method for polymer molecular weight determination," Polymer Bulletin, journal article vol. 38, no. 2, pp. 177-184, 1997.
[46]D. B. Mitzi, L. L. Kosbar, C. E. Murray, M. Copel, and A. Afzali, "High-mobility ultrathin semiconducting films prepared by spin coating," Nature, 10.1038/nature02389 vol. 428, no. 6980, pp. 299-303, 03/18/print 2004.
[47]D. F. S. Petri, "Characterization of Spin-Coated Polymer Films," Journal of the Brazilian Chemical Society, vol. 13, pp. 695-699, 2002.
[48]S. R. Marder, J. E. Sohn, and G. D. Stucky, "Materials for nonlinear optics chemical perspectives," DTIC Document1991.
[49]H. Yang, S. W. LeFevre, C. Y. Ryu, and Z. Bao, "Solubility-driven thin film structures of regioregular poly(3-hexyl thiophene) using volatile solvents," Applied Physics Letters, vol. 90, no. 17, p. 172116, 2007.
[50]Y. Jae Hyung, J. Woo Sik, P. Jung Soo, P. Ramchandra, and K. Jang Hyuk, "Low-Voltage, Simple-Structure, High-Efficiency p–i–n-Type Electrophosphorescent Blue Organic Light-Emitting Diodes," Japanese Journal of Applied Physics, vol. 49, no. 10R, p. 102102, 2010.
[51]X. Jiang, Q. Zeng, and A. Yu, "A self-seeding coreduction method for shape control of silver nanoplates," Nanotechnology, vol. 17, no. 19, p. 4929, 2006.
[52]Q. Peng, Y. Dong, and Y. Li, "Synthesis of uniform CoTe and NiTe semiconductor nanocluster wires through a novel coreduction method," Inorganic chemistry, vol. 42, no. 7, pp. 2174-2175, 2003.
[53]赵越, "化学方法制备硫族化合物纳米薄膜的研究," 万方数据资源系统, 2010.
[54]B. E. Warren, X-ray Diffraction. Courier Corporation, 1969.
[55]D. J. Gardiner, P. R. Graves, and H. J. Bowley, Practical Raman spectroscopy. Berlin; New York: Springer-Verlag, 1989.
[56]C. Wang, X. Zhu, L. Nilsson, J. Wen, G. Wang, X. Shan, Q. Zhang, S. Zhang, J. Jia, and Q. Xue, "In situ Raman spectroscopy of topological insulator Bi2Te3 films with varying thickness," Nano Research, vol. 6, no. 9, pp. 688-692, 2013.
[57]K. M. F. Shahil, M. Z. Hossain, D. Teweldebrhan, and A. A. Balandin, "Crystal symmetry breaking in few-quintuple Bi2Te3 films: Applications in nanometrology of topological insulators," Applied Physics Letters, vol. 96, no. 15, p. 153103, 2010.
[58]J. Goldstein, Scanning Electron Microscopy and X-ray Microanalysis: Third Edition. Plenum, 2003.
[59]H.-R. Chen, C.-Y. Tsai, H.-M. Cheng, K.-H. Lin, P.-H. Yen, C.-H. Chen, and W.-F. Hsieh, "High-quality and Large-size Topological Insulator Bi2Te3-Gold Saturable Absorber Mirror for Mode-Locking Fiber Laser," Scientific Reports, vol. 6, p. 38444, 2016.
[60]B. Zhang, F. Lou, R. Zhao, J. He, J. Li, X. Su, J. Ning, and K. Yang, "Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser," Optics letters, vol. 40, no. 16, pp. 3691-3694, 2015.
[61]李淳飞 and 张雷, "非线性光吸收研究的新进展," 物理, vol. 23, no. 12, pp. 0-0, 1994.
[62]J.-C. Chiu, Y.-F. Lan, C.-M. Chang, X.-Z. Chen, C.-Y. Yeh, C.-K. Lee, G.-R. Lin, J.-J. Lin, and W.-H. Cheng, "Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse," Optics Express, vol. 18, no. 4, pp. 3592-3600, 2010.
[63]陈檬, 张丙元, 李港, and 王勇刚, "半导体可饱和吸收镜被动锁模Nd∶YAG激光器的研究," 中国激光, vol. 31, no. 6, pp. 646-648, 2004.
[64]S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, "Broadband few-layer MoS2 saturable absorbers," Adv Mater, vol. 26, no. 21, pp. 3538-44, Jun 04 2014.
[65]H. Zhang, X. He, W. Lin, R. Wei, F. Zhang, X. Du, G. Dong, and J. Qiu, "Ultrafast saturable absorption in topological insulator Bi(2)SeTe(2) nanosheets," Opt Express, vol. 23, no. 10, pp. 13376-83, May 18 2015.
[66]Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, "Monolayer graphene as a saturable absorber in a mode-locked laser," Nano Research, vol. 4, no. 3, pp. 297-307, 2010.
[67]J. A. Sobota, S. Yang, J. G. Analytis, Y. Chen, I. R. Fisher, P. S. Kirchmann, and Z.-X. Shen, "Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi 2 Se 3," Physical review letters, vol. 108, no. 11, p. 117403, 2012.
[68]Y. D. Glinka, S. Babakiray, T. A. Johnson, A. D. Bristow, M. B. Holcomb, and D. Lederman, "Ultrafast carrier dynamics in thin-films of the topological insulator Bi2Se3," Applied Physics Letters, vol. 103, no. 15, p. 151903, 2013.
[69]J. L. Xu, Y. J. Sun, J. L. He, Y. Wang, Z. J. Zhu, Z. Y. You, J. F. Li, M. M. Chou, C. K. Lee, and C. Y. Tu, "Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers," Sci Rep, vol. 5, p. 14856, 2015.
[70]M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. Chen, and A. Taleb-Ibrahimi, "Ultrafast surface carrier dynamics in the topological insulator Bi2Te3," arXiv preprint arXiv:1206.4561, 2012.
[71]H. Plaessmann, K. S. Yamada, C. E. Rich, and W. M. Grossman, "Subnanosecond pulse generation from diode-pumped acousto-optically Q-switched solid-state lasers," Applied Optics, vol. 32, no. 33, pp. 6616-6619, 1993.
[72]D.-Y. Shen, S.-C. Tam, Y.-L. Lam, and T. Kobayashi, "Diode-Pumped Passively Q-switched Single-Frequency Nd:YAG Lasers," Optical Review, journal article vol. 7, no. 5, pp. 451-454, 2000.
[73]F. J. McClung and R. W. Hellwarth, "Giant Optical Pulsations from Ruby," Applied Optics, vol. 1, no. S1, pp. 103-105, 1962.
[74]J. J. Degnan, "Optimization of passively Q-switched lasers," IEEE Journal of Quantum Electronics, vol. 31, no. 11, pp. 1890-1901, 1995.
[75]W. Koechner and M. Bass, Solid-State Lasers: A Graduate Text. Springer Science & Business Media, 2003.
[76]U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. Der Au, "Semiconductor saturable absorber mirrors (SESAM''s) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE Journal of selected topics in QUANTUM ELECTRONICS, vol. 2, no. 3, pp. 435-453, 1996.
[77]Y. S. Kivshar and G. Agrawal, Optical solitons: from fibers to photonic crystals. Academic press, 2003.
[78]H. S, C. Webb, Laser Physics. 2010.
[79]O. Wood and S. Schwarz, "PASSIVE Q‐SWITCHING OF A CO2 LASER," Applied Physics Letters, vol. 11, no. 3, pp. 88-89, 1967.
[80]H. Powell and G. Wolga, "Repetitive passive Q switching of single-frequency lasers," IEEE Journal of Quantum Electronics, vol. 7, no. 6, pp. 213-219, 1971.
[81]N. Karlov, G. Kuz''min, Y. N. Petrov, and A. Prokhorov, "Q-switching of a CO 2 laser with a saturating filter based on boron trichloride," JETP Lett., vol. 7, pp. 134-136, 1968.
[82]A. Bakasov and N. Abraham, "Laser second threshold: Its exact analytical dependence on detuning and relaxation rates," Physical Review A, vol. 48, no. 2, p. 1633, 1993.
[83]范明纹, "掺 Nd3+(Yb3+) 的 CaF2 晶体激光特性研究," 万方数据资源系统, 2014.
[84]杨英, "全固态 1.3 μm 波段锁模激光特性研究," 山东大学, 2013.
[85]C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," JOSA B, vol. 16, no. 1, pp. 46-56, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top